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Helical flow states in active nematics

Ryan R. Keogh,1 Santhan Chandragiri ,2 Benjamin Loewe ,1 Tapio Ala-Nissila ,3,4

Sumesh P. Thampi ,2 and Tyler N. Shendruk 1,*

1School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
2Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

3MSP Group, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
4Interdisciplinary Centre for Mathematical Modelling, Department of Mathematical Sciences, Loughborough University,

Loughborough LE11 3TU, United Kingdom

(Received 2 December 2021; revised 17 February 2022; accepted 9 June 2022; published 7 July 2022)

We show that confining extensile nematics in three-dimensional (3D) channels leads to the emergence of
two self-organized flow states with nonzero helicity. The first is a pair of braided antiparallel streams—this
double helix occurs when the activity is moderate, anchoring negligible, and reduced temperature high. The
second consists of axially aligned counter-rotating vortices—this grinder train arises between spontaneous axial
streaming and the vortex lattice. These two unanticipated helical flow states illustrate the potential of active fluids
to break symmetries and form complex but organized spatiotemporal structures in 3D fluidic devices.
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Because active materials are composed of microscopic
constituents, which locally transmute internal energy into me-
chanical forces that are dissipated by the surrounding medium,
they can possess broken symmetries and emergent dynamic
properties on macroscopic scales. These self-organized, ac-
tive dissipative structures have been observed to take many
forms. The premier example of activity-induced dissipative
structures is the flocking of polar particles [1–3], in which
a liquid-gas-like transition [4] from disorderly to collective
motion is associated with spontaneous spatial phase separa-
tion [5]. In addition to coexistence, hexatic, smectic, and solid
phases can originate from activity [6,7]. Likewise, activity can
generate orientational order [8,9], including active alignment
of motile rods [10,11] and swimming bacilliforms [12].

Activity can also induce self-organized flow states [13]. In
confining channels, an extensile active stress-induced instabil-
ity to bend perturbations leads to self-sustained spontaneous
flows [14–18] and spontaneous circulations [19–21] when the
characteristic activity length scale �act is comparable to the
confinement size L, as seen in numerous experimental systems
[22–29]. Vortex lattices arise when the characteristic length
scale matches the confinement, which can be due to an array
of obstacles or cavities [30–35], bound to spherical surfaces
[36], or channel confinement [37–40]. Local circulations arise
because �act represents the characteristic vorticity length scale
[41], associated with a peak in the enstrophy distribution
[42–45], and a lattice of vortices represents stress-free solu-
tions that lie at the interface of the stable and unstable modes
in minimal continuum models of active fluids [46]. Such two-
dimensional (2D) flow states represent the emergence of a
broken translational symmetry of the vorticity field.
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However, three-dimensional (3D) fluids possess the capac-
ity for flows that are not allowed in 2D. Helicity, for instance,
is identically zero in 2D and has not previously been observed
to spontaneously break symmetry in response to activity. One
reason for this apparent absence is simply because much
of the theoretical, computational, and experimental work on
active nematics is on 2D films. However, the recent advent
of experimentally realizable 3D active nematics [47] has
spurred immediate interest in active liquid crystals beyond
films [48–55]. By removing the dimensional limitations of
confinement in 2D, additional classes of self-organized flows
states may be possible. We report long-lived, nonzero helical
active dissipative 3D structures that spontaneously break chi-
ral symmetry.

We numerically confine active nematics in square ducts of
size L defined by four impermeable, no-slip walls. The square-
duct geometry is utilized to produce quasi-1D confinement
without curved boundaries [56–58]. We vary the extensile
activity, reduced temperature, and anchoring strength on the
channel walls. When the anchoring is weak and reduced
temperature is high, we find a double-helix flow structure,
in which two streams of antiparallel flow braid around one
another, spontaneously breaking chiral symmetry [Fig. 1(a);
Movie 1 [59]]. When the anchoring strength is strong, we find
a grinder train flow structure, in which a lattice of axially
aligned, counter-rotating vortices drift down the channel with
nonzero helicity [Fig. 1(b); Movie 2 [59]]. Both flow states
are helical, span the entire system, and are long lived. The self-
organization of helicity from a system with nematic symmetry
highlights the potential of activity as a pathway for designing
emergent, material dynamics. Spontaneous chiral symmetry
breaking is characteristic of helix formation, which extends
beyond active fluids.

In our model of an active nematic fluid, the nondimension-
alized velocity �u(�r; t ) and nematic order Q(�r; t ) are coupled,
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FIG. 1. Active dissipative flow structures exhibiting rotational
flow. (a) Double helix: Two streams of antiparallel flow braid around
one another for parameters P̃ = {K̃−1/2,W̃ , T̃ 1/2} = {25, 1.5, 9.47}.
Colored by axial velocity u‖ [see Movie 1 in the Supplemental
Material (SM) [59]]. (b) Grinder train: Procession of spontaneously
drifting, counter-rotating vortices aligned axially down the duct for
P̃ = {20, 250, 0}. Colored by axial vorticity ω‖ (Movie 2 [59]).
(c) Ceilidh vortex: Vortex lattice oriented in the transverse direction
for P̃ = {22, 250, 0}. Colored by transverse vorticity ω⊥ (Movie 3
[59]).

and density is constant [60–62]. The dimensionless Cauchy
equation balances the material derivative of velocity against
the divergence of the stress, ρ̃Dt �u = �∇ · �. Since the active
contribution to the stress −ζQ drives spontaneous nematic
distortions on length scales �act and flows of speed U , we
nondimensionalize each term by the activity ζ , resulting in
the active inertia number ρ̃ = ρU 2/ζ for density ρ. Two
additional dimensionless numbers appear from the stress
divergence—dimensionless viscosity [Eq. SM(3) [59]] and,
more relevantly, the activity number K̃−1/2 = L/�act, where
�act ∼ √

K/ζ is the characteristic activity length due to the
competition of activity ζ and nematic elasticity K .

The evolution equation for the nematic orientation Dt Q −
S = �̃H, in which the covariant derivative (including a coro-
tational advection term S) is balanced by the relaxation
towards equilibrium, characterized by an inverse nematic Pé-
clet number �̃. The molecular field H has contributions due
to the bulk (characterized by the lowest-order Landau free-
energy coefficient A), distortions (by K), and surface anchor-
ing (by anchoring strength W ). Nondimensionalizing these
by the distortion free-energy scale produces two dimension-
less numbers—the distance from the passive-thermodynamic
isotropic-nematic transition, which is a reduced temperature
T̃ 1/2 = L/

√
(K/A), and the strength of the degenerate planar

anchoring, which can be measured as W̃ = L/(K/W ), as in
colloidal liquid crystals [63]. Further technical details of the
model are provided in SM 1 [59].

Non-dimensionalized parameter space is denoted by

P̃ = {K̃−1/2,W̃ , T̃ 1/2} ≡
{√

ζ

K
L,

W

K
L,

√
A

K
L

}
, (1)

each component of which can be interpreted as a ratio of
system size to a characteristic length scale (SM 2 [59]). By
varying the anchoring strength W̃ and reduced temperature

T̃ 1/2, the simulations explore regions of parameter space that
have previously not received adequate attention.

For sufficiently small extensile activity (K̃−1/2 � 18), we
find spontaneous streaming in the axial direction. These are
unidirectional and oscillating flows, which have been well
documented in 2D channels [17,37,64]. Here, we do not de-
lineate between these but refer to both as axial streaming.
At sufficiently large activity, mesoscale or active turbulence
occurs. In active turbulence, the components of vorticity
�ω = �∇ × �u in the axial and two transverse directions (de-
noted by subscript ‖ and ⊥1,2, respectively) are isotropic—the
probability distributions of the axial ω‖ and transverse ω⊥1,2

components of the vorticity are equivalent [Fig. 2(d)]. The
distributions are symmetric about zero and normal.

The active dissipative structures exist in the intermediate
regime between axial streaming and active turbulence, where
the active length scale �act is comparable to the confinement
length L. The most common of these dissipative structures
is a nonhelical lattice of counter-rotating vortices oriented
transverse to the channel, breaking translational symmetry
[Fig. 1(c)]. This is the 3D equivalent of the 2D Ceilidh dy-
namic state [37,38]. The 3D Ceilidh lattice exhibits dancing
disclinations; however, these are now curved disclination lines
that span the channel (Movie 4 [59]). As a vortex lattice,
the vorticity distribution is strongly bimodal [Fig. 2(c)]. The
ω⊥2 distribution is symmetric about zero and bimodal with
prominent peaks, representing the lattice of counter-rotating
vortices with spontaneous symmetry breaking between the
two transverse directions. There is negligible vorticity in both
the other directions.

While the grinder train is similar to the Ceilidh lattice,
the crucial distinction is that the counter-rotating vortices are
oriented axially, rather than transversely [Fig. 1(b); Movie 2
[59]]. Similar to axial streaming states [13,51], the grinder
train has a net flow along the channel. This flow structure
is a train of axially aligned counter-rotating vortices drifting
down the axis of the channel that exists when anchoring is
strong (Movie 2 [59]). Thus, the distributions of vorticity are
similar to the Ceilidh vortex, except the bimodal distribution
is narrower and in the axial direction ω‖, rather than a
transverse direction [Fig. 2(b)]. Though both the Ceilidh
lattice and the grinder train manifest counter-rotating vortices
and both break translational symmetry, the Ceilidh lattice
does not possess local helicity H = �u · �ω in contrast to the
grinder train [Fig. 3(a)]. The instantaneous centerline helicity
forms a well-defined wave [Fig. 3(c)] and the drift exhibits
temporal oscillation [Fig. 3(d); Movie 5 [59]], reflecting the
steady motion of the helicity train. The steady translation,
but oscillating sign, of the helicity indicates the grinder is a
lattice of counter-rotating vortices.

Qualitatively, the grinder train possesses characteristics
of both axial streaming and vorticity translational symmetry
breaking. Indeed, as the axial streaming begins to oscillate
on scales comparable to the confinement, counter-rotating
vortices can align axially, resulting in nonzero local helicity—
though the average is zero (Movie 6 [59]), the distribution
is bimodal [Fig. 3(b)]. It also generates smaller vortic-
ity [Figs. 2(b) and 2(c)] due to the fact that it possesses
less nematic distortions and is entirely free of disclinations
(Movie 4 [59]).
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FIG. 2. Probability distributions of vorticity for active dissipative flow structures at parameters P̃ = {K̃−1/2,W̃ , T̃ 1/2}. The components are
the vorticity taken about the centerline in the axial direction ω‖ (red lines) and in the two transverse directions ω⊥1,2 (blue and cyan lines)
averaged over ten random initializations. (a) The double helix (P̃ = {25, 1.5, 9.47}) possesses nonzero vorticity in both transverse directions
ω⊥1,2 . (b) Grinder train (P̃ = {20, 250, 0}). (c) The Ceilidh vortex lattice (P̃ = {22, 250, 0}) possesses nonzero vorticity only in one of the two
transverse directions. (d) Turbulent flow (P̃ = {25, 250, 0}) is nearly isotropic.

On the other hand, the double helix does possess large
nematic distortions: A clear cork-screw disclination line spi-
rals through the center of the channel (Movie 4 [59]). This
is because the grinder train exists at strong anchoring, while
the double helix exists at weak anchoring and high reduced
temperature, which leads to more disorderly helicity fields
[Fig. 3(d); Movie 6 [59]]. The helicity is largest far from the
no-slip boundaries. We find double helices most frequently
in regions of high reduced temperature T̃ 1/2, suggesting that
the double helix emerges when the thermodynamic persis-
tence length is comparable to the confinement size. Unlike the
Ceilidh or grinder lattices, the double helix is not composed
of isolated vortices and so the centerline helicity does not
exhibit a clear spatiotemporal structure [Figs. 3(c) and 3(d)].

(a) (b)

(c) (d)

FIG. 3. Local helicity H = �u · �ω for the double helix (P̃ =
{25, 0.0015, 6.5}) and grinder train (P̃ = {25, 250, 0} flow states).
(a) Snapshots showing the helicity field as a 3D isosurface through
the center plane of the duct. Top: Double helix with negative chiral-
ity (Movie 6 [59]). Bottom: Grinder train with alternating chirality
(Movie 5 [59]). (b) Distributions of helicity down the channel cen-
terline averaged over ten random initializations. (c) Spatial variation
of instantaneous cross-sectional averaged helicity. (d) Temporal vari-
ation of cross-sectional averaged helicity at a single point. (b)–(d)
Double helix is shown in green and the grinder train in purple.

Additionally, the vorticity of the double-helix state is smallest
in the axial direction and not strongly bimodal in the two
transverse directions [Fig. 2(a)]. Unlike the grinder train, the
helicity distribution is primarily unimodal [Fig. 3(b)]. Since
it is composed of a pair of helices with opposite handedness
but also opposite streaming directions, the double helix spon-
taneously breaks chiral symmetry.

To map the existence of helical flow in parameter space, we
characterize the flow states by their associated length scales
and helicity. The nonhelical Ceilidh vortex lattice is long lived
and system spanning, with spatial persistence clear from the
velocity-velocity autocorrelation function Cuu (SM 3 [59])
down the length of the channel [Fig. 4(a); blue squares], ex-
hibiting long-range oscillating correlations. Dissimilarly, the
correlation function of the turbulent state rapidly decorrelates
[Fig. 4(a); blue circles]. While the correlation functions of
these two intercept zero (Fig. 4; solid symbols), the axial
streaming state initially decays to a long-range constant value
[Fig. 4(a); open pink circles] and the grinder train possesses
long-range oscillating correlations about a nonzero value
[Fig. 4(a); open purple squares]. The correlation function of
the grinder train has a longer period but smaller amplitude
than the Ceilidh lattice and does not decorrelate [Fig. 4(a)]
since the grinder train state appears between axial streaming
and the vortex lattice [Fig. 4(b)].

The active dissipative structures are identified by the length
scales characterizing the flows �u, measured from the velocity
correlations (SM 3 [59]). The length scales reveal distinct
transitions between each flow state [Fig. 4(b)]. The Ceilidh
lattice occupies the largest region of the activity-anchoring
phase plane [Fig. 4(c)]. The phase diagram demonstrates that
axial streaming exists for all anchoring numbers at suffi-
ciently small activity. The activity at which the flow transitions
from axial streaming is only weakly dependent on anchoring
strength across many orders of magnitude [Fig. 4(c)]. For
moderate to weak anchoring, the Ceilidh lattice is the only
dissipative structure between axial streaming and active tur-
bulence.

The grinder train arises because the anchoring suppresses
the formation of the dancing disclination lines that are present
in the vortex lattice. This reduction in nematic distortion low-
ers the vorticity magnitude and makes the flow deterministic,
such that the transverse directions coincide [Fig. 2(b)]. How-
ever, it does not alter the match between the characteristic
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(a) (b) (c) (d)

FIG. 4. Active dissipative structure phase diagrams. (a) Spatial velocity-velocity correlations along the channel centerline for P̃ =
{K̃−1/2, 250, 0} for various K̃−1/2. Example curves for axial streaming (AS; K̃−1/2 = 15), grinder train (GT; K̃−1/2 = 20), vortex lattice (VL;
K̃−1/2 = 15), and mesoscale turbulence (T; K̃−1/2 = 15). Open symbols denote nonzero long-range correlations, while square symbols denote
long-range oscillations with nonzero amplitude. (b) Characteristic length scale �u determined from the autocorrelation functions (SM 3 [59])
for P̃ = {K̃−1/2, 250, 0}. � marks large values of peak resolution [Eq. SM (25) [59]]. (c) The length scales �u as a function of dimensionless
extensile activity K̃−1/2 and planar anchoring W̃ for reduced temperature T̃ 1/2 = 0. (d) Length scales as a function of W̃ and T̃ 1/2 for
K̃−1/2 = 25. Markers denote for average system helicity (SM 5 [59]): � denotes large average helicity H|〈〉| and indicates large values
of the average of the magnitude of H〈||〉, which respectively identify regions for the double helix (DH) and intermittent double helix (IDH).

vortex size �act and the confinement L. Thus, the vortices
preferentially lie axially along the channel.

When the reduced temperature T̃ 1/2 is increased above the
isotropic-nematic transition, the fluid can still be dynamically
oriented by the active flows [8,9]. Indeed, vortex lattices exist
for a wide range of T̃ 1/2 and W̃ at K̃−1/2 = 25 [Fig. 4(d)].
However, in the low anchoring limit and at moderate reduced
temperatures, the double-helix structure exists as a second
region for which there is nonzero helicity. While the grinder
train and double helix both exist for intermediate activity, the
grinder train requires strong anchoring at T̃ 1/2 = 0 [Fig. 4(c)]
and the double helix occurs for weak anchoring at high re-
duced temperatures [Fig. 4(d)].

In addition to the orderly double helix and grinder train,
we identify a less structured, noisy regime at high reduced
temperatures and strong anchoring [Fig. 4(d); slashes]. In
this regime, we find intermittent double helices interspersed
with more chaotic behavior (Movie 7 [59]). Naturally, the
stochasicity in these systems results in inconsistent he-
licity but higher fluid speeds, resulting in lower average
helicity.

To understand the origin of active helical structures, we
derive the dimensionless transport equation for helicity,

ρ̃Dt H + �∇ · �J = �, (2)

with helicity flux �J and source terms � (see SM 4 [59]).
By calculating the dimensionless numbers associated with
each source [Eqs. SM(18)–SM(21) [59]], we find that the
nematic and viscous sources are negligible compared to
the activity-induced helicity source �a = −�ω · [ �∇ · Q] − �u ·
( �∇ × [ �∇ · Q]). The first active source term emerges from the
projection of active force onto the vorticity field, while the
second term represents projection of the curl of the active
force onto the velocity field. In both helical flow states, the two
active terms are of the same magnitude (Fig. SM6 [59]). Im-
mediately following initialization, the transient grinder train
structure begins as oscillating discoidal regions of �a (Movie
8 [59]). Once the drifting grinder train forms, �a takes the
form of a traveling wave that produces the drifting train of

alternating helicity (Fig. 3). Similarly for the double helix, the
active source forms local regions of production and elimina-
tion (Movie 9 [59]), which are associated with the cork-screw
disclination. Indeed, in stark contrast to the defect dancing ob-
served in the Ceilidh vortex lattice state, the grinder train does
not possess any topological singularities, while the double
helix possesses a single disclination line that winds through
the two helical flows.

Recent work on 3D active nematics [48–55] has shown
them to be complicated by their tangle of 3D disclination
lines. However, they also possess the potential for an exciting
range of possible dissipative structures. We have shown a
simple case with the emergence of two spontaneous, long-
lived, nonzero helicity structures in simple confinement for
extensile activity, planar anchoring and non-negative reduced
temperature. In driven systems, double helical flow states
can exhibit complex nonlinear dynamics [65] and control
the dispersivity of particles eluting in streams [66]. In fact,
surface-activity driven helical flows have been identified and
analyzed in the context of cytoplasmic streaming [67–70]. In
these cases of long plant cells, helical flow enables significant
transport, mixing, and enhanced rates of nutrient exchange
with the surrounding membrane [67]. Indeed, recent work has
considered defect dynamics [71] and helical flows [72] on
cylindrical surfaces. Spontaneous chiral symmetry breaking
is a characteristic aspect of helix formation in such material
dynamics, which extends beyond the sphere of active fluids.
For example, chirality has been shown to be relevant in mor-
phological processes, such as the gastrulation of Drosophila
embryos, in which gut formation acquires spontaneous left-
right asymmetry that leads to twisting [73]. Likewise, the
mitotic spindle, which has been modeled as an active nematic
[74], exhibits chirality [75]. Furthermore, spontaneous chiral
symmetry breaking has been observed in the director field
of passive achiral nematics subject to strong confinements
[76–79].

The experimental realization of 3D active nematics [47]
promises many opportunities to explore active dissipative
structures that were not possible in 2D and helicity may play a
key role in many such structures, as suggested by these results.
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Helicity is involved in energy cascades in active turbulence
[80] and generally plays an important role in characterizing
the topological nature of 3D flows [81]. This Letter reports
spontaneous chiral symmetry breaking in active nematics
leading to a steady state helical flow.
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