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Optimal control with a strong harmonic trap
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Quadratic trapping potentials are widely used to experimentally probe biopolymers and molecular machines
and drive transitions in steered molecular-dynamics simulations. Approximating energy landscapes as locally
quadratic, we design multidimensional trapping protocols that minimize dissipation. The designed protocols are
easily solvable and applicable to a wide range of systems. The approximation does not rely on either fast or slow
limits and is valid for any duration provided the trapping potential is sufficiently strong. We demonstrate the
utility of the designed protocols with a simple model of a periodically driven rotary motor. Our results elucidate
principles of effective single-molecule manipulation and efficient nonequilibrium free-energy estimation.
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Introduction.—The molecular machine ATP synthase is a
remarkable rotary motor that is driven by a proton gradient
to synthesize ATP. Single-molecule biophysical experiments
have isolated the F1 component of the machine in order to
drive it with chemical gradients and applied torques, find-
ing nearly perfect energetic efficiency [1,2]. Magnetic and
optical trapping potentials such as those used to study ATP
synthase [2–4] or carry out DNA folding and unfolding ex-
periments [5–10] are well approximated as quadratic. By
varying the focus and intensity of the trapping potential, the
center and stiffness can be precisely controlled. In this article
we design energetically efficient driving protocols for strong
quadratic trapping potentials on arbitrary energy landscapes.
We describe general design principles that can be applied to
biophysical experiments and molecular simulations.

We employ the theoretical framework of stochastic ther-
modynamics, which describes the energy flows in small-scale
fluctuating systems [11,12]. Much like its classical thermody-
namic roots [13], stochastic thermodynamics seeks to describe
the design principles of energetically efficient machines, but
now at the micro- and nanoscale. Unlike thermodynamics
at the macroscale, small-scale systems are constantly bom-
barded by relatively large fluctuations, typically operate on
timescales comparable to their natural relaxation times, and
are therefore not well described by the familiar quasistatic
processes often used to describe efficient machines [14].

Despite the added complexity, considerable strides have
been made towards the general description of efficient
stochastic-thermodynamic systems [15]. These systems can
be driven by two types of protocols: constrained-final-
distribution (CFD) protocols and constrained-final-control-
parameter (CFCP) protocols. CFD protocols assume com-
plete control over the dynamics and drive the system to a
specified final probability distribution, guaranteeing that at
any driving speed the system will reach its destination. This
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can be used to model rotary motors such as ATP synthase by
setting the final state to be identical to the initial but shifted by
one period, resulting in one cycle of free-energy transduction
in a specified duration.

For one-dimensional overdamped dynamics, optimal-
transport theory can be directly applied to determine the
minimum-dissipation protocol that drives a system between
specified initial and final distributions [16] and to place fun-
damental bounds on the cost of information erasure [17].
For multidimensional overdamped dynamics, the entropy
production is lower bounded by the Wasserstein distance be-
tween the initial and final distributions [18,19], and exact
minimum-dissipation protocols are known for quadratic trap-
ping potentials in isolation [20,21].

CFCP protocols drive a finite set of control parameters
to specified final control-parameter values. For such proto-
cols, the system does not necessarily keep up with rapid
changes in control parameters, and for fast driving the sys-
tem state remains largely unchanged [22]. For nonequilibrium
free-energy estimation, the free-energy change is estimated
from work measurements between control-parameter end-
points, so CFCP protocols are the natural choice. The
minimum-dissipation protocol is described by a geodesic of
a Riemannian friction-tensor metric when the protocol is suf-
ficiently slow [23], by a short-time efficient protocol (STEP)
when the protocol is sufficiently fast [22], and by linear-
response theory when the perturbations are sufficiently weak
[24,25]. These methods have been used to explore a diverse
set of model systems [26–39], including DNA pulling exper-
iments [40], and have been applied to improve free-energy
estimation [41].

We describe minimum-dissipation protocols for multidi-
mensional overdamped dynamics driven over arbitrary energy
landscapes by quadratic trapping potentials. Approximating
the static energy landscape as locally quadratic, we obtain
minimum-dissipation protocols that are valid for strong trap-
ping potentials at any driving speed. For equal initial and final
covariance, the minimum-dissipation CFD protocols are given
by explicit equations for the trap center (11a) and stiffness
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FIG. 1. Performance of model rotary motor. (a) Time-dependent protocol for a weak initial stiffness k0/(Eb/x2
m ) = 1/2 (red, left) and

intermediate initial stiffness k0/(Eb/x2
m ) = 2 (blue, right) depicting the static potential (dotted, gray), trap potential (dashed), median position

(solid), and 9%, 25%, 75%, and 91% quantiles (shaded). The two protocols are offset vertically and horizontally for clarity. (b) Entropy
production, (c) efficiency, (d) deviation of the final mean position from the target, and (e) deviation of the final standard deviation from the
target. Different colors and markers represent different initial stiffnesses k0. Black dashed curves in (b) and (c): strong-trap approximations
(14) and (16), respectively. The energy offset is �E = kBT , the barrier height is Eb = 4kBT , and in (a) the protocol duration is �t = τD for
diffusion time τD ≡ �x2

m/D between adjacent wells. Error bars representing bootstrap-resampled 95% confidence intervals are smaller than
the markers.

(13) that linearly drive the mean between the specified end-
points while maintaining constant covariance. We perform
a second optimization (19) to achieve CFCP minimum-
dissipation protocols. Since the designed CFD protocols can
be solved analytically and calculating CFCP protocols only
requires performing a minimization over the final mean and
covariance [which in some cases is analytic (20)], these
designed protocols are considerably simpler to determine
compared to previous methods [16,22,23]. We illustrate our
results with a simple model of a rotary motor (Fig. 1). By
tightening the trap as it crosses energy barriers, the designed
protocol achieves minimal entropy production (14) and max-
imum efficiency (16), provided the trap is sufficiently strong
to confine the system within a single well.

Minimum-dissipation quadratic control.—Consider the
overdamped motion of a system with diffusion coefficient D
driven by a time-dependent potential Vtot (r, t ), satisfying the
Fokker-Planck equation

∂ p(r, t )

∂t
= −∇ · [v(r, t )p(r, t )], (1)

where

v(r, t ) ≡ −D∇[βVtot (r, t ) + ln p(r, t )] (2)

is the mean local velocity [42] and p(r, t ) the system’s proba-
bility distribution over position vector r at time t . The system
is in contact with a heat bath at temperature T , with β ≡
(kBT )−1 for Boltzmann’s constant kB.

The total potential Vtot = Vland + Vtrap is separated into
a time-independent component Vland (the underlying energy
landscape) and a quadratic trapping potential

Vtrap[r,λt , Kt ] = 1
2 [r − λt ]

�Kt [r − λt ]. (3)

K is the symmetric stiffness matrix, the superscript � is the
vector transpose, and subscript t denotes a variable at time
t . For a strong trapping potential, the time-independent com-
ponent can be expanded up to second order about the mean
position μ:

Vland(r) ≈Vland(μ) + (r − μ)�∇Vland(μ)

+ 1

2
(r − μ)�∇∇�Vland(μ)(r − μ), (4)

with ∇∇� the Hessian matrix. Under these assumptions, the
probability distribution can be approximated as Gaussian,
p(r, t ) ≈ N (μt , �t ), with μt the average position vector and
�t the covariance matrix at time t .

The average entropy produced �Sprod ≡ �S − βQ (for di-
mensionless system entropy S and heat Q into the system) in
driving from the initial probability distribution p(r, 0) to the
final probability distribution p(r,�t ) is [42]

�Sprod =
∫ �t

0
dt

[
dS

dt
− βQ̇

]
= −

∫ �t

0
dt

∫
dr

∂ p(r, t )

∂t
[ln p(r, t ) + βVtot (r, t )]

= −
∫ �t

0
dt

∫
dr p(r, t )v(r, t )

· ∇[βVtot (r, t ) + ln p(r, t )]

= 1

D

∫ �t

0
dt 〈v(r, t ) · v(r, t )〉. (5)

Angle brackets 〈· · · 〉 denote an average over p(r, t ), and the
rate of change of heat is Q̇ ≡ ∫

drV (r, t )∂ p(r, t )/∂t . The
second line follows from the standard definitions of entropy
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and heat [12], the third line from inserting (1) and integrating
by parts over r assuming the probability vanishes at infinity,
and the last line from inserting (2). From the first law of
thermodynamics and the definition of entropy production, the
average work is

W = �Fneq + 1

β
�Sprod, (6)

where �Fneq ≡ Fneq(�t ) − Fneq(0) is the change in nonequi-
librium free energy Fneq(t ) ≡ 〈Vtot (r, t )〉 − β−1〈ln p(r, t )〉 be-
tween the initial and final distributions.

The entropy production is bounded by the squared
L2-Wasserstein distance between initial and final probability
distributions [42], which for Gaussian distributions is [21,43]

�Sprod � 1

D�t

{
�μ2 + Tr

[
�0 + ��t − 2

(
�

1
2
�t�0�

1
2
�t

) 1
2
]}

,

(7)

with subscripts 0, t , and �t respectively denoting the ini-
tial, time-dependent, and final values of the corresponding
variable. Equality is achieved and the entropy production
is minimized when following the optimal-transport map
between the initial and final distributions, which for Gaus-
sian distributions is completely specified by the mean and
covariance:

μt = μ0 + �μ

�t
t (8a)

�t =
[(

1 − t

�t

)
I + t

�t
C

]
�0

[(
1 − t

�t

)
I + t

�t
C

]
. (8b)

Here I is the identity matrix, C ≡ �
1
2
�t (�

1
2
�t�0�

1
2
�t )

− 1
2 �

1
2
�t

reduces in one dimension to the ratio of final and initial stan-
dard deviations, and �μ ≡ μ�t − μ0 is the total change in
mean position. If the covariance matrix is diagonal, then (8b)
simplifies to

�
1
2

t = �
1
2
0 + ��

1
2

�t
t, (9)

with ��
1
2 ≡ �

1
2
�t − �

1
2
0 . Thus the standard deviation in each

coordinate is linearly driven between the endpoints.
Solving the dynamical equation of motion (1) for the time-

dependent mean and covariance,

1

βD

dμt

dt
= Kt (λt − μt ) − ∇Vland(μt ), (10a)

1

βD

d�t

dt
= 2β−1 − [

Kt + ∇∇�Vland(μt )
]
�t

−�t
[
Kt + ∇∇�Vland(μt )

]
, (10b)

and substituting their optima (8a) and (8b), the trap center
and stiffness must respectively satisfy (for a detailed deriva-
tion in the absence of an energy landscape see [21])

λt = μt + K−1
t

[
�μ

βD�t
+ ∇Vland(μt )

]
, (11a)

Kt = 1

β
�−1

t − 1

βD

∫ ∞

0
dν e−ν�t

d�t

dt
e−ν�t

−∇∇�Vland(μt ), (11b)

where μt is given by (8a) and �t by (8b). If � is diagonal,
then �t is given by (9), the integral in (11b) can be evaluated,
and the trap stiffness obeys

Kt = ∇∇�Vland(μt ) +
(

1

β
I − ��

1
2

2βD�t

)
�−1

t . (12)

These explicit protocol equations (11) are consider-
ably easier to compute compared to previous methods
for determining minimum-dissipation protocols for CFDs,
which require solving differential equations or inverting the
Fokker-Planck equation [16,17]. By constraining the final
covariance matrix after one period (during which the mean
completes one rotation) to equal the initial, we achieve pe-
riodic driving: the first two moments are periodic in time.
Therefore, to minimize dissipation of a periodic system the
covariance remains unchanged throughout the protocol (8b).
This is achieved when the effective stiffness is constant, i.e.,

Kt = K0 + ∇∇�Vland(μ0) − ∇∇�Vland(μt ). (13)

This results in entropy production

�Sprod = (�μ)2

D�t
, (14)

that of an overdamped system moving at constant velocity
against viscous Stokes drag, i.e., the minimum-dissipation
protocol has perfect Stokes efficiency [44].

For a machine transducing free energy �Fneq between the
initial and final distributions with equal covariance, the effi-
ciency is the ratio of output free energy to input work,

η ≡ β�Fneq

β�Fneq + �Sprod
, (15)

with the minimum-dissipation protocol achieving the upper
bound,

ηmax =
[

1 + (�μ)2

βD�t�Fneq

]−1

. (16)

Since the entropy production is independent of the free-energy
change, a system that travels the same distance but transduces
more free energy is more efficient.

Free-energy estimation. Free-energy differences between
two equilibrium states of a system can be estimated from
nonequilibrium work measurements using the Jarzynski
equality or the Crooks fluctuation theorem [11,45,46]. The
Jarzynski estimator of the free-energy difference �Feq ≡
Feq[λ�t , K�t ] − Feq[λ0, K0] between equilibrium distribu-
tions corresponding to constrained initial and final control
parameters is

�̂F Jar = − 1

β
ln

1

N

∑
i

e−βW (i)
, (17)

with W (i) the ith measurement of work from driving the
system and N the number of samples. In general, the statis-
tical error of the free-energy estimate based on Jarzynski’s
equality increases with dissipation. The connection between
statistical error and dissipation is clearest when dissipation is
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small, where the expected bias and variance are approximately
[41,47]

〈�̂F Jar〉 − �Feq ≈ 1

N
(W − �Feq ), (18a)

〈(�̂F Jar − 〈�̂F Jar〉)2〉 ≈ 2

βN
(W − �Feq ). (18b)

If dissipation is small, minimizing work also minimizes
the bias and variance of free energies estimated from
Jarzynski’s equality. Similar connections can be made for
other free-energy estimators such as Bennett’s acceptance ra-
tio [41,48,49].

The average work (6) for the minimum-dissipation
protocol is

W = 1

2
Tr

{
K

[
� + (μ − λ)(μ − λ)�

]}�t

0 + Vland(μ)
∣∣�t

0

+ 1

2
Tr[∇∇�Vland(μ)�]�t

0 + 1

β
�Smin

prod, (19)

with Tr the trace and �Smin
prod the lower bound in (7). To find the

protocol that minimizes work for CFCPs we minimize (19)
with respect to the final mean μ�t and covariance ��t , for
fixed final trap center λ�t and stiffness K�t .

For equal initial and final covariance and a flat energy
landscape, the final mean is

μ�t = μ0 +
(

2K−1

βD�t
+ I

)−1

[λ�t − μ0]. (20)

In some more general cases (e.g., energy landscapes repre-
sented by low order polynomials), (19) can also be minimized
analytically and in general can be solved numerically with
relative ease. Performing this minimization is a considerably
simpler task than finding the minimum-dissipation protocols
based on thermodynamic-geometry frameworks, which typi-
cally require calculating metric tensors and solving geodesic
equations [37,50]. Another benefit of the present method is
that it does not rely on either slow [23] or fast [22] protocol
approximations and is valid at any duration provided the trap-
ping potential is sufficiently strong.

Rotary motor. We demonstrate the applicability of our
approximation with a model of a rotary motor inspired by
ATP synthase. We consider a one-dimensional periodic energy
landscape [Fig. 1(a)],

Vland(x) = Eb

2

(
1 − cos

2π

�xm
x

)
+ �E

�xm
x. (21)

The barrier height is Eb, the distance from peak to well
is xm, the distance between wells is �xm = 2xm, and the
machine transduces energy �E per barrier crossing. We
assume a periodic protocol with equal initial and final vari-
ances, �0 = ��t , starting with the mean position at the
center of a well, μ0 = 0, and terminating after three bar-
rier crossings so that μ�t = 3�xm. For the model’s periodic
energy landscape (21) and initial and final means, substitut-
ing (8a) into (11a) and (13) gives the minimum-dissipation

protocol,

λt = 1

kt

(
3�xm

βD�t
+ �E

�xm
+ πEb

�xm
sin

6π

�t
t

)
+3�xm

�t
t, (22a)

kt = k0 + 2π2Eb

�x2
m

− 2π2EB

�x2
m

cos
6π

�t
t . (22b)

Figure 1(a) shows the designed intermediate-duration
protocol for driving the system over three barriers, numeri-
cally estimated from Langevin dynamics integrated with the
Euler-Maruyama method [51], with sufficiently small time
steps and numerous samples such that numerical inaccuracies
are negligible. To maintain constant variance, the designed
protocol tightens the trap as it crosses the barriers; to lin-
early drive the mean between the two wells, the trap center
initially jumps ahead of the mean position μ0, remaining
ahead throughout the protocol. For a Gaussian distribution,
the 9%, 25%, 75%, and 91% quantiles are evenly spaced,
consistent with the linear translation of the quantiles between
the two wells, shown in Fig. 1(a) for k0 = 2Eb/x2

m. For a weak
trap [k0 = Eb/(2x2

m )], the quantiles are not evenly spaced and
exhibit significant deviations from linear temporal evolution,
implying that the Gaussian approximation is no longer valid.
The crossover from strong to weak trap occurs when k0 ∼
Eb/x2

m, since a weaker trap (k0 � Eb/x2
m) is not sufficient to

confine the system within a single well and the distribution
can become bimodal, resulting in widely separated quantiles
as the system crosses the barriers [Fig. 1(a)].

The quadratic approximation is accurate when the initial
stiffness is large (k0 
 Eb/x2

m). When this condition holds,
the entropy production and efficiency are well approximated
by (14) and (16) at any protocol duration [Figs. 1(b) and 1(c)].
Additionally, for a fast protocol whose duration is shorter
than the diffusion time between adjacent wells (�t � τD ≡
�x2

m/D), the entropy production and efficiency agree with
(14) and (16) even for a relatively weak initial stiffness. Large
forces are required to rapidly drive the system, which can only
be achieved by the trap potential (since the energy landscape
is not dynamically controlled), resulting in the dominant con-
tribution to the force arising from the trap potential. Therefore
the approximation is valid when either the protocol duration is
short (�t � τD) or the initial stiffness is large (k0 
 Eb/x2

m).
Despite the quadratic approximation breaking down when

both �t � τD and k0 � Eb/x2
m, the final position’s mean and

standard deviation remain within 20% of their respective tar-
gets, relative to the distance between the wells [Figs. 1(d)
and 1(e)]. Even when the approximations break down, the
designed protocols successfully drive the system to the final
desired distribution.

Discussion. By approximating static energy landscapes as
locally quadratic, we have derived minimum-dissipation pro-
tocols for quadratic trapping potentials. This approximation
does not rely on either slow or fast limits and therefore
offers a complementary result to previous work on de-
signing minimum-dissipation protocols in the fast and slow
limits [22,23]. Designed protocols based on the present ap-
proximation are considerably simpler than previous methods
for determining the minimum-dissipation protocols, which
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require estimating correlation functions and solving geodesic
equations. The trap center linearly drives the mean between
the specified endpoints (11a); if the initial and final covari-
ances are equal, then the stiffness adjusts to maintain constant
covariance throughout the protocol (13).

We demonstrate the applicability of the approximation
with a simple model of a driven rotary motor (Fig. 1). When
either the initial stiffness is large (k0 
 Eb/x2

m) or the duration
is short (�t � τD), the motor achieves the maximum effi-
ciency (16). When the initial stiffness is small (k0 � Eb/x2

m)
and the duration is large (�t � τD), the motor achieves signif-
icantly lower efficiency but the designed protocols still drive
the system to within 20% of the target endpoints relative to
the interwell distance.

Our formalism gives insight into the design principles of
efficient motors. Achieving maximum efficiency requires full
control of the system, which in general would require an
infinite number of control parameters; however, full control
of Gaussian probability distributions can be achieved with a
finite number of parameters. Within our quadratic approxi-
mation, for a d-dimensional system the number of control
parameters required for an arbitrary energy landscape is
d (d + 3)/2: d trap center components (controlling the means)
and d (d + 1)/2 stiffness matrix components (controlling the
covariances).

We emphasize that the intermediate states remaining
Gaussian in the optimal-transport process is the result of
an optimization over all possible distributions connecting
Gaussian end-states and not an imposed constraint on the
intermediate distributions. This is in contrast to parametric
methods for determining the minimum-dissipation protocols,
where the intermediate states are constrained to those ac-
cessible by the small number of control parameters [23,52].
In general, we expect the minimum-dissipation protocols
determined from parametric control to coincide with op-
timal transport when there are sufficiently many control
parameters to access the intermediate distributions of the
optimal-transport process, e.g., d (d + 3)/2 control parame-
ters for a d-dimensional system with a flat energy landscape
and a quadratic trapping potential. Otherwise, the full control
afforded by the optimal-transport process will achieve less
dissipation.

Several of our results are directly applicable to physical
systems. Single-control-parameter (typically the trap center)
designed pulling protocols for unfolding DNA hairpins can
reduce dissipation [40]. Our recent theoretical study [50]
suggests that dissipation in DNA hairpin experiments can
be significantly further reduced by adding one additional
control parameter (trap stiffness), but further control (be-
yond trap center and stiffness) would do very little to reduce

dissipation. Within the present framework this is easily under-
stood. Control over the trap center drives the system over the
energy barrier between the folded and unfolded state but can-
not prevent the increase in variance as it crosses the barrier.
By tightening the trap as it traverses the barrier, the system’s
variance remains constant and the barrier is effectively elim-
inated. If the trap is reasonably stiff, then the distribution
is approximately Gaussian, and two control parameters are
sufficient for full control of this one-dimensional system.

The minimum-dissipation protocols described in the free-
energy estimation section can be directly applied to improve
estimates of free-energy differences. In steered molecular-
dynamics simulations, stiff-trap approximations are com-
monly employed when estimating free-energy differences
[53,54]; therefore our method is well situated to improve these
estimates. More generally, several enhanced-sampling tech-
niques for free-energy estimation add quadratic potentials to
smooth potential-energy surfaces [55,56] or trap intermediate
states in umbrella sampling [57]. There could be connections
between our minimum-dissipation protocols and the improved
performance from smoothing potential-energy surfaces and
optimally spacing intermediate states [57–63].

A benefit of the present formalism is that it allows
specification of the final distribution by its mean and co-
variance while using a finite number of control parameters.
Previous methods that specified the final distribution us-
ing optimal-transport theory required full control over the
potential, in principle requiring infinite control parameters.
General designs for parametric control typically constrain
final control-parameter values but do not actually achieve a
specific target distribution. Being able to specify the final
distribution is particularly useful for modeling periodic mo-
tors like ATP synthase. By fixing the equal initial and final
covariance, we periodically drive the motor with a high degree
of precision [Figs. 1(d) and 1(e)] and give insight into the
maximum efficiency of such driving.

Finally, the ease of determining multidimensional de-
signed protocols opens up the possibility to explore a host
of new systems, from coupled transport motors pulling cargo
[64] to steered molecular-dynamics simulations of complex
condensed-matter systems.
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