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To simulate elastic turbulence, where viscoelasticity dominates, numerical solvers introduce an artificial stress
diffusivity term to handle the steep polymer stress gradients that ensue. This has recently been shown [A. Gupta
and D. Vincenzi, J. Fluid Mech. 870, 405 (2019); V. Dzanic et al., J. Fluid Mech. 937, A31 (2022)] to introduce
unphysical artifacts with a detrimental impact on simulations. In this Letter, we propose that artificial diffusion
is limited to regions where stress gradients are steep instead of seeking the zero-diffusivity limit. Through the
cellular forcing and four-roll mill problem, we demonstrate that this modified artificial diffusivity is devoid of
unphysical artifacts, allowing all features of elastic turbulence to be retained. Results are found to conform with
direct simulations, reducing the impact of artificial diffusivity from a qualitative scale to a quantitative scale
while only requiring a fraction of the numerical resolution.

DOI: 10.1103/PhysRevE.106.L013101

It is well known that fluid flow with the addition of poly-
mer molecules to a solvent (i.e., viscoelastic fluids) in the
absence of inertial instabilities Re = U�/ν � 1 generates an
anisotropic elastic stress contribution that transitions the flow
to a chaotic regime, known as elastic turbulence (ET) [1–3].
ET is purely driven by viscoelastic instabilities, where the
viscous to elastic effects are measured by the Weissenberg
number Wi = τU/� � 1, and viscoelastic and inertial ef-
fects characterized by the elasticity number El ≡ Wi/Re =
τν/�2 � 1. Here, τ is the longest polymer relaxation time,
� the characteristic length scale, ν is the total kinematic
viscosity, and U is the average velocity. This purely elastic
instability shares a lot of features with traditional inertial
turbulence, namely, (i) increased flow resistance, (ii) enhanced
mixing, and (iii) random flow fluctuations characterized by
a broadband spectrum of spatial and temporal frequencies
[3]. In an effort to better understand the role of viscoelastic
instabilities in these chaotic flow regimes, a plethora of nu-
merical studies have been conducted [4–9], the majority of
which involve resolving the hydrodynamic field through the
incompressible Navier-Stokes equations,

∇ · u = 0,
Du
Dt

= −∇P + νs�u + ∇ · σ + F, (1)

coupled with the polymer stress tensor σ = f (r) νp

τ
(C − I ),

described by a space-time dependent conformation tensor (C)
constitutive equation,

DC
Dt

= C · (∇u) + (∇u)T · C − f (r)

τ
(C − I ), (2)
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where the function f (r) allows for various constitutive poly-
mer models to be used. I is the identity tensor, u is the velocity
field, F is the external force, and νs and νp are the solvent and
polymer kinematic viscosities, respectively.

Numerical simulations of turbulent viscoelastic fluid flows
are, however, far from trivial. By definition, the conformation
tensor is a symmetric positive-definite (SPD) tensor C � 0,
where conserving this property is important to prevent the
rapid growth of Hadamard instabilities [10]. To overcome
stability issues, numerical methods apply decomposition tech-
niques in Eq. (2) to conserve the SPD properties of C by
construction [11,12]. However, these specialized techniques
alone cannot control the steep polymer stress gradients that
ensue at high elastic effects, captured by the infamous high-
Wi number problem, owing to the inherent hyperbolic nature
and lack of numerical regularization terms in Eq. (2). In
turn, solvers introduce an additional global artificial diffu-
sivity (GAD) term in the Laplacian form, D = k�C , into
Eq. (2) [8,9,13], where the level of diffusivity k is charac-
terized by the Schmidt number Sc = νs/k. GAD effectively
converts the constitutive polymer model to a parabolic form
by smoothing steep polymer stresses over large regions of the
flow. Indeed, polymer-stress diffusion is physically present
at Sc ∼ 106; however, to achieve numerical stability requires
Sc � 103 [8,14]. The unphysically large k values required to
achieve such Sc numbers with GAD are known to promote
laminarization for elastoinertial turbulence (EIT) (Re � 10)
[15], suppressing the elastic instabilities that are necessary to
promote turbulence. By combining SPD-conserving solvers
with high-order, shock-capturing schemes have enabled sim-
ulations of EIT without the need for GAD [16]. This same
approach was recently used to simulate ET at Sc = ∞, where
a direct comparison against GAD with Sc = 103 revealed
the dramatic effect on the large-scale properties of the flow,
suppressing chaotic fluctuations [8]. In the authors’ recent
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work [17], it was further shown that the global effect of GAD
is so large that a single unit cell in fully periodic problems
does not conserve unicity, leading to numerical artifacts rep-
resented by qualitative anomalies, thus rendering the problem
unphysical. Conserving unicity allows features of ET to be
recovered at Sc = 103, with chaotic fluctuations increasing
as Sc > 103, whereas ET is suppressed at Sc ∼ 102, demon-
strating the detrimental effect of GAD. Indeed, in the absence
of artificial diffusivity, an exact physical representation can
be obtained directly from Eq. (2). However, for problems
where El � 1, the steep polymer stress gradients that develop
require significant spatial and temporal resolution, and hence
computational costs, to overcome the numerical stability is-
sues that ensue [7,8,17]. This is in particular problematic
given that simulations of ET, in general, are restricted by com-
putational cost due to the inherently small time step required
compared to their Newtonian counterpart [9,18].

In this Letter, a simple yet elegant approach to include
artificially diffusivity while retaining all features of ET is
proposed. We demonstrate the ability to avoid the unphysical
artifacts that have plagued the GAD scheme while still offer-
ing the same level of numerical benefits, particularly in terms
of convenience and stability.

Earlier works on turbulent polymer drag reduction have
seen success using a local artificial diffusivity (LAD) scheme
in which D (x, t ) = k�C (x, t ) is applied in regions of the
computational domain x where C � 0 [19,20]. However,
LAD does not guarantee SPD and is inherently not applica-
ble to modern, SPD-conserving solvers [9,11,12]. Motivated
by the LAD scheme, as well as the stability rationale, i.e.,
the singular purpose of artificial diffusivity is for numerical
regularity, we seek a suitable approach with which k is not de-
creased but instead restricted where it is applied to minimize
the potential consequent global effects. To this aim, we pro-
pose a modified artificial diffusivity (MAD) scheme such that
D (x, t ) = κ (x, t )�C (x, t ) with maxx[κ (x, t )] = k ∀t , where
x is the domain, which is directly applicable to all modern,
SPD-conserving, numerical solvers. An intuitive way to apply
κ is to consider the characteristic feature of ET, that the stress
gradients are sharp and localized. By restricting artificial dif-
fusivity within those regions to a maximum of k = νs/Sc,
we allow for the required numerical regularity to be retained
while minimizing global smearing where regularization is not
needed. Leveraging this idea, multiple possible variations for
κ (x, t ) naturally emerge (as discussed in the Supplemental
Material [21]). To illustrate, we consider the Laplacian form,

D (x, t ) = κ (x, t )�C (x, t ), κ (x, t ) = kQ(x, t )

Qmax(t )
, (3)

where Q is the sum of the magnitude of polymer stress com-
ponent gradients, i.e.,

Q(x, t ) =
D∑
i, j

√√√√
D∑
q

[∇qCi j (x, t )]2,

for a D-dimensional domain x and Qmax(t ) = maxx[Q(x, t )]
is a normalization factor. In turn, in MAD (3) the artificial dif-
fusivity is scaled linearly with stress gradients to a maximum
of k, i.e., limQ→Qmax D = k�C .

To demonstrate the suitability of the MAD scheme while
further demonstrating the severe limitations of the GAD
scheme for simulations of ET, we apply both MAD and GAD
to simulate two popular ET cases, namely, the four-roll mill
(FRM) problem [22–24] and the cellular forcing (CF) scheme
[7,8]. In recent investigations of ET, simulations of FRM
and CF using GAD were shown to depict various numerical
artifacts that have been investigated extensively in both [17]
and [8], respectively, which presents strict test criteria for
MAD. Both FRM and CF are numerical recreations of popular
viscoelastic experimental cases [25–27], and are solved in a
two-dimensional (2D) domain x = [0, n × 2π ]2 with double
periodic boundary conditions (PBCs) where a single unit cell
is [0, 2π ]2. Here, n is the level of periodicity, for which n > 1
results in n2 unit cells to be solved. The experimental effects
of rollers, which create an elongational flow regime, are mim-
icked through a constant external forcing, which for the FRM
problem is given by

F(x) = F0[2 sin (Kx) cos (Ky),−2 cos (Kx) sin (Ky)], (4)

and for the CF forcing scheme,

F(x) = F0[− sin (Ky), sin (Kx)], (5)

in which the forcing amplitude is F0 = UνsK2 and K is the
spatial frequency (i.e., � = 1/K), resulting in a turnover time
T = νsK/F0. For FRM (4) K = 1 and for CF (5) K = 2.
To simulate ET using FRM and CF, a small perturbation
δ is added to the initial conformation tensor C = I + δ, as
originally proposed in Ref. [23]. Equations (1) and (2), with
GAD and MAD (3), are solved using a SPD-conserving nu-
merical solver comprising the lattice Boltzmann coupled with
a high-order finite-difference scheme (see Ref. [28]), which
was applied in our previous investigation of ET [17], wherein
the lattice Boltzmann method inherently permits exact ad-
vection for the hydrodynamic field, and is thus devoid of
numerical diffusion in Eq. (1). To directly resolve Eq. (2),
the polymer solver treats the advection term according to
the high-resolution Kurganov-Tadmor scheme [29], while a
fourth-order Runge-Kutta scheme is applied for the temporal
evolution. Spatial gradients in the artificial diffusivity terms,
including (3), are solved using a second-order central differ-
ence scheme, whereby any consequent numerical diffusion is
comparatively much lower than the added levels of artificial
diffusivity, and thus has been shown to have a negligible effect
on ET [8,17], retrieving results in direct agreement with pre-
vious spectral studies of viscoelastic instabilities [22–24,28].
We realistically capture the main physical behavior of poly-
mers using the finitely extensible nonlinear elastic-Peterlin
(FENE-P) constitutive model, f (r) = (L2 − 2)/(L2 − r) in
Eq. (2) with r = tr C and L2 = 2.5 × 103, which imposes a
maximum finite extensibility r � L2 [30]. In all simulations,
dimensionless groups are set following previous numerical
investigations, including Wi = 10, artificial diffusivity Sc =
103 (as done in Refs. [8,23,24]), and set Re = 1 (as done
in Refs. [5,7,17]) below the critical value at which inertial
instabilities arise Rec = √

2 [31]. The polymer concentration,
characterized by β = νp/νs, is set to β = 0.5 and β = 0.4 in
order to match previous investigations for FRM [23,24] and
CF [8], respectively.
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FIG. 1. Representative snapshots of ln(tr C ) for FRM [(a), (b)]
with n = 2 and CF [(c), (d)] using GAD [(a), (c)] and MAD [(b),
(d)]. The red borders in (a), (b) illustrate a single unit cell for FRM.
For both cases, simulations with GAD [(a), (c)] result in a loss of
symmetry spawned from artificial diffusivity, whereas with MAD
[(b), (d)] they are largely constrained to the background forcing
symmetry.

Based on our previous investigation [17], GAD with n = 1
will result in unphysical artifacts arising from insufficient
periodicity, characterized by qualitative anomalies which con-
taminate the base flow, thus preventing the accurate simulation
of ET. For CF, we set n = 1 to compare against results from
Ref. [8], which were solved on an N2 = 10242 grid for both
Sc = 103 (using GAD) and Sc = ∞. In addition, this is useful
for testing whether unicity can be retained. For FRM, where
the external forcing is larger, we set n = 2 to conserve unicity
allowing numerical artifacts arising purely from artificial dif-
fusivity to be studied. All simulations are purposely conducted
with (n × N )2 = 2562 grid points, where each unit cell has N2

grid points, i.e., the resolution 2π/N for FRM is half of that
used for CF. This is a notable reduction compared to previ-
ous studies [7,8] to highlight the ability to retain numerical
robustness with the proposed approach of modified artifi-
cial diffusivity. In Fig. 1, contour plots of the polymer field
ln(tr C ) using the GAD and MAD are compared for both the
FRM [Figs. 1(a) and 1(b)] and CF [Figs. 1(c) and 1(d)] cases.
The stark differences are immediately clear on a qualitative
scale. More specifically, it can be seen that FRM with GAD
leads to a single-leading vortex within each unit cell [note, a
unit cell is characterized by four rollers as illustrated by the
red borders in Figs. 1(a) and 1(b)], which appears during the
onset of ET. Similarly, CF with GAD eventually transitions
from the initial background forcing symmetry into a state with
which dynamics are periodic and then into the double-leading
vortices in Fig. 1(c), where the dynamics become aperiodic.
Analogous results are obtained for FRM at n = 1 using GAD
[23]. Ultimately, these are a product of the GAD excessively
spreading polymer stresses over large regions of the flow, even
within the vortical regions where there should be no polymer
stretching, as illustrated in Fig. 2(a). In turn, the polymer field

FIG. 2. The |tr D| obtained with (a) GAD D = k�C and
(b) MAD [Eq. (3)] using C from the simulation of CF with MAD
in Fig. 1(d). With MAD, D is largely concentrated at steep stress
gradients where ∀κ � 0, Sc = 103–108.

eventually destabilizes and loses the initial forcing symmetry
[8]. The initial breakdown in symmetry during the onset of
ET has been shown to be independent of periodicity [17].
Furthermore, considering the same observations were made
for CF with GAD [8] but at significantly larger resolution
(N2 = 10242) demonstrates the grid independence of numer-
ical artifacts arising from artificial diffusivity and periodicity.
On the other hand, numerical simulations of FRM and CF
with MAD are devoid of such numerical artifacts. For CF
with MAD, despite experiencing momentary losses of sym-
metry, the polymer stretching is mostly constrained to the
background forcing symmetry, in qualitative agreement with
the results obtained using direct simulations at Sc = ∞ in
Ref. [8] (see animations in the Supplemental Material [21]).
Notably, the momentary losses of symmetry are expected
to be eradicated with n > 1 [17], nevertheless, we shall see
that these have a negligible impact on the ability to simulate
ET. Essentially, MAD overcomes numerical artifacts by con-
centrating D only within the steep polymer stress gradients
[Fig. 2(b)], whereas with GAD D is diffused over all gradients
[Fig. 2(a)].

The quantitative results further reflect the stark differences
observed for the two artificial diffusivity schemes. The time
history response for the dimensionless mean kinetic energy
〈Ek〉V /Ek,0, where 〈·〉V denotes the spatial average and Ek,0 =
U 2/2, is shown for both FRM and CF in Fig. 3. Notably,

FIG. 3. Time series of the dimensionless mean kinetic energy
〈Ek〉V /Ek,0 for the (a) FRM and (b) CF using the GAD (blue) and
MAD (red) schemes. Note, the insets provided in (a) correspond
to the snapshots of ln(tr C ) at locations A (t = 400T ) and B (t =
2500T ) for the GAD scheme, illustrating the different transition
points. The inset provided in (b) is a zoom in corresponding to the
late-time dynamics in the dashed box region.
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the time series of the spatially averaged polymer trace is also
provided in the Supplemental Material [21] and shows anal-
ogous results for both FRM and CF. In Fig. 3(a), FRM with
GAD initially reaches a steady state, an artifact due to GAD
suppressing intrinsic instabilities, followed by an onset of ET
for which there is a rapid loss of symmetry [inset point A in
Fig. 3(a)], which is characterized by slow oscillations. In our
previous study [17], we showed that a complex interplay ex-
ists between periodicity and artificial diffusivity, whereby the
classic FRM problem, in which n = 1, is unable to overcome
this initial loss of symmetry, as similarly observed for CF with
GAD in Fig. 3(b). Imposing sufficient n levels of periodicity,
as done here for FRM with n = 2, in turn, conserves unicity
[e.g., the background forcing symmetry, shown in inset point
B in Fig. 3(a)] and enables the features of ET to be recovered,
such as chaotic flow fluctuations. Notably, defining n > 2
increases the rate at which ET is recovered after the initial loss
of symmetry [17]. Remarkably, with MAD, the FRM results
are devoid of all unphysical artifacts spawned from artificial
diffusivity. When observing the results for CF with GAD in
Fig. 3(b), multiple instability modes exist. The first mode oc-
curs within the early stages during an initial partial loss of flow
symmetry, which periodically cycles between two different
states, reflected by the fully periodic dynamics. This is an
observable numerical artifact caused by artificial diffusivity
[8] and PBCs with limited periodicity [17]. Qualitatively, this
instability mode can be appreciated in the animation provided
in the Supplemental Material [21]. Beyond this state, the flow
experiences a complete loss of symmetry, dominated by two
vortices [refer to Fig. 1(c)] where the dynamics transition into
an aperiodic state, as previously reported in Ref. [8] and anal-
ogous results can be observed for FRM with n = 1 [23,24,28].
While the initial loss of symmetry is a consequence of artifi-
cial diffusivity, the periodic and aperiodic states are largely
due to the limited periodicity, where conserving unicity, as
done here for FRM with GAD, prevents such unphysical
behavior [17]. On the other hand, CF with MAD [Fig. 3(b)]
almost instantly transitions into a fully chaotic state, where the
heavy fluctuations perturb the cellular vortices, however, the
large-scale structure remains largely constrained to the back-
ground forcing with momentary losses of symmetry [refer to
Fig. 1(d)]. In comparing the late-time dynamics within the
statistically homogeneous state (approximately t > 500T , for
both FRM and CF), it is noticeable that for CF with MAD,
fluctuations are at a much higher frequency compared to the
slow aperiodic state observed for GAD. Similar observations
were made in comparing GAD against the direct solution
(i.e., Sc = ∞) [8]. Thus, the excessive diffusivity from GAD
suppresses the chaotic fluctuations characteristic of the ET
regime, a well-reported artifact of artificial diffusivity [8,17].
High-frequency oscillations with MAD occur almost instantly
for both FRM and CF, which is in agreement with the direct
simulation of CF at Sc = ∞ [8] and the experimental analog
of FRM [27].

In Fig. 4, we examine the temporal power-law spectrum
of the time signals from Fig. 3 within the statistically ho-
mogeneous regime. A distinctive feature of ET is a fairly
steep power-law spectrum of velocity fluctuations [3,32]. The
fluctuations for FRM with n = 2 using GAD [Fig. 4(a)] fol-
low a steep power law with an exponent of E ∝ f −4.31. This

FIG. 4. The temporal power spectral density E ( f ) of the dimen-
sionless mean kinetic energy fluctuations for the (a) FRM and (b) CF
using the GAD (blue) and MAD (red) schemes. Note, results with
MAD follow a power law, E ∝ f −3.44 and E ∝ f −3.39 for the FRM
and CF, respectively. With GAD, FRM with n = 2 follows a steeper
power law E ∝ f −4.31, while failing to follow a power-law behavior
for the CF with n = 1.

steepness is independent of periodicity for n � 1, [17] and the
results here for FRM with MAD, where E ∝ f −3.44, confirm
this to be attributed to the numerical artifacts. The aperiodic
state observed for CF with GAD [Fig. 4(b)] fails to follow
any apparent power law, as originally observed in Ref. [8]
with significantly greater resolution. This is attributed to GAD
suppressing the high-wave-number fluctuations of polymer
stresses and is analogously observed for FRM with n = 1
[17]. Ultimately, with GAD and n = 1, numerical simulations
of FRM and CF are unable to conserve any features of ET.
On the other hand, for both cases, the fluctuations retained in
simulations with MAD behave as a power law, with exponents
similar to previous experimental and numerical studies of ET,
in which the decay rate varied with the setup, but the exponent
was always smaller than −3 [1–3,5,32,33].

MAD for turbulent non-Newtonian fluid flow is akin to
subgrid and hyperviscosity models for traditional Newto-
nian turbulence modeling, e.g., large-eddy simulations [34].
Inspired by this, the general form of the diffusion equa-
tion employed by traditional turbulence models is considered
for MAD, i.e., ∇ · (κ∇C ), instead of the simplified Laplacian
form (3), provided in the Supplemental Material [21]. It is
found that with the general form diffusion, features of ET are
more accurately captured compared with GAD; however, un-
physical artifacts persist, unlike with Eq. (3). The underlying
cause for differences between ∇ · (κ∇C ) and the Laplacian
form (3) is not currently understood. The authors speculate
that perhaps the superior numerical performance of the Lapla-
cian form (3) compared to ∇ · (κ∇C ) is the likely result of the
original treatment of diffusivity [i.e., κ (x, t )] originating from
the view of diffusion in the Laplacian form. Nevertheless,
these comparisons exemplify variations of MAD and the com-
plex interplay between artificial diffusivity and periodicity in
ET. In a similar fashion to traditional turbulence modeling,
MAD admittedly introduces additional numerical uncertain-
ties. First, it does not completely omit the polymer field from
the presence of artificial diffusivity altogether and thus does
not completely resolve the small-scale polymer dynamics.
Furthermore, linearly scaling the artificial diffusivity with the
normalization of the polymer stress gradients introduces an
additional source of fluctuation to the polymer field whose
large-scale impact is currently not understood. Nevertheless,
the strong retention of ET features using MAD is a result
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of restricting artificial diffusivity within the critical regions
of the flow (i.e., steep polymer stress gradients, as shown in
Fig. 2), thus avoiding the consequent global deviation from the
exact polymer representation (i.e., Sc = ∞). The remarkable
feature of MAD (3) is the numerical robustness while retain-
ing all features of ET with an absence of numerical artifacts
despite using 16 times less collocation points (i.e., a quarter
resolution) compared to that required by direct simulations of
ET at Sc = ∞ [7,8].

Summarizing, a different view on including numerical
regularity for simulating elastic turbulence (ET) through a
modified artificial diffusivity (MAD) has been proposed.
Its applicability is demonstrated by applying the MAD
to two stringent numerical experiments. It is shown that
with MAD, all characteristic features of ET can be simu-
lated while overcoming the recently discovered unphysical
numerical artifacts of the global artificial diffusivity used
traditionally. The impact of artificial diffusion with MAD

is effectively reduced from a qualitative scale to a quan-
titative scale, requiring a numerical resolution that is one
order of magnitude smaller compared to that required to
numerically simulate ET at Sc = ∞. It is difficult to over-
look the apparent trend and analogy that artificial diffusivity
schemes share with traditional turbulence modeling. In a
similar fashion, the MAD scheme is an additional numer-
ical tool that offers numerical features that could be of
paramount importance in progressing towards more com-
plex and computationally expensive ET cases, notably, 3D
simulations.
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