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Optimal linear cyclic quantum heat engines cannot benefit from strong coupling
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Uncovering whether strong system-bath coupling can be an advantageous operation resource for energy
conversion can facilitate the development of efficient quantum heat engines (QHEs). Yet, a consensus on this
ongoing debate is still lacking owing to challenges arising from treating strong couplings. Here, we conclude
the debate for optimal linear cyclic QHEs operated under a small temperature difference by revealing the
detrimental role of strong system-bath coupling in their optimal operations. We analytically demonstrate that
both the efficiency at maximum power and maximum efficiency of strong-coupling linear cyclic QHEs are upper
bounded by their weak-coupling counterparts with the same degree of time-reversal symmetry breaking. Under
strong time-reversal symmetry breaking, we further reveal a quadratic suppression of the optimal efficiencies
relative to the Carnot limit when away from the weak-coupling regime, along with a quadratic enhancement of
the mean entropy production rate.
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Introduction. The miniaturization of controllable quantum
systems opens doors for realizing nanoscale quantum heat
engines (QHEs) that enable heat-work conversion in the quan-
tum realm [1–10]. At the nanoscale, the surface area of the
working substances of QHEs could easily become comparable
to their volume [1,4,6,7,10–13], which gives rise to scenarios
where the strong system-bath coupling limit is attainable [6].
Investigating such strong-coupling QHEs requires a quantum
thermodynamic framework that extends beyond the classical
version where system-bath coupling is assumed to be negli-
gible [14]. Hence strong-coupling QHEs can serve as a vital
platform for demonstrating intrinsic quantum signatures of
energy conversion [7,15,16]. Moreover, analyzing the per-
formance of strong-coupling QHEs allows for validation of
proposed definitions for thermodynamic quantities at strong
couplings [17,18], an ongoing topic of strong-coupling ther-
modynamics (see a recent review [19] and references therein).

Understanding the role of system-bath coupling in heat-
work conversion can advance the field of strong-coupling
QHEs. Substantial efforts have been put into the investigation
of whether strong system-bath coupling can lead to opera-
tion advantages. To date, no general consensus has yet been
reached, in part due to theoretical and numerical challenges
imposed by strong system-bath couplings [19]. In this ongo-
ing debate there are studies that claim system-bath coupling
could be a useful resource which potentially enhances the
performance of QHEs [20–25] and there are results suggesting
detrimental effects of finite system-bath coupling [26–32].
This lack of agreement stems from the fact that existing
studies on strong-coupling QHEs are largely carried out on
either specific models [20,21,25,27–30] or specific cycles
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[22–24,26,31,32] which limits the generality of their con-
clusions on the role of system-bath coupling in heat-work
conversion.

Here, we focus on generic periodically driven QHEs from
weak to strong couplings operated in the linear-response
regime characterized by a small temperature difference (we
will refer to these as linear cyclic QHEs hereafter). Using a
complete form of the first law of thermodynamics which holds
for generic cyclic QHEs [23] and leveraging the principals of
linear irreversible thermodynamics [33], we reveal a universal
feature of linear cyclic QHEs that optimal weak-coupling
machines perform more efficiently than their strong-coupling
counterparts with the same degree of time-reversal symmetry
breaking, conditional only on the non-negativity of both the
entropy production rate and the efficiency of QHEs. We gain
this general insight by first obtaining thermodynamic bounds
on the efficiency at maximum power and maximum efficiency
[cf. Eqs. (16) and (19)] of linear cyclic QHEs valid from
weak to strong couplings, then demonstrating that both the
efficiency at maximum power and maximum efficiency of
linear cyclic QHEs are upper bounded by their weak-coupling
limits [cf. Eqs. (17) and (20)]. Our thermodynamic bounds
on optimal figures of merit reduce to known forms [34,35]
in the weak-coupling limit, thereby indicating that the exist-
ing thermodynamic bounds [34,35] when applying to cyclic
QHEs are only applicable at weak couplings [36,37]. We also
find that both the efficiency at maximum power and max-
imum efficiency of strong-coupling linear cyclic QHEs are
quadratically suppressed from the Carnot limit under strong
time-reversal symmetry breaking [cf. Eqs. (17) and (20)].
Interestingly, we can attribute this quadratic suppression of
optimal efficiencies to a quadratic enhancement of the mean
entropy production rate in the same limit [cf. Eq. (22)]. Our
findings uncover a universal detrimental role of strong system-
bath coupling in shaping the optimal performance of generic
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linear cyclic QHEs, and provide crucial insight into the search
of efficient strong-coupling QHEs over weak-coupling coun-
terparts as one steps out of the linear-response regime.

Linear cyclic QHEs. We consider generic cyclic QHEs as
described by the total Hamiltonian (h̄ = 1 and kB = 1 here-
after)

H (t ) = HS (t ) + HI (t ) + HB. (1)

Here, HS (t ) describes a periodically driven working sub-
stance, and HB = ∑

v=h,c Hv
B includes a hot (h) and a cold

(c) heat bath at temperatures Tv . HI (t ) = ∑
v Hv

I (t ) denotes
a time-dependent system-bath coupling allowing for the im-
plementation of thermodynamic strokes. We take periodic
protocols such that HS,I (T ) = HS,I (0) with T being the period
of the cycle. We assume that the cyclic QHE has reached its
time-periodic limit cycle at t = 0, after a transient warming-
up operation stage [23].

For strong-coupling cyclic QHEs in the limit-cycle phase,
it was recently emphasized that the first law of thermodynam-
ics should take the following complete form [23],

JW +
∑

v

JQv
− JA = 0. (2)

Here, JW,Qv ,A are cycle-averaged thermodynamic fluxes
[36–39] corresponding to the work, heat, and system-bath
coupling (α = W, Qv, A),

Jα ≡ 1

T

∫ T

0
dt dt 〈Oα〉, (3)

where OW = H (t ), OQv
= −Hv

B , and OA = HI (t ), respec-
tively, noting

∫ T
0 dt dt 〈HS (t )〉 = 0 at the limit cycle. 〈O〉 ≡

Tr[ρ(t )O] denotes an ensemble average of any observable O
over the global density matrix ρ(t ) of the composite system
H (t ), dtO ≡ dO/dt . In our convention, a heat engine mode
corresponds to JW < 0, JQh > 0, and JQc < 0. We point out
that JW encompasses work contributions from both driving
the working medium and tuning on/off the interaction [40]
since dt 〈H (t )〉 = 〈dt H (t )〉 and JA · T accounts for the energy
accumulated in the interaction term over a limit cycle. We
focus on typical setups with [HI , HS + HB] �= 0 such that JA

vanishes only at weak couplings in the limit-cycle phase [23].
The mean entropy production rate σ over a limit cycle is given
by

σ = −
∑

v

βvJv
Q. (4)

Here, βv = 1/Tv are the inverse temperatures of heat baths.
We consider a small temperature difference �T/Tv � 1

with �T = Th − Tc, thereby allowing for a linear-response
description of cyclic QHEs. Combining Eqs. (2) and (4), we
find σ = βc(JW − JA) + (βc − βh)Jh

Q which motivates us to
introduce thermodynamic affinities FW = βc and FQ = βc −
βh > 0 together with a renormalized work flux JW̃ ≡ JW − JA

and a heat flux JQ ≡ JQh . We remark that by introducing a
renormalized work flux we aim to develop a linear-response
description that naturally incorporates as a special limit the
existing version for cyclic QHEs at weak couplings (see, e.g.,
Refs. [36,37]) where JA vanishes.

Within linear irreversible thermodynamics [33], we can
write down equations relating fluxes and affinities,

JW̃ = LW̃W̃FW + LW̃ QFQ,

JQ = LQW̃FW + LQQFQ. (5)

The kinetic coefficients Lαβ (α, β = W̃ , Q) introduced above
can be cast into the so-called Onsager matrix

L =
(

LW̃W̃ LW̃ Q

LQW̃ LQQ

)
. (6)

We now find σ = ∑
α,β LαβFαFβ = FT (L+LT )F

2 ≡ FTLsF
with F = (FW ,FQ)T a 2 × 1 vector and Ls ≡ (L + LT )/2
being the symmetric part of the matrix L; the superscript T
denotes the transpose. The non-negativity of σ thus indicates
that the symmetric part Ls must be positive semidefinite [37],
leading to the following constraints on kinetic coefficients,

LW̃W̃ � 0, LQQ � 0,

LW̃W̃ LQQ − 1
4 (LW̃ Q + LQW̃ )2 � 0. (7)

Though mathematically straightforward, the above linear-
response description is not directly applicable for the charac-
terization of the performance of strong-coupling cyclic QHEs,
noting that only part of JW̃ corresponds to the actual work
flux. We circumvent this issue by further adopting the fol-
lowing separations for kinetic coefficients as can be inferred
from the form JW̃ = JW − JA and the linear nature of Eq. (5)
[41], LW̃W̃ = LWW − LWA + LAA − LAW , LW̃ Q = LW Q − LAQ,
and LQW̃ = LQW − LQA, yielding

JW = (LWW − LWA)FW + LW QFQ,

JQ = (LQW − LQA)FW + LQQFQ. (8)

At weak couplings, we should have LαA = LAα = 0 since
JA = (LAW − LAA)FW + LAQFQ = 0, where both FW and FQ

are generally nonzero, reducing Eq. (8) to those for weak-
coupling scenarios [36,37].

To facilitate an analytical treatment, one can introduce
dimensionless parameters as combinations of kinetic coeffi-
cients [34]. For strong-coupling linear cyclic QHEs, we find
the following four dimensionless parameters are adequate
to describe thermodynamics and characterize optimal perfor-
mance,

x ≡ LW Q

LQW − LQA
, y ≡ D

LQQ(LWW − LWA) − D ,

z1 ≡ LW Q

LW Q − LAQ
, z2 ≡ D

LQQ(LAA − LAW ) + D . (9)

Here, D ≡ (LW Q − LAQ)(LQW − LQA). At weak couplings, ex-
pressions for x and y reduce to their well-adopted forms
in systems with just work and heat fluxes [34,36,37] and
z1,2 become unity. The presence of two extra parameters
z1,2 �= 1 thus distinguishes strong-coupling cyclic QHEs from
weak-coupling counterparts in the linear-response regime.
The ratio x/z1 characterizes the degree of time-reversal sym-
metry breaking at strong couplings which is analogous to the
weak-coupling scenario where x is used [36,37].

In terms of x, y, z1, z2 and using separations of kinetic co-
efficients introduced above, the constraints in Eq. (7) transfer
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FIG. 1. Bound h(x, z1, z2) [cf. Eq. (11)] as a function of x with
z1,2 = 1 (blue solid line, corresponding to the weak-coupling limit),
z1 = 0.25, z2 = 0.8 (green dashed-dotted line), and z1 = −0.25, z2 =
0.8 (red dashed line). y−1 can take values only from the shaded and
hatched regions enclosed by h(x, z1, z2).

to

1

xz1

(
1

y
+ 1

z2

)
− 1

4

(
1

x
+ 1

z1

)2

� 0, (10)

which yields

y−1 � h(x, z1, z2), for xz1 � 0,

y−1 � h(x, z1, z2), for xz1 < 0. (11)

Here, we have introduced h(x, z1, z2) ≡ [z2(x + z1)2 −
4xz1]/(4xz1z2). At weak couplings with z1,2 = 1, the
above inequalities reduce to known constraints on y: 0 �
y � 4x/(x − 1)2 [4x/(x − 1)2 � y � 0] for x � 0 (x < 0)
[34,36,37]. It can be verified that h(x, z1, z2) � (z2 − 1)/z2

(� − 1/z2) in the region of xz1 � 0 (xz1 < 0). Furthermore,
we note that h(−x,−z1, z2) = h(x, z1, z2) which leaves the
bounds in Eq. (11) unchanged. In Fig. 1, we depict a set of
results for h(x, z1, z2) with varying z1,2 which clearly verifies
the aforementioned features of h(x, z1, z2). By contrasting the
blue hatched and green shaded regions depicted in Fig. 1,
one can observe that the allowed parameter region of y−1

shrinks and moves downwards when z1,2 deviate from the
weak-coupling limit. Particularly, y can take negative values
in the region of xz1 � 0 when z1,2 �= 1, in direct contrast to
the weak-coupling limit where y is non-negative in the region
of x � 0. As will be seen later, the changes in h(x, z1, z2)
lead to profound consequences on thermodynamic bounds on
optimal efficiencies of linear cyclic QHEs.

Optimized performance. Using Eq. (8), the output power
P ≡ −TcFW JW and thermodynamic efficiency η ≡ P/JQ in
the linear-response regime are given by

P = −TcFW [(LWW − LWA)FW + LW QFQ], (12)

η = −TcFW [(LWW − LWA)FW + LW QFQ]

(LQW − LQA)FW + LQQFQ
. (13)

We consider efficiency at maximum power (EMP) and max-
imum efficiency (ME) as figures of merit characterizing the

optimal performance of linear cyclic QHEs from weak to
strong couplings. Particularly, we are interested in general
thermodynamic bounds on both the EMP and ME. To ensure
the existence of non-negative EMP and ME for linear cyclic
QHEs with y satisfying Eq. (11), we find that one should limit
the ranges of z1,2 to (see details in Supplemental Material
[42])

0 � z1 � 1,
1

2 − z1
� z2 � 1. (14)

We require that one can take z2 = 1 only when z1 = 1 and vice
versa. Equation (14) is a direct result of the non-negativity
of both the entropy production rate and optimal efficiencies,
and no extra assumptions are invoked besides limiting z1 to
a positive number due to h(−x,−z1, z2) = h(x, z1, z2). In the
Supplemental Material [42], we address the scenario with a
negative z1 and show that the results and conclusions obtained
below remain unaltered.

We first focus on the EMP and its thermodynamic bound.
By maximizing the output power [cf. Eq. (12)] with re-
spect to FW [43], we receive an optimal condition Fo

W =
−LW QFQ/[2(LWW − LWA)]. Then we can obtain the EMP
η(Pmax) = P/JQ|FW =Fo

W
as

η(Pmax) = ηc

2

xyz1

2(1 + y) − yz1
. (15)

Here, ηc = 1 − Tc/Th denotes the Carnot limit. In arriv-
ing at the above equation, we have used the replacement
[LQQ(LWW − LWA)]/L2

W Q = (y−1 + 1)/(xz1). When z1 = 1,
we recover the known expression for η(Pmax) [34,36].

Since η(Pmax) is a decreasing (an increasing) function of
y−1 when xz1 � 0 (xz1 < 0), η(Pmax) attains its maximum
when y−1 = h(x, z1, z2), yielding a thermodynamic upper
bound ηEMP on the EMP [η(Pmax) � ηEMP],

ηEMP(x′, z1,2) ≡ x′2z2
1z2ηc

z2(x′ + 1)2 + 2x′(2z2 − 2 − z1z2)
. (16)

Here, we have set x′ = x/z1. At weak couplings where z1,2 =
1, ηweak

EMP (x) = ηcx2/(x2 + 1) which is the known bound on
EMP obtained previously [34,36]. Away from the weak-
coupling limit, ηEMP is in general not a symmetric function
of x. From Eq. (16), we can deduce the following properties
of ηEMP,

η∞
EMP = z2

1ηc, and ηEMP(x′, z1,2) � ηweak
EMP (x′). (17)

Here, η∞
EMP ≡ lim|x′|→∞ ηEMP, noting |x′| → ∞ corresponds

to a rather strong time-reversal symmetry breaking. The proof
of the inequality in Eq. (17) can be found in the Supplemental
Material [42]. We remark that here we compared the ηEMP

with the same degree of time-reversal symmetry breaking
x′ = x/z1 which enables a fair comparison between weak-
coupling and strong-coupling linear cyclic QHEs, similar for
Eq. (20) below. Equation (17) represents our first main result.
A typical set of results for ηEMP as a function of x/z1 with
varying z1,2 satisfying Eq. (14) is depicted in Fig. 2(a). From
Fig. 2(a), it is apparent that ηEMP remains smaller than its
weak-coupling limit with z1,2 = 1, and saturates z2

1ηc when
|x′| → ∞.

We then turn to the ME and its thermodynamic bound. To
get the ME ηmax, we directly optimize Eq. (13) with respect
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FIG. 2. (a) ηEMP/ηc [cf. Eq. (16)] as a function of x/z1 with
varying z1 and fixed z2 = 0.9. Inset: Results with varying z2 and
fixed z1 = 0.3. (b) ηME/ηc [cf. Eq. (19)] as a function of x/z1 with
varying z1 and fixed z2 = 0.9. Inset: Results with varying z2 and
fixed z1 = 0.3. For comparisons, we depict the weak-coupling limit
(WCL) with z1,2 = 1. Dashed horizontal lines in both plots mark the
value of z2

1.

to FW . After some lengthy algebra, we find (see details in
Supplemental Material [42])

ηmax = ηc
|x|

|z1y| (
√

|1 + y| −
√

|1 + y − z1y|)2. (18)

Here, |O| takes the absolute value of O. When z1 = 1, we
get ηmax = ηc

x
y (

√
y + 1 − 1)2 = ηcx

√
y+1−1√
y+1+1

by noting y �
−1 and x, y have the same sign, recovering the expression
for ηmax used in the weak-coupling limit [34,36,37]. It can
be easily verified that ηmax is a decreasing (an increasing)
function of y−1 when xz1 � 0 (xz1 < 0). Hence, similar to the
EMP, we can obtain a thermodynamic upper bound ηME on
the ME by taking y−1 = h(x, z1, z2) in Eq. (18) (ηmax � ηME):

ηME(x′, z1,2) ≡ ηc|x′|[
√

|h′ + 1| −
√

|(h′ + 1) − z1|]2. (19)

Here, we have defined h′ ≡ h(x′, z1,2) = [z2(x′ + 1)2 −
4x′]/(4x′z2). It reduces to the known bound ηweak

ME (x) = ηcx2

(ηc) for |x| � 1 (|x| � 1) [34] when z1,2 = 1. From the above
bound, we find that

η∞
ME = z2

1ηc, and ηME(x′, z1,2) � ηweak
ME (x′). (20)

Here, η∞
ME ≡ lim|x′|→∞ ηME. The proof of the inequality in

Eq. (20) can be found in the Supplemental Material [42].
Equation (20) is our second main result. A typical set of re-
sults for ηME as a function of x/z1 with varying z1,2 satisfying
Eq. (14) is presented in Fig. 2(b) which clearly validates the
properties listed in Eq. (20).

Combining Eqs. (17) and (20), we can draw the follow-
ing general conclusions concerning the role of system-bath
coupling in shaping the optimal performance of linear cyclic
QHEs (n = EMP, ME): Most significantly, (i) ηn is upper
bounded by its weak-coupling limit, implying that an optimal
weak-coupling cyclic QHE performs more efficiently than its

strong-coupling counterpart in the linear-response regime. (ii)
Noting the fact in (i) and that ηn of weak-coupling linear cyclic
QHEs attains its maximum ηc under strong time-reversal sym-
metry breaking as |x| → ∞, one can infer that optimal linear
cyclic QHEs can reach the Carnot limit ηc only in the weak-
coupling limit. (iii) Away from the weak-coupling limit as z1

decreases from 1, the extreme value η∞
n = z2

1ηc of ηn drops
quadratically in z1 relative to the Carnot limit. We can further
relate z1 to the dimensionless system-bath coupling strength
λ: Denoting HI = λH̃I with H̃I a rescaled system-bath in-
teraction, we have JA ∝ λ by noting the definition Eq. (3)
and hence LαA, LAα ∝ λ since the affinities are λ independent,
leading to z1 � 1 − c1λ + O(λ2) with c1 a model-dependent
coefficient [noting the definition in Eq. (9)]. Therefore, we
expect a relative suppression (η∞,weak

n − η∞
n )/η∞,weak

n = 1 −
z2

1 ∝ λ + O(λ2) scales at least linearly in λ with η∞,weak
n = ηc

for weak-coupling linear cyclic QHEs. We emphasize that
the aforementioned conclusions hold regardless of the details
of cyclic QHEs [i.e., the detailed form of H (t ) in Eq. (1)]
provided the temperature difference between the baths is small
and JA is nonzero at strong couplings.

To gain more insight into the suppression of optimal effi-
ciencies in the strong-coupling regime, we look at the mean
entropy production rate at efficiency at maximum power σEMP

and at maximum efficiency σME. We find that both σEMP and
σME have the form (n = EMP, ME)

σn(x′, z1,2) = F2
QL2

W Q

LW̃W̃

Kn(x′, z1,2). (21)

For simplicity, we relegate detailed functional forms of
Kn(x′, z1,2) to the Supplemental Material [42]; We have
checked that Kn(x′, z1,2) remains non-negative for z1,2 satis-
fying Eq. (14). Unlike ηn, it is noticeable that σn contains

a non-negative prefactor
F2

QL2
W Q

LW̃W̃
which cannot be expressed

in terms of x′, z1,2 as first noted by Ref. [34]. From the
above equation, we find the weak-coupling limits: σ weak

EMP (x) =
F2

QL2
W Q

LWW

1
4x2 and σ weak

ME (x) = F2
QL2

W Q

LWW

(x2−1)2

4x2 when |x| � 1 (and
vanishes otherwise) [42]. The latter was first obtained by
Ref. [34]. We highlight that it is inappropriate to contrast σn

and σ weak
n directly due to the presence of nonequal prefactors.

Nevertheless, we can still analyze the asymptotic behavior of
σn in the limit of |x′| → ∞. Since one can carry out linear-
response theory in that limit, it is reasonable to assume that
kinetic coefficients remain finite when varying x′. We find that
[42]

σ∞
n = 1

4

(
1

z1
− 1

)2 F2
QL∞,2

W Q

L∞
W̃W̃

. (22)

Here, σ∞
n ≡ lim|x′|→∞ σn(x′, z1,2) and L∞

αβ = lim|x′|→∞ Lαβ .
Interestingly, when z1 decreases from 1, σ∞

n experiences
a quadratic enhancement compared to its vanishing weak-
coupling limit (noting η∞,weak

n = ηc). We thus attribute the
quadratic suppression of η∞

n relative to the Carnot limit to this
quadratic enhancement of σ∞

n .
Discussion. It is interesting to explore whether optimal

weak-coupling cyclic QHEs can outperform their strong-
coupling counterparts beyond the linear-response regime. To
provide a hint, consider a reversible thermodynamic cycle

L022105-4



OPTIMAL LINEAR CYCLIC QUANTUM HEAT ENGINES … PHYSICAL REVIEW E 106, L022105 (2022)

with vanishing entropy production which usually necessitates
the ME. Specifically, we have S = −∑

v βvQv = βc(W −
A) + (βc − βh)Qh = 0 (S = T σ , Qv = T JQv

, W = T JW , and
A = T JA), yielding W = A − ηcQh with ηc the Carnot effi-
ciency. Inserting the expression for W into the definition of
efficiency η = −W/Qh, we get the ME ηmax = ηc − A/Qh.
Recognizing that optimal strong-coupling cyclic QHEs with
normal thermal baths cannot break the Carnot limit, we should
have A > 0 at strong couplings by noting Qh > 0; A remains
nonzero at strong couplings as long as W �= 0 [23], conse-
quently, one naturally infers ηmax � ηweak

max = ηc. Hence, we
conjecture that strong coupling will likely suppress the ME
of cyclic QHEs beyond the linear-response regime. We leave
possible validations to future works.

To correctly interpret the present results, it is necessary
to discriminate between optimal and nonoptimal QHEs. Tak-
ing a set of z1,2 < 1, we only stated that ηn(z1,2) < ηweak

n ≡
ηn(z1,2 = 1) with n = EMP, ME in the linear-response
regime. However, if one just considers a nonoptimal linear
QHE with an actual efficiency η < ηn, it is possible to have the
trend η(z1,2) > ηweak ≡ η(z1,2 = 1) as opposed to the relative

relation for the optimal efficiency ηn, namely, our present
results do not rule out the possibility of having nonoptimal
cyclic QHEs capable of benefitting from strong couplings in
the linear-response regime.

In summary, we analyzed the optimal performance of
generic cyclic QHEs from weak to strong couplings in the
linear-response regime and obtained thermodynamic bounds
on optimal efficiencies. We revealed a universal feature of lin-
ear cyclic QHEs that system-bath coupling tends to suppress
both the efficiency at maximum power and maximum effi-
ciency. Under strong time-reversal symmetry breaking, this
suppression scales at least linearly in system-bath coupling
strength. Our results provide insight into the investigation of
the effects of system-bath coupling on heat-work conversion
and are relevant for the search of efficient strong-coupling
QHEs.
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