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Circulation statistics and the mutually excluding behavior of turbulent vortex structures
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The small-scale statistical properties of velocity circulation in classical homogeneous and isotropic turbulent
flows are assessed through a modeling framework that brings together the multiplicative cascade and the
structural descriptions of turbulence. We find that vortex structures exhibit short-distance repulsive correlations,
which is evidenced when they are “tomographically” investigated, by means of planar cuts of the flow, as
two-dimensional vortex gases. This phenomenon is suggested from model improvements which allow us to
obtain an accurate multiscale description of the intermittent fluctuations of circulation. Its crucial new ingredient,
the conjectured hard disk behavior of the effective planar vortices, is then found to be strongly supported from a
study of their spatial distributions in direct numerical simulations of the Navier-Stokes equations.
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Velocity circulation, the subject of some of the most cel-
ebrated theorems of fluid dynamics [1], is a central concept
that pervades a broad spectrum of phenomena in classical and
quantum fluids [2,3]. Circulation phenomenology is expected
to be particularly relevant in turbulent systems. Actually, it has
been long suggested, from the visualization of intense vortic-
ity domains in direct numerical simulations (DNS) [4–6], that
homogeneous and isotropic turbulence could be effectively
depicted as a diluted gas of long-lived vortices.

It was not until a few years ago, however, that hard-
ware improvements in high performance computing platforms
have finally allowed the implementation of extensive numer-
ical simulations necessary for a deeper scrutiny of turbulent
circulation [7,8]. As a result, novel theoretical and phe-
nomenological accounts of circulation intermittency have
been subsequently developed [9–13], including closer connec-
tions between classical and quantum turbulence [14–16].

We focus on a recent modeling framework of circulation
statistics which unifies both the structural (turbulence seen as
a vortex gas) and multiscale (turbulence seen as a multiplica-
tive cascade process) aspects of turbulent flows [10,11,13].
Our aim is to predict statistical features of turbulent circula-
tion from the superimposed contributions of individual thin
vortex tubes. This task will be carried out here along the
lines of Monte Carlo simulations, which will allow us not
only to subject the vortex gas model to a rigorous validation
test, but also to find unsuspected phenomenological results,
which otherwise would be of very (if not prohibitive) difficult
analytical reach.

To start, let D be an oriented bounded region of area A con-
tained in a plane γ that “slices” the entire turbulent domain.
The velocity circulation around its contour can be expressed,
in the vortex gas model, as

�(D) =
∑

i

�i(D) , (1)
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where the �i are the circulation contributions conveyed by
each of one of the vortex tubes that cross γ . All one needs
to describe fluctuations of �(D), therefore, is a statistical
model for the joint random variables �i. To this end, we write,
following the guidelines of [10,11], and in appropriate units
of circulation,

�i(D) = ξD

∫
D

d2rgη(r − ri )ω̃(ri ) , (2)

where
(i) ri ∈ γ stands for the center position of a two-

dimensional vortex structure (the intersection of a vortex tube
with the cutting plane γ );

(ii) the Gaussian envelope gη(r) ≡ exp[−r2/(2η2)] mod-
els the vorticity decay of planar vortices, assumed to have core
radius η ≡ aηK , where a is a dimensionless constant (an input
modeling parameter) and ηK is the Kolmogorov dissipative
length scale [17];

(iii) ω̃(r) is a Gaussian random field whose two-point
correlation function behaves as 〈ω̃(r)ω̃(r′)〉 ∼ 1/|r − r′|α in
the inertial range and α = 4/3 − μ/4 [11], where μ � 0.17 is
the intermittency exponent derived from the scaling behavior
of the energy dissipation rate field ε(r) [18]. We note that ω̃(r)
must be regularized over the scale ηK , such that its variance
remains finite.

(iv) ξD ≡ (1/A)
∫
D d2r

√
ε(r)/ε0, with ε0 being the mean

dissipation rate (conveniently set to unity), is a modulating
random field for the amplitude of circulation fluctuations over
D. Its square root dependence upon the dissipation field is
closely related to the similarity hypotheses that have been
previously put forward to model velocity gradient fluctua-
tions [19,20].

According to the Gaussian multiplicative chaos description
of the turbulent cascade [21], a field-theoretical extension
of the Obukhov-Kolmogorov (OK62) theory of intermit-
tency [22,23], it is implied that the two-dimensional measure
ξD behaves as a lognormal variable as well, with

ln(ξD ) ∼ N (−XD, XD ) , (3)
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where, for a flow with Taylor based Reynolds number Rλ,

XD = 3μ

8
ln

[
Rλ√
15

(
ηK

br + ηK

) 2
3

]
. (4)

Above, r yields a length scale for the domain D and
b is another phenomenological dimensionless parameter.
Throughout this Letter, we take D to be a square domain of
side r.

To completely set the vortex gas model, besides the pa-
rameters a and b just introduced, we have to prescribe the
way the vortex structures are randomly distributed over γ .
In Bayesian language, we take a prior distribution of planar
vortices derived from a Poissonian point process character-
ized by the surface density field σ (r) = ∑N

i=1 δ2(r − ri ) with
〈σ (r)〉 = σ̄ . In this way, Eq. (1) can be rewritten, by means of
Eq. (2), as

�(D) = ξD

∫
D

d2r
∫

γ

d2r′gη(r − r′)ω̃(r′)σ (r′) . (5)

It is fundamentally important, concerning practical mat-
ters, to devise a systematic procedure for the determination
of the parameters a, b, and σ̄ . In the original model [10],
this is accomplished by using the dilute gas approximation to
analytically compute the circulation flatness over a circular
contour of radius R, FR ≡ 〈�4

R〉/〈�2
R〉2, in the R 
 ηK and

R � ηK limits. This computation is a particular case of the
higher order development put forward in Sec. I of the Supple-
mental Material [24] when only the lowest order terms are
retained. Comparisons can then be done to results derived
from DNS data. Working in the small R limit, we get the
Reynolds number dependence of σ̄ by matching the computed
FR with the empirical power law

lim
R→0

FR ∼ C4Rα4
λ , (6)

with C4 � 1.16 and α4 � 0.41, observed from the DNS data
of Ref. [7]. It turns out that

σ̄πη2 = 3

2

1

C4

1

15
3μ

4

R
3μ

2 −α4

λ , (7)

which actually defines the expected number of vortices in a
disk of radius η.

The parameter a controls the initial curvature of FR as
R increases, while its large R limit is fixed by b. We refer
the reader to [10] for details, where the Reynolds number
independent parameters a = 3.3 and b = 2.0 were established
as a first approximation.

Even though it is possible to work out analytical expres-
sions for the circulation flatness in the limits of small and
large domains, the same does not hold for intermediate ranges.
To cope with this issue, we have performed Monte Carlo
simulations of Eq. (5) to numerically evaluate the circulation
flatness at various length scales.

In order to produce Monte Carlo statistical ensembles out
of Eq. (5), where σ (r) is straightforwardly drawn from a
Poissonian point process, samples of ξD are easily generated
from the prescriptions (3) and (4). The field ω̃(r) is, on its turn,
realized as a two-dimensional long-range correlated Gaussian
random field regularized at the scale ηK . Numerically, this is
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FIG. 1. Comparison between Monte Carlo simulations of the
vortex gas model (orange/gray) and DNS data (black) for Rλ = 610.
Main frame: circulation flatness evaluated on square contours of side
r. Inset: standardized cPDF for r = 2.2ηK .

accomplished as [25–27]

ω̃(r) = 1

CηK

∑
k

ψ̂ (k)k
α
2 −1 exp

(
ik · r − k

ηK

2

)
, (8)

where the ψ̂ (k) are random uncorrelated Gaussian variables,
CηK is a normalization constant to ensure unit variance, and
the sum is taken over the three components of k such that
k = |k| = 0. Our numerical computations have been per-
formed over grids having the same resolution parameters as
the DNS data to which they are compared. As for those, we
use both data from Ref. [7] (Rλ = 240, 650, and 1300) as
well as data processed from the Johns Hopkins Turbulence
Databases [28,29] (Rλ = 433 and 610).

Unexpectedly, Monte Carlo simulations reveal a mismatch
with DNS results. We report, in Fig. 1, the scale dependence of
the circulation flatness for Rλ = 610. While the model closely
follows the DNS curve for large r (down to r ∼ 40ηK ), its
circulation fluctuations become too intermittent for smaller
contours, with a much larger flatness than expected. This is
translated into sharply peaked circulation probability distri-
bution functions (cPDFs), in contrast to those obtained from
DNS, as shown in the inset for r = 2.2ηK . A refreshed critical
analysis of the vortex gas model is therefore in order.

One could suspect that higher order contributions to the
dilute gas approximation could lead to non-negligible correc-
tions to the circulation flatness associated to small contours. In
other words, that the former expressions (6) and (7), used to
fix a and σ̄ , should be improved from the evaluation of further
terms in the perturbative expansions of circulation moments.
However, as it is shown in the Sec. I of the Supplemental Ma-
terial [24], the Poissonian model of localized vortex structures
gives subdominant corrections which would drive us to values
of σ̄ that are not consistent with the assumption that vortex
tubes form a dilute system once their cores are not observed to
overlap at all. In any case, we empirically inspected different
values for the parameters and found that no combination was
able to address the issues observed in Fig. 1.

In short, the Poissonian vortex gas model is unable to
describe the small scale distribution of vortex structures.
Its paradoxical success at the lowest level of perturbation
theory suggests, nevertheless, that the related subdominant
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contributions could be suppressed (or attenuated) from the
consideration of additional/alternative modeling physical in-
gredients. A relatively simple variation of the Poissonian
spatial distribution that incorporates this idea is the one pro-
vided by a gas of hard disks, which effectively introduces a
small scale repulsive interaction between vortices by prevent-
ing their centers to come any closer than twice their radius.
As a matter of fact, excluded volume effects between vortices
are not completely extraneous in turbulence modeling. They
play an important role in refinements of the attached eddy
description of turbulent boundary layers [30].

In a statistical sense, the existence of short-distance vortex
repulsion should not be very surprising, since small scale
clusters of thin vortex tubes are likely to be polarized [31]
and, thus, subject to energy barriers against densification. It
is interesting to note that small scale vortex polarization has
been numerically observed (and quantified) in the context of
quantum turbulence [15]. As it will be made clear next, our ex-
pectations are fulfilled by a hard disk model of planar vortices,
which not only leads to excellent results for the circulation
statistics, but also reveals intriguing features on the statistical
behavior of vortex structures.

The generation of hard disk ensembles of maximized
entropy is a fundamental and challenging topic in statis-
tical mechanics [32–34] and the development of efficient
algorithms has been an exciting field of research in recent
years [35–39]. We benefit, for our statistical analyses, on the
publicly available code reported in Refs. [39,40].

Hard disk gases can be studied to some extent as per-
turbed Poisson distributions [41–43], but evaluations related
to higher order statistics are usually tricky. Taking into ac-
count that perturbative deviations should not be too large, as
the vortex gas is not dense, we adopt the more pragmatic
point of view of inspecting values of a, b, and σ̄ around the
(dominant) Poissonian ones, looking for the best fitting results
for the curves of circulation flatness.

Independent optimization fits give a = 3.3 and b in the
range 1.6 − 1.8 for all of the studied Reynolds number cases.
The optimal values of σ̄πη2 found for Rλ = 240, 433, 610,
650, and 1300 are approximately 0.35, 0.31, 0.29, 0.31, and
0.29 which are again close to those predicted by the dilute gas
approximation, (0.39, 0.36, 0.34, 0.34, and 0.30 respectively).
The excellent agreements between the model predictions and
numerical simulations are shown in Fig. 2, where one sees that
small scale intermittency is successfully accounted for by the
hard disk version of the vortex gas model.

In Fig. 3 we plot the cPDFs for contours with sides varying
from r = 1.1 to r = 1126.4 (in ηK units), in the case Rλ =
610. The sharp agreement between the DNS and the modeled
cPDFs shows that a full multiscale description of circulation
statistics has been achieved as well.

These compelling results indicate so far unnoticed aspects
of the short-distance interactions between vortex structures.
We thus proceed to investigate signatures of their apparent
hard disk-like behavior from direct analyses of turbulent flow
configurations, taken from the Johns Hopkins University DNS
database [28,29]. The subject of vortex identification is a
classic topic in the turbulence literature, specially active in
wall bounded flows [44–52]. Here, we adopt the widely used
swirling strength criterion [46,47] to identify vortex structures
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FIG. 2. The circulation flatness evaluated on square contours of
side r at different Reynolds numbers. Curves are vertically displaced
(by steps of two units) for clarity. Symbols: vortex gas model with
hard disks. Lines: DNS. Dashed lines: the (also displaced) reference
values for a Gaussian process.

in two-dimensional domains. Details about its implementation
and validation procedures can be found in the Sec. II of the
Supplemental Material [24].

We define, in the planar slices of a threedimensional turbu-
lent flow, a vortex center to be the point of maximum absolute
vorticity inside the compact domain of each spotted vortex
region. The vortex radius is furthermore estimated as the ra-
dius of a circle with an equivalent area. With this procedure,
the detected vortex structures form a point process on the
plane [53] whose spatial statistics can be studied.

In Fig. 4, we show the estimated radius distribution ob-
tained from DNS data with Rλ = 610. The mean observed
value is 〈η〉 = 3.85ηK , while the distribution is peaked at ηp =
3.15ηK , which is in close agreement with the optimal radius

−20 −15 −10 −5 0 5 10 15 20

Γr/σ

10−23

10−20

10−17

10−14

10−11

10−8

10−5

10−2

101

σ
ρ
(Γ

r
)

FIG. 3. Standardized PDFs of circulation over square contours of
sides r = 2 j × (1.1ηK ), with j ranging from 0 to 10 (darker to lighter
colors), for Rλ = 610. Symbols: DNS. Lines: vortex gas model with
hard disks. Curves are vertically shifted for clarity.
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FIG. 4. Distribution of estimated radii in DNS detected struc-
tures (Rλ = 610). Vertical dotted line: the radius mean value 〈η〉 =
3.85ηK . Inset: a snapshot of the planar vortex spots (value axes labels
given in units of ηK ). Red and blue spots denote positive and negative
vorticity, respectively.

found for the vortex gas model with hard disks, encoded in the
parameter a = 3.3.

To characterize the spatial distribution of structures, we
rely on the statistical properties of N�, the number of points
(vortex centers) inside squares of side �. Some of its statis-
tical moments are shown in Fig. 5 for contours of variable
sizes. Moments are normalized in order to have a con-
stant unit value for a Poisson point process, and correspond
to M2 = variance[N�]/〈N�〉, M3 = skewness[N�]/〈N�〉−1/2,
and M4 = (flatness[N�] − 3)/〈N�〉−1. Alongside DNS results
(symbols), we show curves obtained with a gas of hard disks
(known as a hard core Gibbs point process [53]) containing
the same mean number of points as the DNS and with a radius
equivalent to 3.8ηK (that is, with a radius-to-box ratio of 3.8/L
where L is the DNS box size in ηK units). Note that we
have taken for comparison purposes the mean vortex radius
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FIG. 5. Normalized statistical moments of the number of points
N� inside squares of side � as a function of �/ηK . Symbols: DNS
detected structures (Rλ = 610). Solid lines: hard disk point process
with the same mean number of points and radii 〈η〉 = 3.8ηK . Dashed:
Poisson point process.

〈η〉 � 3.8ηK and not the peak value ηp of the radius distribu-
tion. This follows from the fact that statistical signatures of
hard-disk behavior are here related to the mutual exclusion
between disks that may have completely different sizes.

The accurate modeling of DNS data reproduced in Fig. 5
for small �/ηK provides independent and clear evidence that
the cores of close vortex structures tend not to overlap as they
would do if they were Poissondistributed. As a consequence,
intermittency growth is suppressed at small scales. It is im-
portant to emphasize that these are results of statistical nature,
and are not inconsistent with the singular dynamical situa-
tions where vortex cores interact strongly, as in reconnection
events [54]. We also add that the deviations observed in Fig. 5,
between hard disk modeling and vortex configurational corre-
lations for larger �/ηK , should be interpreted with care. They
only mean that vortex structures develop further correlations
at larger scales, reflected in the vortex gas model through the
specific definitions provided by Eq. (5).

To summarize, we have improved and validated a vortex
gas model of turbulent circulation, relying on explorations of
DNS data and comparative Monte Carlo analyses. The model
yields, in a very economical way (just a few parameters)
and for a wide range of Reynolds numbers, a comprehensive
description of the statistical properties of circulation fluctu-
ations across the turbulent cascade scales. It turns out, as a
statistical phenomenon, that turbulent vortex structures avoid
each other at short distances, and this is found to be fundamen-
tally connected to a proper account of small scale circulation
intermittency.

From a methodological point of view, our approach renders
clear that vortex identification methods and two-dimensional
“tomographic” cuts of three-dimensional structures (analo-
gous to the ones commonly produced through the application
of optical techniques in experimental fluid dynamics [55]) are
instrumental tools of great heuristic relevance for the analysis
of DNS data and the formulation of turbulence models. We
have markedly benefited from them to establish links between
turbulence, the theory of random point processes and classic
models of statistical mechanics.

Interesting work is ahead regarding extensions of the vor-
tex gas model. A possible bridge to the scaling properties of
velocity structure functions is worth investigating. We also
draw particular attention to the problem of circulation statis-
tics in nonplanar contours and its connections to minimal
surface theory [8,9].

The vortex gas model presented here paves the way for
deeper investigations on some of the most fundamental issues
of turbulence, to the extent that its multifractal and structural
elements are put together into a consistent and simple unifying
picture. These have been invariably introduced as the bases
of two disconnected descriptions of turbulent intermittency, a
point of puzzling phenomenological understanding over the
years.

We thank G. Apolinário for enlightening discussions. This
study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
- Finance Code 88887.336246/2019-00.
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