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Comment on “Explaining the specific heat of liquids based on instantaneous normal modes”
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In a recent paper [Phys. Rev. E 104, 014103 (2021)] Baggioli and Zaccone formulate a theoretical description
of the specific heat of liquids by using Debye’s expression for the specific heat of solids and inserting a density
of states which they claim to represent the instantaneous-normal-mode (INM) spectrum of a liquid. However,
the quantum-mechanical procedure of Debye cannot be used for the relaxational excitations of a classical liquid.
Furthermore, the authors’ formula for the INM spectrum does not represent the known INM spectra of simple
liquids, and the derivation of this formula from their model equation of motion is mathematically in error. These
and a number of other inconsistencies render their work not very helpful for studying the specific heat of liquids.
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Baggioli and Zaccone (BZ) present in a recent paper [1]
a treatise on the specific heat of liquids. They claim that this
would be a fundamental new theory for the specific heat of
liquids. The authors end with the following statement: “To
summarize, the above theory provides a definitive answer to
the mystery of liquid specific heat and ideally completes the
agenda of the kinetic theory of matter, set over 100 yr ago by
Debye, Einstein, Planck, and co-workers.”

By contrast, on the one hand, the specific heat of liquids is
not a mystery; on the other hand, the paper turns out to contain
a lot of scientific and mathematical inconsistencies and errors.

BZ (i) formulate a Debye-like quantum theory, in which
they treat the instantaneous-normal (INM) modes, which are
the eigenmodes of the Hessian of a simulated classical liquid
[2,3], as bosons in an interacting quantum liquid, referring,
among others, to papers on quantum chromodynamics [4].
They repeatedly claim that there would be no satisfactory
theory for the specific heat of liquids available yet, ignoring
the existing literature on the thermodynamics of simple lig-
uids [5-7]. What BZ have done boils down to (ii) inserting
an expression for the density of states for the INM modes,
derived by BZ previously [8], into Debye’s expression for the
quantum specific heat of a solid. They (iii) claim to have good
agreement with specific heat data on simple liquids.

(@) It is well known that quantum effects are not relevant
to most liquids (the exceptions are the helium liquids), be-
cause in the liquid state the thermal de Broglie wavelength
A=h/ [mksT1/? is much smaller than the diameter of the
liquid particles. Here & and kg are Planck’s and Boltzmann’s
constants, m is the particle mass, and T is the temperature.
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BZ motivate their quantum approach by discussing a
weakly interacting Bose gas with elementary excitations of
energy /ilw,|, where they identify the frequencies w, with
those appearing in Eq. (2) (see below), the modulus of the
square root of the eigenvalues of the instantaneous Hessian
matrix of a classical liquid. The dispersion w, is not specified.
As mentioned above, BZ invoke papers on unstable (massive)
bosons in quantum chromodynamics as justification of their
identification.

For classical liquids and gases, the partition function fac-
torizes into a factor arising from integrating over the kinetic
energy and the configurational factor arising from integrating
over the potential energy (configuration integral). This means
(as is well known [5]) that the dynamics of a classical liquid
does not enter into its thermodynamic properties.

For simple liquids in an (N, V, T') system, the energy equa-
tion of states is given by the sum of the ideal and the excess
term

1 1
—UWN,V,T)= —(U" +U*
N ( ) N( +U%)

_ %kBT + 27 p(T) / LrogrT) (1)

and the specific heat per particle ¢y (T) = ¢i¢ + ¢ is just the
derivative with respect to the temperature 7. Here ¢(r) is
the pairwise potential and g(r, T') the radial pair distribution
function, for which well-established thermodynamic theories
exist, notably thermodynamic perturbation theory [5]. For
example, Rosenfeld and Tarazona [6] (not cited in [1]) use
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density-functional theory and thermodynamic perturbation
theory to come up with an expression of the excess internal
energy U® and the corresponding specific heat cj', which
depend on the temperature 7' via a power law U o o T3,
¢ o« T~%/5, which stems from the singularity induced by the
presence of the atomic hard cores. It has been demonstrated
that this equation of state and the corresponding free-energy
functional describe the thermodynamics of liquids rather well,
in particular the temperature dependence of the specific heat
[6,7].

Conclusion: at variance with the claims of BZ, a quantum
description of simple liquid does not seem to be adequate, and
a well-established thermodynamic theory for classical liquids,
including the specific heat, is available.

(i) We turn now to the BZ formula for the density of states
of the instantaneous-normal modes of a simulated model for
a classical liquid. In the INM literature it had been customary
to represent the INM spectrum, i.e., the normalized histogram
p(A) of eigenvalues A; = a)lz of the Hessian matrix of the
potential energy of a liquid at a certain time instant, as

2wp (L) forr =w? >0,

80 = N oG for & = o <0, @

where the absolute sign |...| refers to that of a complex
number and the unstable part of the spectrum is plotted along
the negative w axis. At very high frequencies g(w) can be
taken to represent something like the density of states for
vibrations, which are known to exist at such frequencies. At
low and negative values of A the modes represent unstable
configurations. BZ acknowledge this and design a model for
the density of states (DOS), motivated by a Langevin-type
equation (see below) [1,8]

(w)az 2+F2 3)

According to this equation BZ [8] claimed that the function
g(Jo|) would be proportional to |w| for small A. This would
mean that p(1) would be constant in this regime. However,
it has been known for a long time [9,10] and recently ex-
plained [11] that p(X) is strongly peaked at small values of
A, i.e., far from being constant. p(A) is also not universal,
as claimed by BZ [8], but depends strongly on temperature
[11]. Furthermore, BZ claim to have derived expression (3)
from a Langevin equation (strange enough without fluctuating
forces) for the local velocities v; with damping coefficients I';

d r 4
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dt
The vibrational DOS, however, has to be calculated from the
imaginary part of the Green’s function for the displacements
uw; with v; = %ui. For model (4) this Green’s function takes
the form

1

1
Gi; i — 5
(@) = —iw —iw + F ©®)

Taking the imaginary part we arrive at

g() x Z 20Im(Gii(w)) « Z 6)

z_,_rz’

Cv[J/K]
35

3.0

25

2.0

0 200 400 600 oo 0

FIG. 1. Specific heat data for some fluid elementary materials,
fitted by Baggioli and Zaccone [1] with the DOS of Eq. (7) inserted
into the Debye formula. The arrows indicate the liquid-gas critical
temperatures 7,: Ne (44 K), Ar (150 K), Kr (210 K), Xe (290 K), and
N, (126.2 K).

which is at variance with BZ’s expression (3), where obvi-
ously a factor 1/w is missing. Certainly this, together with
the inadequateness of (3) to describe simulated INM spectra
[11], invalidates all reasoning in Ref. [1]. We note here that the
stable INM spectrum of a one-dimensional low-density liquid
has been calculated analytically some time ago by Cavagna,
Giardina, and Parisi [12].

(iii) Let us now look at the comparison with experiment.
BZ modified their formula of Ref. [8] as follows:

(@) o ——— ¢ /0b, %)
602 + 1"2

replacing Debye’s cutoff with a soft Gaussian. They assumed
that the damping constant obeys an Arrhenius temperature law
I' = T'ye /%7 where € is the Lennard-Jones depth parameter
and 'y is a prefactor.

Fits with inserting g(w) according to Eq. (7) into Debye’s
formula for the specific heat have been performed for the inert
gases neon, argon, krypton, and xenon, as well as nitrogen.
BZ took values for the Debye frequency from the literature of
solid rare gases and N,, together with known values for the
Lennard-Jones parameter €, and took the prefactor I'y as fit
parameter.

In Fig. 1 we report the data from Fig. 2 of BZ and we
add arrows indicating the appropriate values of the critical
temperatures for the investigated materials. We observe that
the data fitted by BZ with formula (7) are predominantly in
the supercritical states, i.e., the solidlike quantum theory has
been tested predominantly against supercritical fluids. Further,
BZ use values of the Debye frequency of rare-gas solids.

There is a further elementary inconsistency in Ref. [1]. The
authors take the Dulong-Petit law of solids ¢i¢ = 3kp to be the
high-temperature limit of supercritical fluids. The true high-
temperature value is given by the temperature derivative of
the first term of Eq. (1), i.e., c{f’ = %kB.
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