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Tropical approximation to finish time of activity networks
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We breakdown complex projects into activities and their logical dependencies. We estimate the project finish
time based on the activity durations and relations. However, adverse events trigger delay cascades shifting the
finish time. Here I derive a tropical algebraic equation for the finish time of activity networks, encapsulating the
principle of linear superposition of exogenous perturbations in the tropical sense. From the tropical algebraic
equation I derive the finish time distribution with explicit reference to the distribution of exogenous delays and
the network topology and geometry.
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In recent years we have experienced a significant advance
in our understanding of complex networks and of processes
running on them [1–3]. Yet, we still lack an understanding
of the interplay between network topology and dynamics in
the context of activity networks. There is a vast literature
on Monte Carlo simulations of activity networks under un-
certainty and risk events [4,5]. The critical path method has
been used to aggregate perturbations and derive an analyt-
ical approximation to the project end date distribution [6].
However, activity networks are characterized by a complex
topology [7–9], and activity delays exhibit a high frequency
of extreme events [9–11]. In that context the key conditions
for the critical path method, the existence of a dominant path
from the project start to its end and the central limit theorem
do not apply. Here I obtain a tropical algebra approximation
to the project end date.

Let P(V, E , �d ) be a project schedule with a set of activi-
ties V , a set of activity relations E , and a vector of activity
durations �d . The project start and end are represented by the
activities i = 1 and i = n, respectively, of duration zero. An
arc i → j ∈ E indicates that i must finish before j starts. I will
denote the set of activity predecessors of i by Ii = { j| j → i ∈
E}. Logical consistence implies that the project network is a
directed acyclic graph. The nodes in a directed acyclic graph
can be ordered topologically such that if i → j then i is before
j in the topological order for all i → j ∈ E .

The earliest an activity can finish is determined by the
recursive relation,

xi = di + max
j∈Ii

x j, (1)

with the boundary condition x1 = s, where s is the start date.
We calculate �x with a forward pass of Eq. (1) along the
topological order. Next we perform backward propagation to
calculate the latest an activity can finish without altering the
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project end date,

yi = min
j|i∈I j

(y j − d j ), (2)

with the boundary condition yn = xn. �x and �y set the early and
late start dates for every activity. If i ∈ I j then,

w ji = x j − xi (3)

is the free float, the maximum delay at i that does not shift the
early finish date of j [6]. In turn, we can determine the amount
of delay tolerated at a given activity without causing a shift in
the project end date. This is the total float, and it is calculated
as

Tni = xi − yi. (4)

The subscript n emphasizes that Tni is the total float from
activity i to the project end. This will be generalized below
to any pair of activities. I have adopted a negative sign for free
floats and total floats to indicate delay subtraction.

In practice, exogenous factors delay the activity starts or
increases activity durations [11]. If the finish delay of an
activity exceeds the free float of any successor, then it will
cause their delay as well, starting a delay cascade [12,13]. Let
�h represent the vector of activity delays caused by exogenous
factors, and �z denote the vector of activity delays after the
propagation of the exogenous delays. The delays propagate
via the recursive equation,

zi = fi

{
max

j∈Ii

[max(0,wi j + z j )], hi

}
. (5)

The term max(0,wi j + z j ) indicates that delays are passed
if they exceed the free float between the activities. Then we
take the maximum delay from j ∈ Ii. The function fi(x, y)
merges the delays coming from predecessors (endogenous)
and exogenous sources. If exogenous delays act on activity
starts, then fi(x, y) = max(x, y). If exogenous delays act on
activity durations, then fi(x, y) = x + y. Even a unique con-
tingency, such as an adverse weather event can act differently
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depending on where it falls in the calendar relative to an activ-
ity. If it falls before the activity starts, it competes with delays
from predecessors as a cause of delay for the activity start.
If the adverse weather event happens whereas the activity is
ongoing it will delay its finish date on top of any delay coming
from predecessor activities. In general,

max(x, y) � fi(x, y) � x + y. (6)

To be precise we should specify fi(x, y) for every combina-
tion of activity and adverse event. Yet, when x and y follow
subexponential distributions, max(x, y) ≈ x + y. If that is the
case, then fi(x, y) ≈ max(x, y) ≈ x + y.

Subexponential distributions cannot be bounded by any ex-
ponential function f (x) = e−αx when x → ∞ [14]. If we take
two random variables x and y generated from the same subex-
ponential distribution then Pr[x + y > z] ∼ Pr[max(x, y) >

z] when z → ∞. The only way that x + y is larger than z
is for x or y to be greater than z. We cannot take this result
as granted when we propagate delays in the activity network.
The errors may accumulate when the delay propagation takes
several steps and free floats act as delay sinks. In the following
I investigate the difference in using f = max or f = sum by
means of numerical simulations.

We need a model to generate project networks, a model
to generate activity durations, and a model to generate ex-
ogenous delays. I will generate project networks using the
duplication-split model [15]. In this model, we start with two
activities representing the project start and end with an arc
from start to end. Then, at each discrete step, we select an
activity i with uniform probability across all current activities
and create a new activity j. With probability q, j is a duplicate
of i, inheriting all the incoming and outgoing relations of
i. Otherwise, i transfers all the outgoing arcs to j and an
arc from i to j is created. We call q the duplicate rate. It is
demonstrated that both the in-degree and out-degree distribu-
tion has a power-law tail with exponent 1/q and the network
diameter grows as n1−q [15]. As we tune q from 0 to 1 I change
from networks that are quasilinear and have narrow degree
distributions to networks with wide degree distributions and
multiple parallel paths.

The simulations proceed as follow. The inputs are the
number of activities n, the duplication rate q, the distributions
of activity durations p(d ), and the exogenous delay distribu-
tion p(h). I focus on subexponentially distributed exogenous
delays, so I choose the log-normal p(h) ∼ e−[ln(h/μ)]2/2σ 2

/h
with μ = 1. First, I generate a duplication-split network
with parameters (n, q). Second, I assign durations to ac-
tivities from p(d ) and run Eqs. (1)–(3) to generate the
free floats w. Third, I generate random delays from p(h)
and run Eq. (5) with a predefined f (x, y) to calculate zn,
the project end delay. I repeat this third step to generate
zn samples and report the smallest zn that is larger than
80% of all samples. This quantity is commonly used in
project management, and it is named project p80. Fourth,
for each parameter set {n, q, p(d ), p(h), f (x, y)}i, I gener-
ate multiple p80 values π ( f )i by sampling over realizations
of the network and activity durations. I do that for f =
max and f = sum. Finally, I calculate the slope through the

FIG. 1. Slope between the calculated p80s using f = sum vs
using f = max for �d = �0 and (q, n) indicated in the legend.

origin,

S =

∑
i

π ( f = max)iπ ( f = sum)i

∑
i

[π ( f = max)i]
2

. (7)

Since x + y � max(x, y) then S � 1.
If we set activity durations to zero I can investigate max vs

sum without the additional complication of free floats. Given
the log-normal p(h) ∼ e−[ln(h/μ)]2/2σ 2

/h, I expect S → 1 when
σ → ∞. This asymptotic behavior is corroborated in Fig. 1.
However, the convergence is very slow. We need σ > 3 to
attain S < 2. The variance of the log-normal distribution is
order eσ 2

. For example, σ = 3 implies a variance on the order
of e9 ≈ 8000. I can conclude that, if the activity durations
are homogeneous, then f = max is a poor lower bound for
f = sum. A similar plot is obtained using p(d ) ∼ e−d/μ1 (data
not shown). The same is expected for any exponentially bound
distribution of activity durations.

The picture changes when the activity durations follow
a subexponential distribution as well. For example, a log-
normal distribution p(d ) ∼ e−[ln(d/μ1 )]2/2σ 2

1 /d . I will set μ1 =
1 since σ1 controls the shape of the distribution tail. Setting
σ1 = 1 I obtain the plot in Fig. 2. For σ < σ1 = 1 the value
of S is close or below 2. In this context f = max is a good
approximation for f = sum. As σ approaches 1 the value of
S reaches a maximum and decays towards S = 1. I observe
the same behavior for σ1 = 3 (Fig. 3). It becomes evident that
there is local S maximum at σ = σ1, i.e., when the exogenous
delays and activity durations have the same log-variance. It
is also evident that the maximum value of S decreases with
increasing σ1.

Regarding the network parameters for a given number of
activities, S is closer to 1 for q = 0.4 than q = 0.1. The net-
works with larger duplication index q have a broader degree
distribution and a smaller diameter. In contrast, networks with
small q tend to be closer to a linear chain. This observation
suggests that the distinction between using f = max or f =
sum is less relevant in complex networks with wide degree
distributions and smaller diameters.
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FIG. 2. Slope between the calculated p80s using f = sum vs
using f = max for σ1 = 1 and (q, n) indicated in the legend.

I have estimated σ and σ1 for construction projects in the
Nodes & Links database. For each project schedule in the
warehouse I estimated σ as the variance of the logarithm of
reported delays (actual finish date–planned finish date). I esti-
mated σ1 as the variance of the logarithm of activity durations.
In 78% of projects σ < σ1 [Fig. 4(a)]. For these projects, I
can use either f = max or f = sum and obtain similar results.
To test this expectation I carried on Monte Carlo simulations
on top of real construction projects Fig. [4(b)]. The slope of
the forecasted p80s using f = sum vs f = max is 1.6 in the
range of what observed for synthetic networks in the region
σ < σ1 (3).

If using f = max(x, y) gives similar results as using f =
sum then we can choose either. As shown below, using
f = max has some advantages. For f = max I solve Eq. (5)
iteratively,

zi,t+1 = max

{
max

j∈Ii

[max(0,wi j + z j,t )]hi

}
, (8)

Defining wii = 0 I rewrite this equation as

zi,t+1 = max
j| j∈Ii∪{i}

(wi j + z j,t ). (9)

FIG. 3. Slope between the calculated p80s using f = sum vs
using f = max for σ1 = 3 and (q, n) indicated in the legend.

(a)

(b)

FIG. 4. (a) Plot of σ vs σ1 for construction projects. Each symbol
represents a construction project schedule. The shaded background
highlights the area where σ < σ1. (b) f = sum vs f = max p80
forecast for real construction projects (circles). The dashed line rep-
resents equal values. The dashed-dot line represents the best linear
fit through the origin. The activity network and activity durations
are from the real projects. The parameters of p(h) ∼ e−[ln(h/μ)]2/2σ 2

/h
are project specific and inferred from observed delays for finished
activities [see σ in panel (a)].

Replacing max by ⊕ and + by ⊗ the tropical algebra be-
comes evident. The tropical algebra is defined by the semiring
(R ∪ {−∞},⊕,⊗) with the sum operation defined as x ⊕ y =
max(x, y) and the product as x ⊗ y = x + y [16]. The tropical
algebra has been used to investigate networks with cycles [17].
For example, of transportation networks where it is desired to
have a route back and forward between any two nodes. The
tropical algebra has been applied to many other systems that
can be mapped to event networks, including mRNA transla-
tion by ribosomes [18] and Conway’s game of life [19]. Using
the tropical algebra I rewrite (9) as

�zt+1 = L ⊗ �zt , (10)

where

L =
⎧⎨
⎩

0, if i = j,
wi j, if j ∈ Ii,

−∞, otherwise
(11)
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is the local weights matrix. L encodes the free floats of direct
relations, L⊗2 the maximum free float sum of paths up to
length 2 and L⊗l is the maximum free float sum of paths up
to length l . Since project networks are represented by directed
acyclic graphs, there is no path larger than the length D of the
longest acyclic path. Therefore, L⊗l = L⊗D for l � D. After D
iterations starting from �z0 = �h the system will reach the steady
state solution,

�z∞ = T ⊗ �h, (12)

where

T = L⊗D, (13)

is the total float matrix. The element −Ti j equals the maxi-
mum h j that yields zi,∞ = 0.

Equation (12) represents a principle of statistical indepen-
dence of exogenous delays in the tropical algebra sense. Each
exogenous delay contributes independently of the others to the
final propagated delay. This property is a direct consequence
of the f = max merging function. Calculating the cumulative
distribution function for the delay at each activity is now
straightforward. Since exogenous delays are independent I
calculate the maximum among the delay cascades propagated
from each exogenous delay. If Fi(h) = Pr(hi � h), Gi(z) =
Pr(zi,∞ � z), and xi is the early start date, then from Eq. (12)
I obtain the probability distributions for the activity end dates,

Gi(y) =
∏

j

Fj (y − xi − Ti j ). (14)

This equation represents an analytical approximation to the
end date distribution of all activities in a project network. In
this equation we have a clear separation among the influence
of the distributions of exogenous delays Fj (h), the planned
end date xi, and the activity network properties encoded in
the total floats Ti j . From there we can calculate other relevant

quantities. The probability to finish on time Gi(0) and end
date yi(p) with p confidence Gi[yi(p)] = p. We can determine
the impact of accelerating activity execution to catchup with
delays as well by taking into account that Ti j = Ti j ( �d ).

The nontrivial region where f = max is a good approx-
imation to f = sum remains to be explained. Intuitively, if
both the delays and the free floats have subexponential dis-
tributions, and we extract a delay and a free float from those
distributions, then one of them will be much larger than the
other with high probability. In that case, the delays that exceed
the free floats will be large, and f = max is a good approxi-
mation for f = sum. More work is required to translate this
intuition into analytical demonstrations. Furthermore, a delay
in the activity start date could increase the delay in the activity
finish date, above what was expected if the activity start was
not delayed (superadditive). If the rate per activity of such
events is large, then we should expect a breakdown of the
tropical approximation.

In conclusion, I have obtained a tropical approximation to
the end date distribution of activity networks. This approxi-
mation replaces sum by max in the algebraic equations that
merge endogenous with exogenous delays. The tropical ap-
proximation is close to simulated data when: (i) both the
distribution of exogenous delays and of activity durations be-
long to the subexponential family, and (ii) the variance of the
exogenous delays is smaller than the variance of the activity
durations. These conditions are satisfied in 78% of projects
within the Nodes & Links construction project database.
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