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Lower bound for entropy production rate in stochastic systems far from equilibrium
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We show that the Schnakenberg’s entropy production rate in a master equation is lower bounded by a function
of the weight of the Markov graph, here defined as the sum of the absolute values of probability currents over the
edges. The result is valid for time-dependent nonequilibrium entropy production rates. Moreover, in a general
framework, we prove a theorem showing that the Kullback-Leibler divergence between distributions P(s) and
P′(s) := P(m(s)), where m is an involution, m(m(s)) = s, is lower bounded by a function of the total variation
of P and P′, for any m. The bound is tight and it improves on Pinsker’s inequality for this setup. This result
illustrates a connection between nonequilibrium thermodynamics and graph theory with interesting applications.
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Introduction. Nonequilibrium physics has few general re-
sults and most of them can be traced back to the second law
of thermodynamics. Among equivalent statements, the second
law demands that the entropy production rate of a system is
non-negative [1–5],

d

dt
〈�〉 = 〈π〉 � 0, (1)

which means that the rate of entropy variation of the system
plus environment is non-negative. The statement (1) is equiv-
alent to all classic statements from Clausius [6,7], Carnot [8],
and others [1], but we used a notation in (1) suggesting that
the quantity 〈�〉 is an average. As a matter of fact, with the
advent of stochastic thermodynamics [9–18], quantities such
as heat, work, and even entropy production might be defined
at the trajectory level. In order to account for fluctuations of
thermodynamic quantities in small systems, the second law is
now usually rephrased as an ensemble average of the entropy
production.

However, for each system, one must identify what plays
the role of the entropy production rate in terms of the system’s
dynamics. In several situations, either the entropy production
〈�〉 or the entropy production rate 〈π〉 might take the form

D(P|P′) :=
∑

s

P(s) ln

(
P(s)

P(s′)

)
� 0, (2)

where s ∈ S is some event (for instance, a transition), s′ is
the time-reversed event, and P(s) is a probability function.
This expression appears in the context of Markov processes
[19,20], heat exchange problems [21–27], and stochastic ther-
modynamics [2] in general for a suitable choice of S (see
applications).

Formally, expression (2) is the Kullback-Leibler (KL)
divergence of P(s) and P(s′). From definition, the expres-
sion (2) satisfies (1). Moreover, it vanishes if and only if
P(s) = P(s′) for all s, which is a form of detailed balance
condition. It makes equilibrium a situation equivalent to

microscopic reversibility. Actually, expression (2) appears as
the entropy production rate in the analysis of Lyapunov sta-
bility of Markov processes to demonstrate that the system
tends to equilibrium in the long time. A nonequilibrium steady
state can be maintained by coupling the system to multiple
reservoirs, resulting in a constant 〈π〉 > 0. Thus, D(P|P′)
quantifies a disagreement the system has with the detailed
balance condition (equilibrium). Of course, there are other
ways to quantify this disagreement.

Schnakenberg [19] proposed a network representation of
the master equation, importing results from graph theory
[28–30] to nonequilibrium thermodynamics. We explore this
idea by considering the network representation of the vertices
s for a given matching {(s, m(s))|s ∈ S}, where m(m(s)) = s.
We define the weight of this matching as the following sum,

w := 1

2

∑
s

|P(s) − P(s′)|, (3)

which is the total variation distance of P(s) and P(s′). As in
the case of the entropy production rate (2), this weight w is
non-negative and w = 0 if and only if P(s) − P(s′) = 0 for
all s, which is the detailed balance condition. From definition
(3), we also have w � 0 finite, while 〈π〉 might diverge.
Intuitively, the weight of an edge |P(s) − P(s′)| quantifies the
disagreement with the detailed balance condition on that edge.
Summing over all edges results in the amount of disagreement
over the whole graph.

A natural question is if both measures of disagreement,
D(P|P′) and w, are somehow connected. For now, we only
checked that they agree in equilibrium, D(P|P′) = 0 and w =
0. In this Letter, we show that

D(P|P′) � 2w tanh−1 w, (4)

and the bound is tight, valid arbitrarily far from equilibrium,
with saturation observed for a particular two-level system.

The Letter is organized as follows. We introduce the
formalism and prove a general theorem about the relation
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between the KL divergence [31] and the total variation
distance (TV) [32] when distributions are related by an in-
volution. We apply this result to the heat exchange problem
and comment on the exchange fluctuation theorem. Then,
we apply this result to the master equation (22) and get
a bound (4) in terms of the probability currents. We also
illustrate the result with simulations and compare it with
other known bounds for the KL divergence and the TV from
statistics (Pinsker’s and Bretagnolle-Hubber’s). We apply the
theorem to a general setup in stochastic thermodynamics
and obtain a lower bound for the stochastic work. Finally,
we apply the theorem to a time rotation problem, where
a demon flips a coin and decide if time goes forward or
backwards.

Formalism. First, we define some concepts. Let P and Q
be probabilities in S,

∑
s P(s) = ∑

s Q(s) = 1, with 0 � P(s)
and Q(s) � 1. The KL divergence is given by D(P|Q) :=∑

s P(s) ln[P(s)/Q(s)] [defined when Q(s) = 0 → P(s) = 0]
and the total variation distance, �(P, Q) := (1/2)

∑
s |P(s) −

Q(s)|. We prove the following result:
Theorem. Let S �= ∅ be a countable set and let P : S →

[0, 1] be any probability function. Let m : S → S be any in-
volution, m(m(s)) = s. Define P′ := S → [0, 1] as P′(s) :=
P(m(s)). Then, the bound

D(P|P′) � 2�(P, P′) tanh−1 (�(P, P′)) (5)

is tight.
Proof. Let P and m be defined in S as in the theorem. If

there is an s ∈ S such that P(s) = 0 and P′(s) = P(m(s)) �= 0,
then D(P|P′) diverges while tanh−1 (�(P, P′)) might be finite.
Therefore, we focus on the case with the condition P(s) =
0 → P(m(s)) = 0 for all s (absolute continuity).

Define a function π : S → R as

π (s) := ln[P(s)/P(s′)], (6)

for P(s) > 0 [which makes P(s′) > 0], where s′ := m(s). In
the case P(s) = 0 [which makes P(s′) = 0], define π (s) :=
0. It is immediate that π (s′) = ln[P(m(s))/P(m(s′))] =
ln[P(s′)/P(s)] = −π (s). Note that the average of π (s) is
given by

〈π〉 :=
∑
s∈S

π (s)P(s) =
∑
s∈S

P(s) ln

(
P(s)

P(s′)

)
= D(P|P′).

(7)
Moreover, note that the variable π (s) satisfies a form of de-
tailed fluctuation theorem from definition (6), P(s)/P(s′) =
exp[π (s)]. Now we define another probability function over
the pairs E = {e = {s, m(s)}|s ∈ S}, p(e) : E → [0, 1], given
by

p(e) := P(s) + P(s′), (8)

if s �= s′ and p(e) := P(s) if s = s′. Because m is an involu-
tion, each s ∈ S belongs to a single pair e ∈ E .

We check the normalization of p(e) as follows. Consider
any ordering of the set S = (s1, s2, . . .) such that r(si ) = i
is the rank of the element s in that ordering. Now define
the subsets E0 = {s|s = s′}, E< = {s|s �= s′, r(s) < r(s′)}, and

E> = {s|s �= s′, r(s) > r(s′)}. Then,∑
e∈E

p(e) =
∑
s∈E<

[P(s) + P(m(s))] +
∑
s∈E0

P(s)

=
∑
s∈E<

P(s) +
∑
s∈E>

P(s) +
∑
s∈E0

P(s) =
∑
s∈S

P(s) = 1,

(9)

where we use m(s) ∈ E< → s ∈ E>, for s �= s, and p(e) =
P(s), for e = (s, s). In the last identity, we used that E< ∪
E> ∪ E0 = S forms a partition in S.

Now we define �(e) := p(e)−1[P(s) −
P(s′)] ln[P(s)/P(s′)], for the pair e = {s, s′}, whenever
P(s) > 0. When P(s) = 0, let �(e) := 0. Then, we get the
following from (7):

〈π〉 = 1

2

∑
s,s′∈S

[P(s) − P(s′)] ln

(
P(s)

P(s′)

)
=

∑
e∈E

�(e)p(e).

(10)

We also compute the total variation of probabilities (P, P′):

�(P, P′) = 1

2

∑
s∈S

|P(s) − P(s′)| =
∑
e∈E

w(e)p(e), (11)

where w(e) := |P(s) − P(s′)|/p(e), for e = {s, s′}, when
P(s) > 0, and w(e) := 0, when P(s) = 0. Note that

|P(s) − P(s′)| = max[P(s), P(s′)] − min[P(s), P(s′)], (12)

which makes w(e) = ρ − (1 − ρ) for ρ =
max[P(s), P(s′)]/p(e) for some 0.5 � ρ < 1, using
max[P(s), P(s′)] + min[P(s), P(s′)] = p(e). Using ρ, we
have

�(e) = [ρ − (1 − ρ)] ln

(
ρ

1 − ρ

)
= w(e) ln

(
ρ

1 − ρ

)
.

(13)
Finally, define the logistic function σ (a) =
exp(a/2)/[exp(a/2) + exp(−a/2)] and find a such
that ρ = σ (a). Then, using ln[ρ/(1 − ρ)] = a and
w(e) = ρ − (1 − ρ) = tanh(a/2) → a = 2 tanh−1 (w(e))
in (13), we get

�(e) = aw(e) = 2w(e) tanh−1 (w(e)) := B(w(e)), (14)

where B(w) = 2w tanh−1(w). The degenerate case, P(s) =
0 → �(e) = 0, w(e) = 0, also satisfies (14). Note that, for
0 < w < 1, we have B(w) > 0, B′(w) > 0, and B′′(w) > 0.
Therefore, from Jensen’s inequality,

〈π〉 =
∑
e∈E

�(e)p(e)

=
∑
e∈E

B(w(e))p(e) � B

(∑
e∈E

w(e)p(e)

)
, (15)

and, after using 〈π〉 = D(P|P′) from (7) and
∑

e w(e)p(e) =
�(P, P′) from (43), it results in

D(P|P′) � 2�(P, P′) tanh−1 (�(P, P′)), (16)

which proves (5).
Saturation of the bound follows from (14). If S has a sin-

gle element, then the bound is trivially saturated D(P|P′) =
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B(�(P, P′)) = 0, as P = P′. If S has more than one element,
consider two distinct elements from {s1, s2} ⊆ S and a P̃ such
that P̃(s1) + P̃(s2) = 1, with involution m̃(s1) = s2, m̃(s2) =
s1, and m̃(s) = s otherwise. It makes p(e) = 1 for e = {s1, s2},
and �(e) = D(P̃|P̃′) and �(P̃, P̃′) = w(e), which results in
the saturation D(P̃|P̃′) = B(�(P̃, P̃′)). For completeness, for
a given total variation � = �(P, P′), if there is a lower bound
B∗(�) for D(P|P′) such that D(P|P′) � B∗(�) > B(�), then
the two-level system presented above violates it. Therefore,
B(�) is the tightest bound for this setup. That completes the
proof.

Remarks. Interestingly, time was not mentioned in the
theorem and the fluctuation theorem was not assumed. This
proof shows the important role played by the involution m in
nonequilibrium physics: When you equip a probability space
with an involution, you could think of the connected events
{s, s′} as forward and backward events in the arrow of time.
Because they might have different probabilities, P(s) > P(s′),
we pick s as the event forward in time. In this context, the
fluctuation theorem is also a construct, because π (s) behaves
like a thermodynamic force [18], switching signs after an
involution.

Additionally, when compared to off the shelf bounds be-
tween the KL divergence and the TV, we have D(P|P′) �
B(�(P, P′)) � 2�(P, P)2, which shows the bound improves
on Pinsker’s inequality [33] for this setup. It is also true for
the Bretagnolle-Huber’ [34] bound D(P|P′) � B(�(P, P′)) �
− ln[1 − �(P, P′)2]. See Ref. [35] for a discussion on the
intuition behind the TV.

Also note that if (S1, P, m) satisfies the theorem and g :
S1 → S2 is a bijection, then (S2, P ◦ g−1, g ◦ m ◦ g−1) satis-
fies the theorem. For that reason, different systems might be
mapped into each other and the bound is universal. For com-
pleteness, although the theorem was proved for discrete sets
S, it is possible to expand it to S = Rn with a differentiable
involution m (see the Appendix for the case S = R).

Application I: Heat-exchange problem. In a general heat-
exchange problem, one has an energy variation between two
consecutive measurements. The system starts at a density
matrix ρ0, and two consecutive energy measurements are per-
formed, yielding values Ei (at t = 0), projecting the system
at |i〉〈i|, and Ej (at t > 0), both values in the spectrum H =
{E1, E2, . . .}. The energy variation is �E = Ej − Ei. In this
case, one has a set of energy gaps, S = {�E = a − b|a, b ∈
H}, and P(s) = P(�E ) given by

P(�E ) =
∑

i j

δ[�E − (Ej − Ei )]〈 j|	(|i〉〈i|)| j〉〈i|ρ0|i〉,

(17)
where 	 is an operator from the quantum dynamical semi-
group. Let the involution m : S → S be m(�E ) = −�E .
Check that m(m(s)) = s. Therefore, (S, P, m) satisfies the con-
dition for the theorem. We have the following from (5),

D[P(�E )|P(−�E )] � B(w), (18)

for B(w) = 2w tanh−1(w), with w given by

w = 1

2

∑
�E

|P(�E ) − P(−�E )|. (19)

Note that, as the theorem for (S, P, m) is general, we did
not mention thermal distributions or detailed balance in this
general setup.

Now for the specific case where the system satisfies the
exchange fluctuation theorem (XFT), one has � = α�E for
some affinity α and the XFT [21–24,26] reads

P(�E = �/α)

P(�E = −�/α)
= exp(�). (20)

In this case, Eq. (18) reads

〈�〉 � B[Pr(� > 0) − Pr(� < 0)], (21)

where we used � > 0 ↔ P(�E = �/α) > P(−�E =
�/α) from (20) and Pr(� > 0) := ∑

P(�E =
�/α)θ (α�E ) and θ (x) = 1(0) if x > 0(x < 0) is a step
function.

Using that B′(x) > 0, inverting expression (18) results in a
bound for the apparent violations of the second law, Pr(� <

0), in terms of 〈�〉 recently proposed using similar methods
[36]. The more general bound (18) is still valid without as-
suming the XFT or detailed balance.

Application II: Master equation. Another interesting appli-
cation is to consider a continuous Markov process described
by a master equation [37]:

ṗi =
∑

j

Wi j p j − Wji pi, (22)

where Wi j � 0 is the transition rate from state j to state
i and pi = pi(t ) is the probability of state i, 0 � pi(t ) �
1, with condition

∑
i �= j Wi j p j > 0. Let S = {(i, j)|i, j ∈

{1, . . . , N}, i �= j}, where we deliberately removed the points
(i, i).

The known expression for the entropy production rate from
Schnakenberg [19,20,38,39] is

π = 1

2

∑
i j

(Wji pi − Wi j p j ) ln

(
Wji pi

Wi j p j

)
. (23)

Now we find a natural tuple (S, P, m) for the application of
the theorem. For any instant of time, we define a probability
function P : S → [0, 1] as

P(s) = Wi j p j∑
i �= j Wi j p j

= Wi j p j

z
:= Pi j, (24)

for s = (i, j), where z := ∑
i �= j Wi j p j . Note that P is normal-

ized,

∑
s∈S

P(s) = z−1
∑

(i, j)∈S

Wi j p j = z−1

(∑
i �= j

Wi j p j

)
= 1. (25)

Let the involution m : S → S be m(i, j) = ( j, i). Check that
m(m(s)) = s. Again, (S, P, m) meets the condition for the
theorem (5).

Using P(s) − P(s′) = Pi j − Pji = (Wi j p j − Wji pi )/z, we
verify that the total variation �(P, P′) is given as

�(P, P′) =
∑
i> j

|Ji j |/z = w, (26)

with Ji j = Wi j p j − Wji pi being the probability current. Also,
we have D(P|P′) = ∑

s P(s) ln[P(s)/P(s′)] = π/z as defined
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FIG. 1. The difference between the entropy production rate π

and the bound B(w) as a function of time for a two-level (a.), three-
level (b.), and four-level (c.) systems described in the text. The gaps
decay to zero with time as the systems approach equilibrium. The
two-level system (a.) saturates the bound. Inset: The bound B(w)
as a function of w showing improvement over other known bounds,
Pinsker’s and Bretagnolle-Huber’s (BH’s).

in (23). In terms of π , w, and z, theorem (5) now reads

π/z � 2w tanh−1(w), (27)

which is inequality (4), for π → π/z. This bound was re-
cently discovered using other methods [39,40]. In this context,
the KL divergence and the TV are also analyzed in the context
of classic speed limit and using Wasserstein distance [41,42].
For consistency of (27), check that w � 1,

w = 1

z

∑
i< j

|Wi j p j − Wji pi| � 1

z

∑
i< j

(Wi j p j + Wji pi ) = 1.

(28)
In this case, the bound is saturated by a two-level system

in contact with a thermal bath at infinite temperature. Let
(p1, p2) = (p, 1 − p) be the initial state probabilities for some
0.5 < p < 1 and the transition matrix given by W12 = 1 and
W21 = 1, with W11 = W22 = 0, in the same spirit of (14).

In equilibrium, the system will have w = 0 (and π = 0),
satisfying the detailed balance condition Ji j = 0. Near equi-
librium, w ≈ 0, the bound expands to

π � B(w) ≈ 2w2 + 2
3w4 + O(w6), (29)

and recognizing π = D(P|P′), also �(P, P′) = w, Pinsker’s
inequality states that π = D(P|P′) � 2�(P, P′)2 = 2w2, so
the bound B(w) improves on it in order O(w4).

In Fig. 1, we simulate the master equation (22) for
three different systems: (a.) a two-level system with p(0) =
[0.9; 0.1] and Wi j = (1 − δi j ); (b.) a three-level system with
p(0) = [0.8; 0.1; 0.1] and Wi j = (1/2)(1 − δi j ); and (c.) a
four-level system with p(0) = [0.7; 0.1; 0.1; 0.1] and Wi j =
(1/3)(1 − δi j ). They correspond to a weak coupling ap-
proximation of a system and a thermal bath with infinite
temperature. For each system, we compute π (t ) and w(t )
and plot the gap, π (t ) − B(w(t )) vs t . Note that the two-level
system saturates the bound, as expected. The three- and four-
level systems display a gap that decays in time. In the inset of
Fig. 1, we observe the plot B(w) vs w, comparing the bound
to other known bounds for the KL divergence as a function
of TV. See that Pinsker’s is tighter than Bretagnolle-Hubber’s

(BH’s) for w ≈ 0 (which corresponds to near equilibrium in
the Markov dynamics). For w ≈ 1, the behavior is inverted.
In all domains, Fig. 1 shows B(w) is a tighter bound than
both.

Application III: Stochastic thermodynamics. Consider a
trajectory � = (x0, . . . , xN ) and its inverse �† = (xN , . . . , x0),
where the indexes are time steps and xi ∈ D ⊂ R, representing
some domain. The entropy production in stochastic thermody-
namics is given as [2]

〈�〉F =
∑

�

PF (�) ln

(
PF (�)

PB(�†)

)
, (30)

where PF (PB) is the forward (backward) probability over
the set of trajectories. They are different because PF de-
pends on the protocol λ(t ) = (λ0, . . . , λN ), while PB depends
on λ(T − t ) = (λN , . . . , λ0). Define the entropy production
for the backward process, 〈�〉B, by replacing F ↔ B in
(30).

The theorem is applied in this system as follows. Let S =
{(�, σ )|� ∈ DN+1, σ ∈ {1,−1}}. For any s = (�, σ ), define
P(s) = P(�, σ ) as P(�, 1) := (1/2)PF (�) and P(�,−1) :=
(1/2)PB(�), and check P(s) is normalized in S. Let m(s) =
m(�, σ ) = (�†,−σ ). Check that m(m(s)) = s. The tuple
(S, P, m) satisfies the following condition for the theorem,
D(P|P′) � B(w). In order to understand its meaning, let us
compute the KLdivergence,

D(P|P′) =
∑
�,σ

P(�, σ ) ln
P(�, σ )

P(�†,−σ )
= 〈�〉F + 〈�〉B

2
,

(31)
and the total variation,

w = 1

2

∑
�,σ

|P(�, σ ) − P(�†,−σ )|

= 1

2

∑
�

|PF (�) − PB(�†)|, (32)

so that the theorem reads
〈�〉F + 〈�〉B

2
� B(w), (33)

given in terms of PF (�) and PB(�†). For systems where
〈�〉F,B = β(〈W 〉F,B − �F,BF ) := β〈Wirr〉F,B (irreversible
work [2]), the theorem results in a lower bound for the sum of
forward and backward irreversible works,

〈Wirr〉F + 〈Wirr〉B � 2kbT B(w), (34)

for β = (kbT )−1 the inverse temperature and �F is the free
energy variation. Combinations of forward and backward
ensemble averages similar to those in (33) and (34) also ap-
peared in previous results in the context of thermodynamic
uncertainty relations [43,44].

Application IV: Time rotation and speed limit. Consider a
system that outputs stochastic events s ∈ S for every run with
probability P(s) and m(s) = s′ is the time-reversed event (or
any involution), so that (S, P, m) satisfies the theorem. For
every run, a demon draws a Bernoulli random variable ε and
decides if it plays the dynamics (ε = 1) or plays it backwards
(ε = 0) for that run. Take 〈ε〉 = p and 0 � p � 1. Over sev-
eral runs, the observer sees the events s with probability Q(s)
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given by

Q(s) = pP(s) + (1 − p)P(s′), (35)

Note that (S, Q, m) also satisfies the theorem. Over sev-
eral runs, the observer will measure D(Q|Q′) as an attempt
to assess the entropy production. In this case, the theorem
reads

D(P|P′) � D(Q|Q′) � B[|2p − 1|�(P, P′)], (36)

where the first inequality follows from the convexity of the
KL divergence and the second follows from the theorem,
using Q(s) − Q(s′) = (2p − 1)[P(s) − P(s′)]. From the the-
orem, the observer gets a result for D(Q|Q′) that is lower
bounded by �(P, P′) from the original process. This setup
works as a time rotation because the demon mixes forward
s and backward s′ directions. If p = 1/2, note that Q(s) =
P(s) + P(s′) = Q(s′) and the observer will get D(Q|Q′) = 0,
which mimics equilibrium. For some |2p − 1| > 0, D(Q|Q′)
is lower bounded in terms of the original bound for D(P|P′),
as �(P, P′) = B−1 ◦ B(�(P, P′)) and B(�(P, P′)) is the orig-
inal lower bound (5).

Alternatively, in another setup, for a set of probabilities
{P1, . . . , Pn}, if one has

∑
i qi = τ , applying the theorem for

each Pi results in

∑
i

qiD(Pi|P′
i ) � 2

∑
i

qiwi tanh−1

(∑
j

(q j/τ )wi

)
, (37)

using B′′(x) > 0 again, which can be easily inverted to obtain
a lower bound for τ akin to the classic speed limit, already
observed for Markov systems [39,40].

Discussion and conclusions. We proved a theorem showing
that the KL divergence is bounded by a function of the TV.
In this case, we required that the distributions considered
are related by an involution, m(m(s)) = s. This seemly ar-
bitrary condition produced a tighter bound than off the shelf
results between the KLdivergence and the TV (Pinsker’s and
Bretagnolle-Hubber’s).

We argue that the involution condition has a physical mean-
ing. It is a general way to introduce the arrow of time: flipping
it acts as an involution. Therefore, the events s and s′ could
be seen as flipped versions of the arrow of time. Because of
that, as each event has only one flipped version, the events
are able to be collected in pairs {s, m(s)} that form the edges
of an undirected graph (as well as pairs of the type {s, s}).
This physical constraint allows the discrepancies of P and P′,
measured in the KL divergence and the TV, to be tighter than
the usual bounds from statistics. Moreover, the theorem trans-
lates to a bound between the entropy production rate and the
weight of the matching of a graph. The bound is particularly
useful, for instance, in situations where the estimation of the
weight of the graph is more feasible than the actual entropy
production rate.

In this context, the formalism presented in the theorem is
general enough to be applied in the derivation of other bounds
about the statistics of P and P′, when related by an involution,

instead of using the fluctuation theorem [21–27,36,45–53] as a
starting point. As examples of bounds about the statistics of P
and P′, one has the thermodynamic uncertainty relation (TUR)
[21,22,54,55] for the variance of π (s) = ln[P(s)/P′(s)], as
well as a bound for negative values of π (s),

∑
π (s)<0 P(s) [56],

related to apparent violations of the second law as discussed
in the applications. In other words, one could formulate some
the bounds from nonequilibrium thermodynamics simply in
terms of (S, P, m). The extent of this analogy is left for further
research.

Appendix. For the case S = R, we have P(s) → p(s)ds
and

∑
s → ∫

ds. The distribution p′ is given by p′(s) :=
p(m(s))|dm(s)/ds|, the KL divergence is given as D(p|p′) =∫

p(s) ln (p(s)/p′(s))ds and the TV is given as �(p, p′) =
(1/2)

∫ |p(s) − p′(s)|ds. Now we define another probability
density function f : R → [0, 1] given by

f (x) =
∫ ∞

−∞
p(s)δ[π (s) − x]ds, (A1)

where δ(y) is the Dirac delta function and π (s) =
ln[p(s)/p′(s)] for p(s) �= 0 and π (s) = 0 for p(s) = 0. We
check the normalization,∫

x
f (x)dx =

∫
s

p(s)
∫

x
δ(π (s) − x)dxds =

∫
s

p(s)ds = 1,

(A2)
and compute the average 〈x〉,

〈x〉 :=
∫

x
x f (x)dx =

∫
s
π (s)p(s)ds = D(p|p′). (A3)

The function f (x) satisfies a strong detailed fluctuation theo-
rem, f (x) = exp(x) f (−x), where it follows from

f (x) =
∫

s
eπ (s) p′(s)δ[π (s) − x]ds (A4)

= ex
∫

s′
p(s′)δ[π (s′) + x]ds′ = ex f (−x), (A5)

We also compute the total variation �( f , f̂ ), for f̂ := f (−x),
resulting in

�
(

f , f̂
) = 1

2

∫
s
|p(s) − p′(s)|ds = �(p, p′). (A6)

Finally, we follow the same steps as in the discrete
case (14). Let 〈x〉 = 〈|x| tanh(|x|/2)〉 and �( f , f̂ ) =
〈tanh(|x|/2)〉. Using fa(x) = [δ(x − a) exp(a/2) +
δ(x + a) exp(−a/2)]/[2 cosh(a/2)], which results in
q(|x|) = δ(|x| − a) as the distribution of |x|. In this case,
note that

〈x〉 fa = a tanh(a/2) = B
(
�

(
fa| f̂a

))
, (A7)

for B(w) = 2w tanh−1(w), which means that

D(p|p′) = 〈x〉 =
∫ ∞

0
B
(
�

(
fa| f̂a

))
q(a)da � B(�(p, p′)),

(A8)
from Jensen’s inequality. Saturation also follows from the
two-level system (44).
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