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Stochastic currents and efficiency in an autonomous heat engine
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We experimentally demonstrate that a Brownian gyrator of a colloidal particle confined in a two-dimensional
harmonic potential with different effective temperatures on orthogonal axes can work as an autonomous heat
engine capable of extracting work from the heat bath, generated by an optical feedback trap. The results confirm
the theoretically predicted thermodynamic currents and validate the attainability of Carnot efficiency as well as
the trade-off relation between power and efficiency. We further show that current fluctuations and the entropy
production rate are time independent in the steady state and their product near the Carnot efficiency is close to
the lower bound of the thermodynamic uncertainty relation.
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For the last three decades, small systems far from equilib-
rium, such as colloidal systems and organelles in cytoplasm,
have been intensively studied owing to the advancement of
theoretical development. The fluctuation theorems [1,2] and
the Jarzynski [3] (or the Crooks [4]) work relation provide
convenient means to compute the entropy production and
free-energy change of the system. In addition, the stochastic
thermodynamics [5,6] established the framework to calculate
the thermodynamic quantities from the single-molecule tra-
jectories. With the help of technical advances, these theories
made it possible to investigate the long-standing thermody-
namic questions, such as Maxwell’s demon [7,8] and the
Landauer’s erasure bound [9,10]. In particular, much attention
has been paid to the realization of stochastic heat engines.
One type of simple engine consisting of a Brownian particle
confined in a time-varying harmonic potential and tempera-
ture, is called a cyclic heat engine [11–14]. Another type is
the steam engine in which a Brownian particle is periodically
pushed by hot air bubbles created by a laser [15]. Steady-state
autonomous engines have been also demonstrated, such as the
Feynman-Smoluchowski ratchet [16] and the microrotator by
demixing [17]. The efficiencies of autonomous engines were
low, agreeing with the theoretical argument that autonomous
engines cannot attain the Carnot efficiency [18,19], except in
zero entropy production limit or in the injected heat divergent
limit [20].

In recent years, a new thermodynamic principle called the
thermodynamic uncertainty relation (TUR) [21–25], which
provides the trade-off relation between thermodynamic fluc-
tuations and cost, has been derived and experimentally
confirmed [26–28]. The TUR in the steady state far from
equilibrium is

Var[c(τ )]

〈c(τ )〉2 �Stot (τ ) � 2kB, (1)
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where kB is the Boltzmann constant, c is a thermodynamics
current, such as the work rate or the heat rate, and Var(c) ≡
〈(c − 〈c〉)2〉 is the variance of the current. �Stot is the mean
total entropy production obtained from trajectories of duration
τ . TUR implies a tighter bound than the thermodynamic sec-
ond law (�Stot � 0). It has been applied to various systems,
such as to deduce the efficiency bounds of steady-state heat
engines [23,29], and biological motors [30,31], as well as to
infer the entropy production rate without information on the
potential or the force field [32–35].

In this Letter, we adopt the Brownian gyrator to investigate
the attainability of the Carnot efficiency of an autonomous
heat engine. The linear Brownian gyrator is a minimal model
system for torque generation by extracting energy from ther-
mal noises. It was conceptualized by Filliger et al. in a
colloidal system [36], and has been theoretically studied
[24,32,35,37–42] because it is an exactly solvable model. The
engines have been realized experimentally in electric circuit
systems [38] and colloidal systems [43], but without extract-
ing work from the heat bath and thus not considered as a heat
engine. By implementing appropriate parameters, we demon-
strate that a Brownian gyrator can work as an autonomous heat
engine. For such a realization, we employ the optical feedback
trap (OFT), which creates rapid well-controlled spatiotempo-
ral potentials based on fast and accurate feedback loops to
simultaneously apply conservative and nonconservative forces
and artificial temperatures to the particles. We then confirm
the efficiency of this autonomous linear engine can reach the
Carnot limit. In addition, we show that TUR holds for the
autonomous engine and as the engine efficiency approaches
the Carnot efficiency, TUR converges to the lower bound.

Let us assume that the particle is immersed in water and
confined by a symmetric two-dimensional harmonic potential
with stiffness κ , U (x, y) = (1/2)κ (x2 + y2), as shown by the
yellow contour circles in Fig. 1(a). For the engine to extract
energy from the heat bath, the particle is in contact with two
different temperature baths, Tx > Ty, in the x and y axes (red
and blue arrows). Additional nonconservative forces (εxy and
εyx in the x and y directions, respectively) are applied to the
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FIG. 1. (a) Schematic of the Brownian gyrator. The particle
(green circle) is under the symmetric harmonic potential (yellow
circles) subject to the two temperature baths, Tx > Ty, and the given
coupling forces, εxy (black arrow) and εyx (gray arrow). (b) The
conditions of the region (gray) in which the gyrator behaves as a
linear heat engine. The red line represents the experimental values.

particle to transfer the heat from the hot bath to the cold bath.
In this condition, the dynamics of the particle can be described
by the overdamped Langevin equations as follows,

γxẋ = − κx + εxy + ξx(t ), (2)

γyẏ = − κy + εyx + ξy(t ), (3)

where γi is the friction coefficient, and i denotes x or y.
The thermal random force 〈ξi(t )ξ j (t ′)〉 = 2γikBTiδi jδ(t − t ′),
where δi j and δ(t − t ′) is the Kronecker delta and the Dirac
delta function, respectively. Here, the total force acting on
the particle is �F = �fc + �fnc, where f x

c = −κx ( f y
c = −κy) is

the conservative force and f x
nc = εxy ( f y

nc = εyx) is the non-
conservative force. To satisfy the stability condition that the
conservative force has to trap the particle under the nonconser-
vative force [37], the parameters of the system are constrained
to be εy � εx � (Tx/Ty)εy and κ2 � εxεy, which is represented
by the gray shadow in Fig. 1(b) for Tx/Ty = 2.

The above linear heat engine is realized with a concur-
rent application of all the necessary forces using an optical
feedback trap (OFT) [44,45]. The setup details are given
in Sec. II of the Supplemental Material (SM) [46] and our
previous work [14]. During the experiments, the stiffness of
the harmonic potential is kept constant at κ = 30 pN/μm.
The medium temperature is at TR = 300 K on both the x
axis and the y axis. To create a difference in the effective
temperatures, we applied an external random Gaussian force
to the particle only in the x axis [14,47,48], and the effective
temperature difference is set to be �T = 300 K between the
two axes such that Tx = 600 K. Here, we note that the medium
viscosity is constant regardless of the effective temperature
difference: γx = γy = γ = 1.08 mPa s. The coupling constant
εy = 10 pN/μm is fixed while εx varies from 10 to 20 pN/μm
as depicted as the red line in Fig. 1(b).

Figures 2(a)–2(c) show the particle current map of �J (x, y)
superimposed on the nonequilibrium steady-state probability
density Pss(x, y) of particle positions to aid visualization. The
subscript “ss” denotes quantities under the nonequilibrium
steady-state condition. The higher density of Pss(x, y) corre-
sponds to the tilted darker regime in the grayscaled color on

FIG. 2. (a)–(c) The steady-state probability density of particle
positions Pss(�x, �y) (grayscale) and the particle current map of �J (x, y)
(yellow arrows) for εx = 10, 15, and 20 pN/μm at εy = 10 pN/μm,
respectively. (d) Cumulative angular trajectories for εx = 10 (red),
15 (green), and 20 (blue) pN/μm. (e) The magnitude of the torque
M for various εx . The error bars are the standard errors from 106

bootstrapped samples.

the map. The particle current �J (x, y) is defined [43] as[
Jx(x, y)
Jy(x, y)

]
=

[〈
x(t + �t ) − x(t )
y(t + �t ) − y(t )

〉
x(t )=x,y(t )=y

+
〈
x(t ) − x(t − �t )
y(t ) − y(t − �t )

〉
x(t )=x,y(t )=y

]
Pss(x, y)

2�t
, (4)

where �t = 10−5 s is the inverse of the acquisition rate.
�J (x, y) is a counterclockwise rotating flow under the condi-
tions of our experiments. The particle current is strongest at
εx = εy, and gradually approaches to zero for εx = 2εy. We
quantified it by calculating the accumulated revolutions of the
rotational motion of the particles. Figure 2(d) shows the revo-
lutions as a function of time for εx = 10, 15, and 20 pN/μm,
where the rotation angle is given by θ = arctan(y/x). The
stochastic nature of this engine is reflected in the fluctuations
of the revolution [the inset of Fig. 2(d)].

The strength of the rotational motion can be computed
in terms of the torque [36,43]. The magnitude of the torque
is given by M ≡ |〈 �F × �x〉| = |〈( �fc + �fnc) × �x〉|, and in the
steady state can be calculated to be

M = kB(εyTx − εxTy)

κ
. (5)

Figure 2(e) compares the measured M with the theoretical
prediction.

We further examine the stochastic energetics of the au-
tonomous linear heat engine. Due to the existence of the
nonconservative force �fnc, the linear engine stochastically
transfers heat qx from the hot bath to the cold one for use-
ful work extraction (−w) as it gyrates. The energetics is
calculated from the trajectory of a Brownian particle in the
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FIG. 3. The thermodynamic energetics of a linear engine. (a) The
cumulative work output −w(t ) and (b) the cumulative heat to the par-
ticle qx (t ) from the linear engine. (c) The mean work output rate −Ẇ
and the mean heat rate Q̇x . The dashed curves are their respective
theoretical predictions (8) and (9). Each rate is computed for 10 s and
averaged. The error bars are the standard deviation of a bootstrapped
sample with a size of 106. (d) The efficiency of the linear engine
(black solid circles). The error bars are the uncertainty calculated
using error propagation from the standard deviation of both rates.
The horizontal red dashed line denotes the Carnot efficiency ηC .

framework of stochastic thermodynamics [5,6]. The cumula-
tive work and heat are defined respectively as

w(t ) =
∫ t

0

[(
εxy ◦ ∂x

∂s
+ εyx ◦ ∂y

∂s

)
ds

]
, (6)

qx(t ) =
∫ t

0

[(
(κx − εxy) ◦ ∂x

∂s

)
ds

]
. (7)

In the steady state, the work current (power output) can be
obtained from a linear fitting of the cumulative work [Eq. (6)]
or analytically derived to be (see Sec. III of SM) [49]

−Ẇ = −εx〈y ◦ ẋ〉ss − εy〈x ◦ ẏ〉ss

= kB
(εx − εy)(Txεy − Tyεx )

2κγ
, (8)

which is a quadratic function of εx for fixed εy. −Ẇ is zero
at εx = εy or εx = (Tx/Ty)εy, and has a maximum at εmax

x =
εy(1 + Tx/Ty)/2. Similarly, the steady-state averages of the
heat currents for hot and cold baths are as follows:

Q̇x = − εx〈y ◦ ẋ〉ss = kB
εx(Txεy − Tyεx )

2κγ
, (9)

Q̇y = − εy〈x ◦ ẏ〉ss = −kB
εy(Txεy − Tyεx )

2κγ
. (10)

Note that Q̇x decreases monotonically with εx.
Figures 3(a) and 3(b) plot the cumulative work −w(t ) and

heat qx(t ) of the engine for εx = 10 pN/μm (red), 15 pN/μm

(green), and 20 pN/μm (blue) with a fixed εy = 10 pN/μm,
both showing a linear increase in time in the steady state
within the explored range of εx. Figure 3(c) shows that the
ensemble-averaged heat current from the hot bath Q̇x is max-
imum at εx = 10 pN/μm, but with near-zero power (Ẇ ≈ 0).
In contrast, a lower heat rate can bring about a larger output
power and peak at εx = 1.5εy = 15 pN/μm. The ensemble
averages of heat and work currents in our experiments agree
well with the theoretical predictions.

The efficiency of the engine can be determined from the
ratio of the work current −Ẇ to the injected heat current
Q̇x: η = −Ẇ /Q̇x. The steady-state efficiency can be obtained
from Eqs. (8) and (9) to give

η = 1 − εy

εx
. (11)

Figure 3(d) shows that the efficiency agrees well with the
theoretical prediction, which is expected since it depends only
on εx and εy. For εx → 2εy, η approaches the Carnot effi-
ciency ηC = 1/2 while the power goes to zero, indicating the
trade-off relation between these two quantities. The efficiency
at maximum power can be directly calculated as ηMP = 1 −
εy/ε

max
x = ηC/(2 − ηC ), where ηMP = 1/3 at εmax

x = 1.5εy in
our engine. We note that ηMP = ηC/2 at ηC → 0 since the
thermodynamic fluxes are tightly coupled in this linear engine
[50,51].

Next, we turn our attention to the TUR in Eq. (1), which
can be rewritten as

DX (τ )

〈c(τ )〉2 σ (τ ) � kB, (12)

where DX (τ ) = Var[X (τ )]/(2τ ) and X is a thermodynamic
quantity such as work and heat. c = Ẋ is the current or the
rate, and σ = �Stot/τ is the entropy production rate. For
the autonomous linear engine, the exact relation between the
thermodynamic variables and the control parameters can be
analytically determined [23]. In the limit of τ → ∞, the direct
calculation gives

D̃ ≡ Dw

Ẇ 2
= Dqx

Q̇2
x

= Dqy

Q̇2
y

(13)

= γ

κ

[(εxTy − εyTx )2 + 4κ2TxTy]

(εxTy − εyTx )2
, (14)

which is independent of duration τ . To measure Var(X ) ex-
perimentally, we acquired a single long trajectory lasting for at
least 400 s and resampled it at a time interval of τ = 1 s, which
is 3000-fold larger than the relaxation time of the system,
γ /κ . Therefore, a single long trajectory offers >400 steady-
state samples to ensure robust statistics. Figure 4(a) shows 30
representative curves of the time-evolving work output −w(t )
(light purple) and the averaged value 〈−w(t )〉 = −W (t ) (pur-
ple). The former is a fluctuating but increasing quantity in time
while the latter accurately obeys a linear increase, which indi-
cates the current −Ẇ is constant in time. The corresponding
variance of −w(t ) is also a linearly increasing function and
thus Dw is constant, confirming D̃ is indeed time independent
[Eq. (14)]. Figure 4(c) presents D̃ (left axis) of the thermo-
dynamic quantities against εx. We found that the D̃’s of Ẇ ,
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FIG. 4. (a) Thirty curves of work output −w(t ) (light purple), their time-evolved mean values 〈−w(t )〉 (purple), and variance Var[−w(t )]
(dark purple) are shown up to 1 s for εx = 15 pN/μm. The corresponding thermodynamic energetics qx (t ) and −qy(t ) are shown respectively in
(b) and (c). The variance at each time point is determined from 500 samples. (d) The entropy production �stot (t ) (light blue) and the averaged
�Stot (t ) (blue). One �stot (t ) curve is highlighted with medium blue color. (e) Left axis: D̃ of Ẇ (open circle), Q̇x (cross), and Q̇y (open square).
Right axis: The entropy production rate σ (solid circle). The dashed lines are the theoretical predictions. Error bars are root-mean-square errors
derived from least-squares fits in (a)–(d). (f) The TUR of the currents. Note that at εx = 20 pN/μm, the caps of the error bar locate outside
the range of interest. The gray shadow is the forbidden area. The black dashed (and the inset) line is the theoretical prediction [Eq. (17)] of the
lower bound of TUR. The error bars are obtained from the error propagation.

Q̇x, and Q̇y all collapse into a single curve, agreeing with the
theoretical prediction of Eq. (13) [23].

The total entropy production rate σ for the duration τ

is σ = σenv + σsys, where σenv and σsys are the environment
and system entropy production rates, respectively. For steady
states with τ → ∞, only σenv contributes to σ , and thus σ can
be explicitly calculated from Eqs. (9) and (10) [40,49] to give

σ = �Stot

τ
= − Q̇x

Tx
− Q̇y

Ty
(15)

= kB

2κγ TxTy
(Txεy − Tyεx )2, (16)

which is also constant in time. Figure 4(b) shows the mea-
sured total entropy production �stot (light blue) of individual
trajectories and their average �Stot up to 1 s. As predicted, σ

is constant in time, determined by the linear fitting. The results
are shown in Fig. 4(c). As εx increases and approaches 20
pN/μm, σ asymptotically converges to zero since the engine
approaches the reversible limit, well agreed with Eq. (16).

Finally, the TUR of the linear engine in a steady state
can be examined by multiplying the measured σ with D̃ and

compared with the theoretical results using Eqs. (14) and (16):

D̃σ = kB

[
1 + (Tyεx − Txεy)2

4κ2TxTy

]
� kB. (17)

Figure 4(d) shows the measured D̃σ which is very close to
the theoretical minimum of kB in TUR, and TUR holds for
this autonomous engine.

We demonstrated an autonomous linear heat engine of a
single colloidal particle in contact with two heat reservoirs
simultaneously and driven by a nonconservative coupling
force. We confirmed that the linear engine obeys the TUR in
the nonequilibrium steady state and also that TUR converges
to the minimum when the engine efficiency approaches the
Carnot efficiency. It is more challenging to study the dynamics
of the Brownian gyrator in contact with nonequilibrium noises
with the persistence time [49], whose power and efficiency
may surpass the Carnot efficiency.
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