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Bayesian modeling of pattern formation from one snapshot of pattern
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Partial differential equations (PDEs) have been widely used to reproduce patterns in nature and to give insight
into the mechanism underlying pattern formation. Although many PDE models have been proposed, they rely
on the pre-request knowledge of physical laws and symmetries, and developing a model to reproduce a given
desired pattern remains difficult. We propose a method, referred to as Bayesian modeling of PDEs (BM-PDEs),
to estimate the best dynamical PDE for one snapshot of a objective pattern under the stationary state without
ground truth. We apply BM-PDEs to nontrivial patterns, such as quasicrystals (QCs), a double gyroid, and
Frank-Kasper structures. We also generate three-dimensional dodecagonal QCs from a PDE model. This is done
by using the estimated parameters for the Frank-Kasper A15 structure, which closely approximates the local
structures of QCs. Our method works for noisy patterns and the pattern synthesized without the ground-truth
parameters, which are required for the application toward experimental data.
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I. INTRODUCTION

The design of structures of materials is one of the most
important issues in various fields of physical science, as their
structures are related to their physical properties. The struc-
tures are often characterized by periodic or quasiperiodic
order. These ordered structures, which we call a pattern, are
ubiquitous in nature ranging from fluid convection [1] to the
microphase separation of block copolymers [2,3] and atomic
and molecular crystals [4,5]. Surprisingly, the same pattern
appears in different systems with completely different length
scales [6]. Complex patterns such as quasicrystal (QC), dou-
ble gyroid (DG), and Frank-Kasper (FK) phases appear not
only in metallic alloys [7,8] but also in soft materials such
as block copolymers [2,9], biomaterials [10], surfactants [11],
liquid crystals [12], and colloidal assemblies [13].

Understanding a generic mechanism of symmetry selection
is an important step to understand structural pattern formation.
A continuum approach, using nonlinear partial differential
equations (PDEs), is useful for this purpose [5,6]. For exam-
ple, it was shown that at least two length scales are necessary
for the formation of QCs by using a phenomenological model
[14]. Once we find the phenomenological PDE model, it also
gives an insight into microscopic pictures required for the pat-
tern, such as interactions between particles [15]. These studies
have clarified generic pictures on a specific pattern. However,
when encountering a new pattern, we do not know the inter-
actions leading to the pattern and, therefore, need to find a
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governing equation and parameters. In ideal cases, PDE mod-
els can be derived from microscopic models, but this is limited
due to technical difficulties. Therefore, finding the governing
equation requires a sophisticated guess and trial and error. In
this study, we develop a systematic method to estimate the
best model for the objective pattern we want to reproduce.

Recent developments in imaging techniques give us vari-
ous structural information, and thus it is desired to understand
pattern formation and the design principle of a desired struc-
ture [16]. There are two challenging issues to consider the
inverse structural design applied to the real-world data. First,
the structural data are often stationary because images with a
high spatiotemporal resolution during structural formation are
hard to acquire. Experimentally obtained structure is stable, or
at least metastable. We want to estimate the dynamical model
that produces a stable stationary pattern that best matches
the snapshot given as an objective pattern. The estimated
model may give us an insight into the dynamics of the pattern
formation. Second, there is no ground truth of the objective
structure; the true model to reproduce the experimental data is
not available. Still, finding a surrogate model or phenomeno-
logical model is helpful to clarify underlying mechanisms of
the structural formation [6]. This issue is called model inade-
quacy and is one of the biggest challenges in model estimation
[17,18].

To overcome these issues, in this study, an inverse problem
is formulated to reproduce a given snapshot of a pattern, after
which we propose a method, referred to as Bayesian modeling
of partial differential equations (BM-PDEs), to identify the
best dynamical PDE model and its parameters. We apply
our method to the problem without ground truth. We prepare
the objective pattern according to crystallographic symme-
try, which is independent of any candidate models, and then
perform an estimation of the best model. We demonstrate
the BM-PDE for complex patterns such as QC, DG, and FK
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FIG. 1. Schematic illustration of Bayesian modeling of partial
differential equations (BM-PDEs). (a), (b) The example of the objec-
tive pattern of a dodecagonal QC produced from a numerical result
(a) and its Fourier transform (b). The color bar indicates [−1.5, 3.5]
in (a) and [0,3000] in (b). (c) The space of patterns ψ (x) and order
parameters �[ψ (x)]. The PDE is solved with the initial condition ψ0

taken from random variables. For each trajectory, the translational
position and orientation of the pattern ψs would change even under
exactly the same parameters and the same model. The order parame-
ter identifies the two patterns by extracting symmetries of the pattern.
The distance between two patterns is quantified by E .

A15 patterns. We also demonstrate that from the estimated
parameters, three-dimensional dodecagonal QCs can be
generated. The success shows a potential application of BM-
PDEs to understand the mechanism of structural formation of
novel materials.

II. BASIC FORMULA

We consider a pattern (or crystalline structures) expressed
by the scalar density field ψ (x). An example of a two-
dimensional dodecagonal QC (DDQC) is shown in Figs. 1(a)
and 1(b). Higher density spots may be considered as a
position of particles. We estimate a dynamical model to
reproduce an objective pattern ψ∗(x) as a stable pattern
at the steady state ψs(x) of a nonlinear partial differen-
tial equation ∂tψ (x) = fμ[ψ (x)] [Fig. 1(c)]. If the PDE and
its parameters μ are ground truth for the objective pattern,
∂tψ

∗(x) = fμ[ψ∗(x)] = 0 is satisfied. Our objective pattern
is one snapshot and has information only about the stationary
state (Fig. 2). Its transient structure from the initial state to
the stationary state is not available. We assume the stationary
state is stable in the sense that the pattern is generated from a
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FIG. 2. Stability of stationary states and initial conditions. A
pattern may be stable, metastable, or unstable. The unstable pattern
cannot be generated from an initial condition. The better model (a),
(c) has broader initial conditions that generate stable patterns, than
the worse model (b), (d).

broad range of the initial conditions (Fig. 2). This assumption
is natural when the objective pattern is obtained from an
experimental result; the pattern should be reproducible.

At first look, the estimation for the stationary data is im-
possible. When fμ[ψ∗(x)] = 0 is a true model, we may have
a series of equally true models, such as fμ[ψ∗(x)]2 = 0, and
( fμ[ψ∗(x)] + 1) fμ[ψ∗(x)] = 0. Therefore, the estimation is
not unique. Nevertheless, as we will see later, the estima-
tion of a model that reproduces the objective pattern as a
stable structure plays a role as regularization (see also Ap-
pendix A 4 for the comparison with other approaches). We
should note that our problem is not the parameter estimation
for fμ[ψ∗(x)] = 0 in which the stability of the stationary state
is not guaranteed.

To see the difficulty of estimating a dynamical equa-
tion that reproduces the objective pattern only from its
stationary data, it is instructive to consider the state-space
model, widely used in data assimilation [19,20]. The cost
function E consists of measurement (observation) and model
errors and is expressed as

E [μ,ψ (x)] = 1
2‖ψ∗(x) − ψ (x)‖ + 1

2‖∂tψ (x) − fμ[ψ (x)]‖.
(1)

In many cases, the norm ‖ · ‖ is chosen to be the square
norm. If the observation contains an error, we have to estimate
both the parameters μ and the state ψ (x). When the model
represents a deterministic system, the state is described by
its initial condition ψ0(x), and accordingly the cost function
becomes E [μ,ψ0(x)]. When the observation does not contain
noise, the first term in Eq. (1) vanishes, and the problem
falls into a simple regression (see also Appendix A 4). In the
conventional data assimilation, both μ and ψ0 are estimated
by minimizing E [μ,ψ0(x)] [20]. However, in the problem
of pattern formation, the specific initial condition to produce
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FIG. 3. Schematic illustration of Bayesian modeling of partial
differential equations (BM-PDEs). For each model and each set
of parameters, there is a stationary pattern ψs. The cost function
E [ψ∗, ψs] (energy) is calculated from the order parameters of the
objective and generated patterns. From the posterior distribution,
the best parameters and their errors are estimated. The distribution
of the cost function gives the log marginal likelihood of the model
from which the selection of models can be made.

the pattern is not of our interest. Moreover, there are many
initial conditions that asymptotically reproduce the same
pattern (Fig. 2). Therefore, the estimation under a given sta-
tionary objective pattern cannot be unique. When time-series
data during pattern formation is available, the estimation is
possible because each trajectory is from a different initial
condition. In our method, we sample the stationary pattern by
solving the model under each parameter and each realization
from the random initial condition. By marginalizing the initial
conditions, we may obtain a unique estimation.

The basic structure of our estimation is schematically
shown in Fig. 3. Parameters are estimated from the poste-
rior distribution under the objective pattern, whereas the best
model is estimated from the log marginal likelihood. For a
given model mi and parameters μ in a PDE, the stationary pat-
tern is uniquely determined under each initial condition, ψ0(x)
[Fig. 1(c)]. We treat an initial pattern as a latent variable that is
marginalized using a random variable for the initial condition.
This is because the obtained pattern may be translationally
shifted or rotated by changing an initial pattern [see Fig 1(c)].
We quantify the similarity between two patterns ψ1 and ψ2 by
the distance between them defined as

E [ψ1, ψ2] = |�[ψ1] − �[ψ2]|2. (2)

Our objective pattern is ordered and has many invariants; the
pattern must be identified under change by translation and
rotation, and also, the pattern does not change by the action
of the symmetry group that the pattern has [see Figs. 1(a)
and 1(b)]. Here we introduce order parameter �[ψ (x)] =
(�1[ψ (x)], . . . , �l0 [ψ (x)]), which maps the pattern onto the
feature space and eliminates the redundant information of the
ordered pattern ψ (x) due to symmetry [see Fig. 1(c) and
Sec. VIII]. The distance defined by Eq. (2) identifies the
patterns up to symmetry transformation thanks to the order
parameter.

When ψ1(x) is a solution of a PDE ψs(x) under fixed
parameters μ and ψ2(x) is an objective pattern ψ∗(x), Eq. (2)
plays a role of a cost function in our problem (see also
Sec. II A). It corresponds to the first term in (1). Since we

solve a PDE for each μ, the second term in (1) approximately
vanishes. Note that each pattern in Eq. (2) is mapped onto the
space of order parameters as in Fig. 1(c), whereas, in (1), the
mapping was taken to be identity.

A. Bayesian modeling

Our goal is to find the most probable model m̂ described
by a PDE and its parameters μ̂ for a given objective pattern
ψ∗(x). We also want to quantify the uncertainty of the esti-
mation. To achieve this, we use the cost function E [ψs, ψ

∗]
in Eq. (2), also called the energy, expressed by the order
parameter �, and compute the distance from the objective
pattern, �∗ = �[ψ∗(x)], to the numerically generated station-
ary pattern for each model and parameter set, �[ψs(x)]. Our
purpose is not to estimate specific initial states ψ0 for the
objective pattern ψ∗, but to estimate the best model that could
generate patterns similar to ψ∗ independent of the initial state.
Therefore, our best parameter set μ̂ is defined by the mean of
the marginal probability distribution under a model m:

p(μ | �∗, β, m) =
∫

p(ψ0)p(μ | �∗, ψ0, β, m) dψ0. (3)

The integral over the initial conditions ψ0 implies that the
posterior distribution of the parameters is chosen so that the
estimated parameters can generate the objective pattern from
a wide range of the initial conditions. We may avoid the
parameters that can generate the objective pattern only for
a specific initial condition [Figs. 2(b) and 2(d)]. Following
Bayes’ theorem, the posterior distribution under a fixed ψ0

is given by

p(μ | �∗, ψ0, β, m) = p(�∗ | ψ0, μ, β, m)p(μ | m)

p(�∗ | m, β )
. (4)

The likelihood is represented by p(�∗ | μ, m, β ) ∝
e−βE [ψ,ψ∗], where the inverse temperature β is associated
with the variance of the observation noise. This likelihood
implies that the error in the measurement is given by
�∗ = � + ξ with the Gaussian noise ξ with zero mean and
its variance β−1. The prior distributions p(ψ0) and p(μ | m)
are assumed as the uniform distribution. The normalization
factor p(�∗ | β, m), or the log marginal likelihood (free
energy) F (β, m) ≡ − log p(�∗ | β, m), is one of the criteria
of model selection and hyperparameter estimation [21–24].
Both p(�∗ | β, m) and F (β, m) play a role as a probability
density of the models and hyperparameters (see Sec. VIII C).
Therefore, our best model m and inverse temperature β are
both determined by maximizing p(�∗ | β, m), or equivalently,
minimizing F (β, m) [25].

B. Objective pattern without ground truth

In this work, we consider two types of objective patterns;
(i) a numerical solution of the PDE model that we use and
(ii) a pattern synthesized by superposition of plane waves
as Eq. (19). The former has ground truth, whereas the latter
does not. The synthesized pattern is independent of our PDE
models, and therefore, it is not necessarily a solution for the
PDEs. We will demonstrate that our approach still works
for the problem without ground truth. This problem is an
intermediate step between the estimation of the problem with
ground-truth and experimental data. We do not know the true
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FIG. 4. The way to synthesize the objective patterns without
ground truth by Eq. (19). (a) Two-dimensional dodecagonal QC
and (b) FK A15. Left: The diffraction patterns of the objective and
estimated patterns. Middle: From the peaks of the diffraction pattern,
the spots in the Fourier space are identified for each wave mode.
In (a) the spots correspond to qi = q0(cos(2i + 1)π/12, sin(2i +
1)π/12) for i = 1, . . . , 12, and qi = q1(cos iπ/6, sin iπ/6) for
i = 13, . . . , 24. The ratio between the two wavelength q0/q1 =
1/[2 cos(π/12)] = 0.51 . . . . In (b), the spots indicate qa =
(2, 0, 0), (0, 2, 0), . . . in red points, qb = (2, 1, 0), (1, −2, 0), . . . in
green points, and qb = (2, 1, 1), (1, 1,−2), . . . in blue points. Right:
By superposition of the waves in the Fourier space, the real space
objective patterns are synthesized by ψ (x) = ∑

i I (qi )eiqi ·x, where
I (qi ) is the intensity of the wave of qi, and the sum is taken over all
the spots.

PDE for experimental data. Still, we would like to estimate
the best PDE model to explain the data to understand the
mechanism of the structural pattern formation. Our approach
has the advantage in that we do not know a priori the model
that reproduces the objective pattern. In most of the model
identification, the problem with ground truth has been used.

To synthesize the objective structure by Eq. (19), positions
of the peaks and their amplitude in the Fourier space are
required [Fig. 4(a)]. These quantities can be directly measured
in the scattering experiments in two dimensions and three
dimensions. The positions and the amplitude in the Fourier
space can be reproduced from the structure factor, as shown
in Fig. 4. We use this information to synthesize the objective
pattern. For the objective patterns of Figs. 7(a)–7(d) below, we
artificially choose the value of the amplitude of the structure
factor [Fig. 4(a)]. The structure factor Sk = |ψ̃ (|k|)| of the
objective pattern of synthesized dodecagonal QC is shown in
Fig. 4(a). The structure factor of the generated pattern with
the estimated parameters has peaks at the same position as the
objective pattern [see also Fig. 7(c), Fig. 17, and Table II]. The
detailed method to synthesize the objective structure is shown
in Sec. VIII B.

To claim that our approach can be applied to the exper-
imental data, we demonstrate the estimation of PDEs for
the FK A15 structure taken from the experimental data [26]
[Fig. 4(b)]. The structure factors of the objective pattern and
the generated pattern with the estimated parameters are shown
in Fig. 4(b) [see also Fig. 7(e), Fig. 25, and Table VI]. The

peaks for the two patterns are similar not only in their wave
numbers, but also in their relative amplitudes.

III. THE ESTIMATION FOR PHASE-FIELD
CRYSTAL MODELS

We demonstrate our method for a class of phase-field crys-
tal (PFC) models. The PFC models are conserved versions
of the Swift-Hohenberg (SH) equation. The SH equation has
one characteristic length in it and has been used as a basic
phenomenological equation of periodic pattern formation [1].
We make a family of the models by changing mainly the linear
part of Eq. (5). The family generalizes the PFC models to
have multiple length scales (see Appendixes A 1 and B). Our
approach is not limited to the choice of this family. In fact,
we can replace Eq. (5) with any other family of models. A
possible extension of this approach, including the estimation
of nonlinear terms, is discussed in Sec. V. We consider a
model, called m ∈ M, expressed by a nonlinear PDE of the
form

∂tψ (x) = L(m)
μ ψ (x) + N [ψ (x)] (5)

with a set of parameters μ. The PDE is decomposed into
two parts. The linear term is expressed by the linear operator,
L(m)

μ , acting on ψ (x). Because we are interested in patterns
in bulk, not affected by boundaries, we use periodic boundary
conditions.

We make a family of models, M = {mi}i=1,2,...,imax . In
model mi the linear operator has i peaks in its spectrum [see
Figs. 5(f)–5(h)]. Our family of models is designed to have
a physical interpretation that the system has i length scales
for model mi because the number of peaks in the spectrum
corresponds to the number of length scales. Each length scale
is characterized by its wavelength qi and the value of its
spectrum at the wavelength ai [see Figs. 5(f)–5(h)]. We also
use the mean density ψ̄ and system sizes in each direction as
parameters. Note that because we consider conserved dynam-
ics of the PFC model of Eq. (12), ψ̄ is constant in time and
can be used as a parameter of the estimation. We also note
that ψ̄ is identical to the parameter for the nonlinear ψ2 term
in Eq. (5) [see also Eq. (14)]. We fixed the number of mesh
points in each spatial direction, but the mesh size is varied
as a parameter during the estimation (see Sec. VIII A 1). This
procedure corresponds to using the system size as a parameter
of estimation.

A. Two-dimensional QC with ground truth

To give better insight into the BM-PDE, we first focus on
an example of a two-dimensional QC with 12-fold symmetry
(DDQC) shown in Fig. 1(a). This pattern has been studied
using a model with two length scales [14]. The objective
pattern in this section is numerically produced with a set of
parameters μ∗. The two-length-scale model is used, that is,
m∗ = m2.

For m = m2, the cost function E [ψs, ψ
∗] decreases during

the sampling from the posterior distribution, and the generated
stationary patterns from Eq. (5) converge to QCs which are
similar to the objective pattern in Fig. 5(b) (see also Fig. 16
in the Appendix). The estimated parameters well agree with

065301-4



BAYESIAN MODELING OF PATTERN FORMATION … PHYSICAL REVIEW E 106, 065301 (2022)

FIG. 5. Model selection and parameter estimation for the ob-
jective pattern of two-dimensional QC pattern with 12-fold (do-
decagonal) symmetry. (a)–(c) The histograms of the cost function,
E [ψ∗, ψs], during the sampling. The horizontal axis is shown in the
logarithmic scale. The generated pattern from the estimated PDE is
shown in the insets. Typical patterns at each energy range are also
shown in the insets with arrows. (d) The estimated parameters in
the space spanned by q1 and ψ̄ . The color indicates a histogram
where darker red corresponds to a higher probability. The mean
and standard deviation of the estimated parameters are shown by
the black point and the black line, respectively. The ground-truth
parameter values are shown in dashed lines and the blue point. The
inset shows the same plot under various β in the range of parameters
used for the prior distribution. The same color code as in (a)–(c) is
used. (e) Model selection is made by the log marginal likelihood (free
energy) calculated from the steady-state energy distribution for m1

(a), m2 (b), and m3 (c). The inset shows the probability of each model
marginalized for all β. The minimal free energy of each model is also
shown with error bars, which overlap with the points. (f)–(h) The
linear spectrum (black lines) as a function of wave number from the
estimated parameters for m1 (f), m2 (g), and m3 (h). The ground truth
is shown in red lines. The uncertainty of the estimation is shown by
the range in light blue. Note that in (g) the estimated line and ground
truth are overlapped. The inset in (g) shows the same plot near the
peaks.

the parameters that we used to generate the objective pattern
[see Fig. 5(d) and Table I]. The estimated length scale is
q1 = 0.52 with the second length scale q0 = 1. The ratio be-
tween them agrees to q0/q1 = 2 cos(π/12) ≈ 1.9319, which
is the known value to generate this pattern [14]. The BM-PDE
automatically estimates this ratio starting from uniform prior
distribution of the wavelength. The estimation also works for
other parameters (Table I and Fig. 16) in the Appendix.

Using the estimated parameters, we may generate a pattern
similar to the objective pattern from uniform random initial

density [see the inset of Fig. 5(b)]. To see the quality of the
estimation, we measure the steady distribution of the cost
function. Figure 5(b) shows that there are two distinct states:
one has a higher cost function E � 102 and the other has a
lower cost function E � 102. The latter corresponds to QC,
whereas hexagonal patterns mainly dominate the former. The
gap between the two states indicates that the QC patterns
require a high resolution in the parameter search. The large
step in the parameter space cannot find the optimal param-
eters because their range is narrow in the prior range of the
parameters, as in the inset of Fig. 5(d). Therefore, the con-
ventional gradient method with a fixed step size either cannot
find the QC when the step size is large, or is impractical
when it is small. The BM-PDEs use hierarchical sampling,
such as replica exchange Monte Carlo (REMC) [27,28]. In
this method, the knowledge of the step size corresponding to
the observation noise β is not a prerequisite for the parameter
search.

The same algorithm is performed for the models with one
length scale m = m1 and three length scale m = m3. It is not
surprising that the cost function E of the one-length-scale
model is much higher than that of m2 because it cannot re-
produce a QC pattern [Fig. 5(a)]. In fact, the model m = m1

with the estimated parameters produces hexagonal patterns
rather than QCs. The three-length-scale model does reproduce
QCs, which are comparable to the objective pattern [Fig. 5(c)].
However, our Bayesian estimation selects the two-length-
scale model. Figure 5(e) demonstrates that the minimum free
energy, that is, the log marginal likelihood, is lower for m =
m2. Therefore, we estimate that this QC pattern is described
by the interaction of two modes with different length scales.

As the structure generated from the estimated param-
eters has a low-cost function of E ≈ 10−2, we may say
the generated structure is close to the objective pattern.
The next question is to what extent our model reproduces
the underlying model for the objective pattern. To answer
the question, first, we compare ensembles of patterns gener-
ated from ground-truth and estimated parameters. Figure 6(a)
shows the histogram of the cost function for the ground-truth
and estimated parameters. Even under the ground truth, the
generated patterns are slightly different from the objective
pattern because the initial conditions are different. The his-
togram shows that there is a peak for both cases at the same
range of the cost function corresponding to the QCs. The
probability of QCs is higher for the estimated parameters.
This is because our method chooses the estimated parameters
so that structures close to the objective pattern appear from a
wide range of initial conditions (see Sec. II and Appendix A).

We also study the dynamics of the formation of QCs. We
consider three cases: trajectory with the ground-truth param-
eters and from the ground-truth initial condition, trajectories
with the ground-truth parameters from different initial con-
ditions, and trajectories with the estimated parameters. Here
the ground-truth initial condition means that the objective
pattern in Fig. 1(a) is generated. In all cases, when QCs are
formed, a random initial condition first gets smoother, then
high-density spots appear, and finally, the QCs are formed
[see Fig 6(b)]. Figures 6(c) and 6(d) show the structure factor
Sq0,1 = 〈|ψ̃ (|k| = q0,1)|〉 during the formation of QCs. These
structure factors correspond to inhomogeneity at the two
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FIG. 6. Comparison of the estimated model with the ground
truth. (a) The histogram of the cost function for the pattern gener-
ated from the model with the estimated parameters (blue) and with
ground-truth parameters (red). (b)–(d) Dynamics of the formation
of QCs using the estimated (blue) and ground truth (black and red)
models. (b) Snapshots at each time step. (c), (d) The structure factors
at |k| = q0 (d) and |k| = q1 (c). The trajectory for the model with
ground-truth parameters and the initial condition is shown in a solid
black line. The ensembles of trajectories for the model with the
estimated parameters and ground truth from various random initial
conditions are shown in solid blue and red lines, respectively. The
standard deviation of each plot is shown as a shaded region.

length scales q0 and q1. The average is taken over |k| = q1 or
|k| = q0. Starting from random distribution, the pattern shows
broad peaks at |k| = q0, q1 at the early stage of the formation
of QCs. Then sharper 12 peaks appear at each length scale,
and finally, dodecagonal QCs appear.

With the ground-truth parameters but with different initial
conditions, QCs can form. Depending on the initial condi-
tions, the structures at the steady states are different, and
accordingly, their trajectories are different. Still, the trajec-
tory from the ground-truth initial condition is within the
distribution of the trajectories from different initial condi-
tions [Figs. 6(c) and 6(d)]. The trajectories generated from

the estimated parameters are also close to the ground-truth
trajectories. These analyses indicate that our estimated model
can not only generate a similar pattern to the objective one, but
also reproduce the trajectory close to the one for the objective
pattern. We stress that the uncertainty is not only given for
the final pattern, but also for the dynamic evolution. This
advantage of our method may be helpful to analyze patterns
in experiments without ground truth, and to select a better
model to interpret the patterns. We should remark that the
dynamics are dependent on the system size. In a larger system
size, the formation of QCs shows nucleation and growth [29].
Our system size during the estimation is small so that these
processes are not seen in the dynamics. Still, if we use a larger
system size, both estimated and ground-truth parameters show
nucleation and growth.

B. Various objective patterns without ground truth

The BM-PDE is not restricted to the estimation of the
parameters that are used to generate the objective pattern.
Using a two-dimensional DDQC, we demonstrate that the
BM-PDE successfully estimates the best model and approx-
imated parameters for the objective pattern without ground
truth. The DDQC is synthesized by the superposition of 12
plane waves in Eq. (19) (see Sec. VIII). The pattern is similar
to the numerically produced QC used in the previous sec-
tion [see Figs. 1(b) and 7(c)], but in the current case, there are
no ground-truth parameters and a true model. The objective
pattern can only approximately be accessed by one of the
models in Eq. (5). In contrast with the numerically produced
pattern, estimated parameters do not reproduce exactly the
same pattern as the objective pattern, and therefore the cost
function is relatively high (Fig. 17 in the Appendix). Never-
theless, both two-length-scale and three-length-scale models
reproduce DDQC patterns. The estimated parameters repro-
duce the inherent ratio of the length scales q0/q1 = 1.948 ≈
2 cos(π/12). The marginal likelihood indicates that the two
length scale is favorable [ Fig. 7(c)].

We summarize the results of a variety of patterns in Fig. 7.
For each objective pattern, we can reproduce visually similar
patterns, and the most probable number of length scales. In
two-dimensional systems, stripe and hexagonal are the two
most popular patterns under one length scale. These patterns
are obtained from the conventional phase-field crystal model
[30]. The marginal likelihood calculated in the BM-PDE in-
deed estimates that one length scale is favorable [Figs. 7(a)
and 7(b)]. The difference between stripe and hexagonal pat-
terns appears in the mean density ψ̄ . A quadratic nonlinear
term is necessary to reproduce hexagonal patterns, and this
implies that it appears at |ψ̄ | 
 0 [30]. When ψ̄ � 0, stripe
patterns appear. The estimated values of the mean density are
consistent with the results from the phase diagram reported
in the literature [30]; we obtain the estimated mean density
ˆ̄ψ � −0.23 and ˆ̄ψ = −0.05 for the hexagonal and stripe ob-

jective patterns, respectively (see also Figs. 20 and 22 in the
Appendix). The BM-PDE automatically estimates appropriate
parameters from an artificially synthesized snapshot of the
objective pattern.

In the estimation of models with different length scales in
Fig. 7, some objective patterns, such as QCs, have a unique
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FIG. 7. Summary of objective and estimated patterns for stripe (a), hexagonal (b), 12-fold symmetric QC (c), DG (d), and FK A15 (e). For
each pattern, the free energy is evaluated for a model with one-, two-, and three-length scales. The best model is selected from the minimum
of the log marginal likelihood (free energy). The model uncertainty is quantified by the marginal probability of each model obtained from the
free energy marginalized for all temperatures. All the objective structures are synthesized from analytical functions by Eq. (19); they do not
have ground truth in the model. The objective structure of FK A15 is synthesized based on the data in experiments in [26].

estimated model, whereas other patterns, such as stripes, have
a similar probability among the models. The reason is that,
first, the one-length-scale model cannot reproduce the QCs,
and therefore, the marginal probability of m1 in Fig. 7(c)
should be zero. The QCs are available for limited models. The
second reason is that for the stripe pattern, the log marginal
likelihood has its minimum at the largest β, that is, the noise

associated with the difference between (synthesized) objective
patterns and generated patterns is estimated to be small. The
stripe pattern is less complex in that generated patterns using
the PFC model are close to the synthesized objective pattern
without ground truth, if not the same. Therefore, for the stripe
pattern, the objective pattern has less error (see the discussions
in Sec. IV). This is the case for whatever model we use
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among the candidates, and thus, the marginal probability is
less dependent on the models.

On the other hand, for the QCs, the optimal β is larger for
the two-length-scale model [see Fig. 8(c)]. This arises from a
different distribution of the cost function (see Appendix C 2).
In Fig. 17(b) QCs appear from a broader range of β that
is large enough, whereas, in Fig. 17(c), they disappear as
β becomes slightly smaller. At the optimal β, the estimated
parameters of the two-length-scale model are more likely
to generate QCs than those of the three-length-scale model.
Therefore, our estimation chooses the two-length-scale with a
higher probability.

C. Double gyroid and Frank-Kasper patterns

We discuss an application of the BM-PDE to nontrivial
three-dimensional patterns. The objective patterns are double
gyroid (DG), shown in Fig. 7(d) and Frank-Kasper (FK) A15,
shown in Fig. 7(e). The DG structure has two separate do-
mains, each of which has degree-three vertices [10]. The DG
structure was originally observed in self-assemblies of block
copolymers, which is reproduced theoretically by the self-
consistent field theory [31]. The simplified model under the
random phase approximation is expressed by a PDE [32]. This
model is a different class from PFC models. The DG structure
was also reproduced by PFC models theoretically [33,34]
and numerically [35]. These PFC models are called Landau-
Brazovskii theory. FK A15 has been studied in metallic alloy
and soft materials [9]. For example, the self-consistent field
theory, designed to describe block copolymers, is capable of
reproducing this pattern, but to our knowledge, this structure
has not been reported within the framework of PFC.

In three dimensions, the order parameter may be de-
fined similarly to that in two dimensions (see Sec. VIII B 2).
Structural candidates in three dimensions are far richer than
two-dimensional patterns. In fact, during the sampling, cylin-
drical patterns with a hexagonal lattice, BCC, and other
patterns appear. These patterns can be stable under a certain
region of parameter space [36]. The BM-PDE can repro-
duce both the DG and FK A15 patterns in all models (m =
m1, m2, m3). The generated structure is the same as the objec-
tive pattern, which is evident from the peaks in the Fourier
space [Figs. 7(d) and 7(e) and see Appendix C 4]. The real
space structures of the two patterns are overlapped by transla-
tion. The log marginal likelihood in Figs. 7(d) and 7(e) shows
that the objective patterns of DG and FK A15 are expressed
most likely by the two-length scale and one-length scale,
respectively.

The DG structure has two length scales with their ratio of
1.15 (see also Appendix C 4). In the one-length-scale model,
by taking a0 
 0, several modes with slightly different length
scales may become unstable so that the DG pattern is real-
ized. In fact, it was discussed that DG appears not at a0 =
ε ≈ 0 with the small number ε, but at a0 � O(1) [33,34].
In addition, this pattern appears between the stripe patterns
and cylindrical (hexagonal) patterns in the phase diagram,
namely 1 
 |ψ̄ | � 0. On the other hand, in the model of block
copolymers, the FK A15 phase appears near BCC patterns in
the phase diagram [9]. This suggests that |ψ̄ | 
 0 to obtain
FK A15. The estimated mean density ψ̄ well agrees with

this tendency. (Figs. 24 and 25 in the Appendix). The two
models m1 and m2 have a comparable probability for both
patterns. The DG pattern chooses m2 possibly because m2 has
a wider range of spectrum amplitude in the phase diagram.
The objective structure of FK A15 has ellipsoidal domains.
The generated structures with the estimated parameters are
also ellipsoidal (see Fig. 26 in the Appendix for quantitative
results on sphericity). Such deformation is also reported for
FK A15 structure made of block copolymers [37].

We should note that the objective structure of the FK A15
is taken from the experimental result [26]. From the X-ray
scattering data, the position and amplitude of peaks in the
Fourier space are identified [Fig. 4(b)]. We use the positions
of the peaks and their amplitude in the data in [26].

IV. ROBUSTNESS AGAINST NOISE

We hypothesie that the robust estimation of the model
and parameters for the objective pattern without ground truth
originates from robustness against noise. To see this, we add
Gaussian white noise to the objective pattern in Fig. 1(a) and
study its effect on the estimation of the parameters. We focus
on the two-length-scale model m = m2 and the estimation of
wavelength because this parameter has a narrow acceptable
range. For the DDQC, the wave number is required to be
close to 0.51, and otherwise the pattern cannot be generated
because the mode coupling between two length scales does
not occur. Figure 8(a) shows that even when the amplitude
of the noise is about 20% of the amplitude of the density
field of the objective pattern, the estimation of the parameter
successfully works. Beyond the noise amplitude, the error of
the estimated wave number becomes large, and the fraction of
the patterns different from the objective pattern increases.

We compare the BM-PDE with the standard regression
methods in which parameters μ are estimated by minimiz-
ing the cost function ‖∂tψ − f (ψ ; μ)‖ under an appropriate
norm (see Sec. VIII D). This method relies on the state noise
added in the dynamical equation, and, thus, does not give
a good estimate for the measurement noise [38] (see also
Appendix A). In fact, Fig. 8(a) shows that the estimated wave
number deviates from ground truth even under 0.1% noise
amplitude.

In contrast with the noiseless objective pattern, which has
its log marginal likelihood F [β] monotonically decreasing as
β increases in Fig. 5(e), the log marginal likelihood for the
objective pattern with noise has a minimum at the finite β

as in Fig. 8(b). The minimum demonstrates the optimal noise
corresponding to the noise amplitude in the objective pattern
[25]. The noise level β−1 at the minimum of log marginal
likelihood increases as the amplitude of noise in the objective
pattern increases. At the large noise amplitude �30%, the
minimum β reaches a comparable value with the cost function
at the gap between two structures in Fig. 5(b): QC and hexag-
onal patterns. Thus, DDQC can no longer be reproduced.
Interestingly, the minimum of the log marginal likelihood is
also observed for the objective pattern synthesized by the
function of Eq. (19) [see Figs. 4(a) and 8(c)]. In this case,
there is no ground-truth parameter that reproduces exactly
the same pattern as the objective pattern. The optimal β at
the minimum of F [β] describes the deviation of the objective
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FIG. 8. (a) Estimated wave numbers for numerically generated
QC by BM-PDE Eq. (2) (red points) and conventional regression
method (black points) under Gaussian white noise added on the
objective pattern [see Eq. (43)]. Noise amplitude with respect to the
variance of the noiseless pattern is defined as σ 2/Var[ψ∗] where σ 2 is
the variance of added noise. The noise amplitude is shown in %. The
horizontal dashed line indicates the ground truth of the wave number
q1 = 0.51764. The objective patterns under the different noise am-
plitude are shown in the insets. (b) The log marginal likelihood at
each inverse temperature β for the objective pattern generated by the
numerical simulation with noise corresponding to (a). The minimums
of the log marginal likelihood are shown by arrows. (c) The free
energy at each inverse temperature β in REMC under the models
m1, m2, and m3 for the objective pattern synthesized by the function
of Eq. (19).

pattern from the patterns that the models can reach. Without
the Bayesian inference, we cannot successfully estimate the
uncertainty, which plays a similar role to noise.

The BM-PDE works for the damaged objective structure
in which some spatial information is lost. We demonstrate the
estimation for the damaged data in Appendix D. The BM-
PDE does not rely on the time and spatial derivatives of the
objective structure. Therefore, the damage in the data can be
randomly distributed, namely, the information of neighboring
data points is not necessary. This is not the case if the infor-
mation of spatial derivatives is necessary for the estimation.

V. GENERALIZATION OF BM-PDE

In this section, we discuss the possible extension of our
method. We have considered the family of phase-field crystal
models with different length scales, and demonstrated in the
previous sections the estimation of the parameters in the linear
operators. Our approach is not limited to the choice of this
family. In fact, we can arbitrarily choose a family of models.
In this section, we consider other classes of models to show
the generality of our method.

The objective pattern in Secs. III and IV was uniform in
space. This is because the order parameter in (2) is defined
for each structure. We will demonstrate that with certain pre-
processing, we may estimate a model for an inhomogeneous
pattern with defects.

A. Expansion of the linear operator by orthogonal bases

In [39,40] it was proposed that the directed correla-
tion function is expanded by the Hermite polynomials. This
method is appealing because the polynomial forms orthogonal
bases, and therefore, its coefficient must be independent. In
our formula this method corresponds to different parametriza-
tion of the linear operator L(m)

μ in Eq. (5), or Lk in Eq. (15), by
the Hermite polynomials as Eq. (6). Instead of (16), we may
expand the linear operator in (11) and (15) as

L(k) = −a0k2 + k2
nmax∑
n=1

an
e− 1

2
k

k0

(2nn!
√

π )1/2
Hn(k/k0), (6)

where Hn(x) is the Hermite polynomial. The reference wave
number is denoted by k0. We set to be k0 = 0.25, and nmax =
10. We note that the first term with a0 appears from the
conserved system. The linear operator in the Fourier space
diverges as L(k → ∞) ∼ −k2, which make sure that fluctua-
tions at the higher wave numbers decay quickly. In the method
shown in the previous section, the scale of the divergence is
different, for example, L(k → ∞) ∼ −k10, but the qualitative
shape of the linear spectrum of the two methods is the same
[see Figs. 5(g) and 9(d)].

For the objective pattern shown in Figs. 9(a) and 9(b), we
estimate the parameters in Eq. (6). The estimated parameters
are shown in Fig. 9(e). Most of the parameters are close
to zero, and there are two finite modes. Using the estimate
parameters, we may generate QCs, as shown in Fig. 9(c).
The estimated linear spectrum is shown in Fig. 9(d). The
qualitative shape of the linear spectrum is the same as Fig. 5(g)
used in the previous section. In fact, there are two peaks whose
ratio is 1/[2 cos(π/12)]. The ratio is consistent with the result
in the previous sections.

The benefit of the expansion by the basis functions is
that there is no need to consider different models with the
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FIG. 9. (a), (b) The objective pattern of the synthesized do-
decagonal QC (a) and the intensity of its Fourier transformation (b).
(c)–(e) The estimation for the model using Hermite polynomials.
(c) The generated pattern from the estimated parameters for the
model using the Hermite polynomials. (d) The linear spectrum (black
lines) as a function of wave number from the estimated parameters
for the Hermite polynomials. The uncertainty of the estimation is
shown by the range in light blue. The two solid black lines show
the wave numbers at the peaks. (e) The histogram of the estimated
coefficients of the Hermite polynomials.

different number of length scales. The arbitrary number of
length scales can be expressed by the appropriate superposi-
tion of the bases. The disadvantage of this method is that the
position of the characteristic wavelength, characterized by the
peak in the linear spectrum, cannot be imposed as a parameter.

B. Design of nonlinear terms

Our approach is not limited to the estimation of linear parts
in the model. Instead of Eq. (5), we may consider the two-
component model described by the two density fields ψ1(x)
and ψ2(x). Both the fields have their own single length scales
q1 for ψ1(x) and q2 for ψ2(x), which may be different from
each other. The model is expressed by

∂tψ1(x) = Lμ1ψ1(x) + 	N1[ψ1, ψ2], (7)

∂tψ2(x) = Lμ2ψ2(x) + 	N2[ψ1, ψ2], (8)

where the linear operators Lμ1 and Lμ2 are the same as the op-
erator of the one-length-scale model in Sec. III [see Fig. 5(f)].
The position and height of a peak in Lμ1 and Lμ1 are different.
The nonlinear terms N1[ψ1, ψ2] and N2[ψ1, ψ2] are given by
polynomials of ψ1 and ψ2, and are parametrized by bn as

N1[ψ1, ψ2] =ψ3
1 − 2b1ψ1ψ2 − b2ψ

2
2 − b3ψ

3
2

− 2b4ψ1ψ
2
2 − 3b5ψ

2
1 ψ2, (9)

N2[ψ1, ψ2] =ψ3
2 − b1ψ

2
1 − 2b2ψ1ψ2 − 3b3ψ1ψ

2
2

− 2b4ψ
2
1 ψ2 − b5ψ

3
1 . (10)

The first terms in (9) and (10) are the same as the families
of models in the previous sections. For simplicity, we assume
the gradient structure of the model, that is, there exists the
free energy functional F so that the model is expressed by
∂tψ1,2 = 	 δF

δψ1,2
. The free energy functional contains the terms

of coupling between ψ1 and ψ2 up to the fourth order of the
polynomials. In this model, the parameters are the system size
in x and y directions, mean density ψ̄ which is assumed to
be the same for the two fields, the two wave numbers q1 and
q2, and their corresponding heights of the linear spectrum
a1 in Lμ1 and a2 in Lμ2 , and the coefficients b1, . . . , b5 of
nonlinear coupling terms. Here q1 is fixed to be 1 without loss
of generality. We use the periodic boundary conditions.

The goal of the estimation in this model is to specify
the most relevant nonlinear term among the candidates. To
do this, we use sparse Bayesian formula [41]. Instead of
the uniform prior distribution, we use the prior distribution
exp(−κ

∑5
i=1 |bi|) for the coefficients of the nonlinear terms.

When κ > 0, due to the prior distribution, finite values of the
coefficients of nonlinear terms are penalized in the posterior
distribution. As a result, only a few of bi becomes nonzero. We
have performed the parameter estimation both with (κ = 5.0)
and without (κ = 0) sparsity. Without sparsity (κ = 0), the
prior distribution is uniform and does not penalize the coef-
ficients of nonlinear terms.

We use the same objective pattern shown in Figs. 9(a) and
9(b) as used in Fig. 7(c), and then perform the parameter esti-
mation. The generated pattern from the estimated parameters
is shown in Fig. 10(a). The pattern has dodecagonal symme-
try as in the objective pattern. The posterior distributions of
the parameters are shown in Figs. 10(c) and 10(d). Without
sparsity (κ = 0), all the nonlinear coupling terms contribute
to the estimation. On the other hand, with sparsity (κ = 5.0),
only the term ψ3

2 in the N1[ψ1, ψ2] is nonzero, and other
coefficients become close to zero. Therefore, the term ψ3

2 is
the most relevant nonlinear term.

Surprisingly, the estimated wave number is q2 ≈ 1/
√

2
with respect to q1 = 1. This ratio q2/q1 is different from
that in the two-length-scale model used in the previous sec-
tion (q0/q1 ≈ 1/[2 cos(π/12)]). This can be understood by
a quadrilateral in the Fourier space shown in Fig. 10(b). In
the linear spectrum, the modes at the wave numbers q1 and
q2 dominate. The nonlinear terms affect the pattern selection
when triangle [second-order terms of ψ1,2 in Eqs. (9) and (10)]
or quadrilateral (third-order terms of ψ1,2) appear to connect
the spots in Fig. 10(b). In the previous section, the nonlinear
term ψ̄ψ2 determines the stability of the dodecagonal QC.
To draw a triangle to connect the spots in the inner and outer
circles in Fig. 10(b), the angle of the triangle should be π/6.
This is the reason why the ratio q0/q1 = 1/[2 cos(π/12)]
appears [14].

In the two-component system given by Eqs. (9) and (10),
the dominant nonlinear term is third-order ψ3

2 in N1[ψ1, ψ2]
(ψ1ψ

2
2 in N2[ψ1, ψ2]). Therefore, a quadrilateral consists of

four wave vectors q1, . . . , q4 make a contribution when q1 +
q2 + q3 + q4 = 0. From the geometry shown in Fig. 10(b),
the ratio between the two wave numbers must be 1/

√
2. To our

knowledge, this is the first dodecagonal QC generated from
PDEs with the ratio 1/

√
2.
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FIG. 10. The estimation for the two-component model. (a) The
generated pattern from the estimated parameters for the two-
component model. (b) The schematic illustration of the intensity
in the Fourier space of the estimated dodecagonal QC. The four
vectors q1-q4 are the example of the dominant coupling term. The
blue triangle corresponds to the three vectors q1, q4, and q2 + q3. (c,
d) The estimated parameters of the nonlinear coupling terms between
the two-component ψ1 and ψ2 with (d) and without (c) sparsity. The
color legend indicates the nonlinear terms for ψ1. (e) The histogram
of the cost function under the model only with ψ1ψ2 (black) and ψ3

2

(red) in Eq. (9).

Figure 10(e) shows the histogram of the cost function of
the generated patterns from the models only with the nonzero
coefficient of the coupling term b1 or b5 in Eqs. (9) and (10).
The parameters are fixed in each model, but each stationary
pattern is generated from a different initial condition. Both
models can generate the DDQC patterns in two dimensions.
The cost function of the DDQC is E � 10. The histogram
shows that the model with b5 �= 0 is more stable in the sense
that the DDQC is generated from a wide range of initial
conditions. Even though the model with b2 �= 0 can generate
the DDQC, most of the initial conditions lead to the hexagonal
patterns. The result demonstrates that our method may choose
parameters so that the model can reproduce the objective
pattern from a wide range of initial conditions.

(a)

(b) (e)

objective pattern objective pattern(d)

(c) (f)generated 
pattern

generated 
pattern

objective pattern
in Fourier space

objective pattern
in Fourier space

FIG. 11. The objective (a), (d) and generated (c), (f) patterns
including defects for hexagonal (a)–(c) and stripe (d)–(f) structures.
The objective structures in Fourier space are also shown in (b), (e).
The circle in (a) indicates the size of the Gaussian filter.

C. Objective patterns with inhomogeneity of defects

We consider the objective patterns including defects, such
as dislocations and grain boundaries. The objective structures
are numerically generated for a larger system size N = 512
using the one-length-scale model. The objective hexagonal
and stripe patterns are shown in Fig. 11. These patterns show
polycrystalline structures. The structures in Fourier space
show a ring at the characteristic length scale of the model.
Six sharp peaks for hexagonal and two peaks for stripe are
not visible from the objective patterns. The order parameter
computed from the whole structure cannot result in a success-
ful estimation. Therefore, we use a Gaussian filter with the
width x = 30 centered at each mesh point in space, compute
local order parameters, and take an average over the different
spatial points.

The generated patterns using the estimate parameters of
the one-length-scale model successfully reproduce hexagonal
and stripe structures as in Figs. 11(c) and 11(f). The ground-
truth parameters are a∗

0 = 0.1 for both hexagonal and stripe,
and ψ̄∗ = −0.3 for hexagonal and ψ̄∗ = −0.01 for stripe.
The estimated parameters are (â0,

ˆ̄ψ ) = (0.0731,−0.1731)
for hexagonal and (â0,

ˆ̄ψ ) = (0.0676,−0.0740), which are
reasonably close to the ground truth.

VI. THREE-DIMENSIONAL DODECAGONAL PATTERN
EXPRESSED BY A PDE

Using the estimated parameters, we may investigate ad-
ditional physical insights of the model. To demonstrate it,
we consider DDQC in three dimensions [Figs. 12(b) and
12(c)]. Although the icosahedral QCs have been found in
the PDE model using two-length-scale PFC [42], other
three-dimensional structures are largely unexplored [43]. The
axisymmetric dodecagonal structure has 12-fold symmetry
along the axis (c axis) of axisymmetry [Figs. 12(b) and 12(c)].

To generate this structure, larger system size is required,
but it is computationally demanding. Moreover, as we will
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FIG. 12. Structures of the DDQC and their fluctuations.
(a) Metastable micelle-like structure. (b) The DDQC (right) and its
slice perpendicular to the axis of 12-fold symmetry in the region of
the box in black. The color indicates the position along the axis.
Therefore, the red and blue domains in the dodecagonal ring are
located in different layers. The yellow domains are located between
the two layers. (c) The DDQC in the Fourier space. The point sizes
are proportional to the amplitude of the peak of |ψ̃k|. The structure
has 12-fold symmetry around the axis of kc, and ka and kb are
perpendicular axes to kc. The projection of |ψ̃k| on each plane is
also shown. Two lengths of wave vectors q0 and q1 are shown. (d) A
local structural change in the DDQC. The slice perpendicular to the
symmetry axis is shown at two different times. The insets show an
enlarged structure along the symmetry axis.

discuss later, we found that the kinetics of the formation of the
DDQC in three dimensions is fundamentally different from
other structures. Because the FK A15 is known as the simplest
approximant of the DDQC [44], it is fair to assume that the
DDQC may appear near the estimated parameters of the FK
A15. Therefore, we focus on the estimated parameters and
solve the estimated models with larger systems size in a longer
timescale.

The structure discussed in the previous sections, including
the DDQC in two dimensions, may appear from a random
initial condition by quenching. The random initial structure
reorganizes to the desired pattern without noise. In addition,
the system reaches its stationary state before t = 102–103.
Note that the timescale t = 1 corresponds to the relaxation
time of the structure when ai = 1. The formation of the
DDQC in three dimensions is entirely different from the two-
dimensional structure. It requires not only a larger system
size but also an annealing process. Without the state noise,
the initial random structure results in a micelle-like isotropic
structure [Fig. 12(a)], which is frozen. This is particularly
the case for the system size N > 64. To overcome the trap
at the metastable structure, we add the state noise into the
PDE model (see Sec. VIII A 2), and anneal the structure by
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FIG. 13. Fluctuations of the DDQC. In (b), the peaks in the
Fourier space are divided into three groups by their amplitude. The
38 cyan peaks have the largest amplitude, and the 24 magenta peaks
have the next largest. The other peaks are shown in yellow. The
38 cyan peaks and the 24 magenta peaks form the main peaks in
Fig. 12(c). The normalized intermediate scattering function is shown
for each group of peaks in (c). Each color corresponds to F (k, t ) of
the peaks in the same color. The points are the mean values in each
group, and the error bars are the standard deviation in each group.

decreasing the noise amplitude. We found that the annealing
process is very slow; the DDQC appear around t � 5 × 104.

Figure 12(b) shows the generated structure for the system
size N = 256. The generated structure is periodic along the
c axis. We denote the other two axes as the a axis and the b
axis, and in the Fourier space, these axes are denoted by ka, kb,
and kc. As in Fig. 12(c), the structure has 12-fold symmetry in
the plane perpendicular to the c axis. The 12-fold symmetry
arises from the layered structure in which two layers with the
hexagonal symmetry rotate π/6 with each other [Fig. 12(b)].
The center of the dodecagonal ring is located between the two
layers. There are 62 main peaks in the Fourier space. Along
the symmetry axis, there are five 12-fold rings and two spots
along the c axis. From the peaks in the Fourier space shown in
Fig. 12(c), it is evident that there are two length scales q0 and
q1 whose ratio is q1/q0 = 2/

√
5. This value is, in fact, close to

the estimated ratio of parameters q̂1/q̂0 = 0.889. The layered
structure with the dodecagonal symmetry has been reported
in particle-based simulations [43,45]. We have tried both one-
length-scale and two-length-scale models with the estimated
parameters for the FK A15 structure. All the results shown
in Fig. 12 are by the two-length-scale model. The one-length-
scale model cannot reproduce the QC. This is natural because
more than two length scales are necessary to form QCs.

Using the obtained stable DDQC, we also study their fluc-
tuations under the fixed amplitude of the noise. Figure 13(a)
demonstrates the reconstruction of a dodecagonal ring. This
process is due to the change of the position of the center
along the c axis to the ring [see the insets of Fig. 13(a)].
This reconstruction has also been observed in a particle-
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based model [46]. The fluctuation is characterized by the
intermediate scattering function, F (k, t ) = 〈ψk(0)ψ†

k (t )〉 for
the wave vectors corresponding to the peaks in the Fourier
space [Fig. 13(b)]. Here † indicates complex conjugate. The
relaxation time of F (k, t ) indicates the diffusive timescale of
the structure at k [Fig. 13(c)]. The peaks other than the main
peaks of the DDQC shown in Fig. 12(c) decay quickly in a
short timescale of t ∼ 103. Among the main peaks, the larger
peaks [cyan in Fig. 13(b)] are stable against noise even in
the longer timescale of t � 104, whereas the smaller peaks
[magenta in Fig. 13(b)] show diffusive behavior. This slower
diffusion at t � 104 corresponds to phason flips. In fact, from
the inverse Fourier transformation, we found the peaks with
the intermediate amplitude [magenta in Fig. 13(b)] correspond
to the centres of the dodecagonal rings. We stress that these
analyses of fluctuations are achieved by the estimation of the
dynamical PDE from the stationary objective pattern in the
previous section.

VII. DISCUSSION AND CONCLUSION

Automatic discovery of a model equation is a recent
key topic in data-driven science [47–49], and several meth-
ods have been proposed for PDEs of time-series data
[38,39,50,51]. These approaches are designed to handle time-
series data and cannot be applied to estimation for a stationary
pattern, because it does not have information about trajec-
tories from their initial conditions. In addition, the previous
studies focus on the estimation for the data with ground truth.
The data are generated typically from numerical results of a
known model with known parameters, and then those parame-
ters are estimated from the data. Therefore, the two issues, the
estimation of a dynamical equation from stationary data and
data without ground truth, remain elusive even in a technical
aspect of model discovery (see also Appendix A 4).

In this work we propose the inverse problem of equa-
tion discovery for a stationary pattern without ground truth.
We successfully estimate the best PDE for complex pat-
terns. Our approach has several key features compared with
the previous inference methods; it is designed for the data
of a stationary pattern without ground truth. In addition,
the method has generality to apply a wide class of PDE
models and objective patterns. Here we summarize these
features.

The estimation for stationary data: The previous ap-
proaches to estimate the PDE from data are the estimation
of dynamical equations from dynamical nonstationary data.
In this case, the data has information about trajectories of
dynamics. In this work, we may estimate dynamical equa-
tions from stationary data, which is one snapshot of the
stationary pattern. Such estimation may look impossible for
two reasons: One is the lack of information on transient
dynamics. The second reason is that in pattern formation,
the dynamical equation is nonlinear, and therefore, f (ψ ) = 0
has multiple stationary solutions. Only one solution from the
multiple solutions is not enough to reconstruct f (ψ ) uniquely.
We take the inverse problem for the stationary pattern as an
estimation of a dynamical PDE from marginalized initial con-
ditions (see Appendix A 4 for comparison to other methods).
The stable structure should be generated from a wide range

of initial conditions. In the BM-PDE, the estimation of the
model reproduces an objective pattern as a stable solution
by marginalizing the initial conditions as in Eq. (3) [see also
Figs. 6(a) and 10(e) for a demonstration]. This is in contrast
with the method to estimate a dynamical equation from time-
series data, for example, using data assimilation, in which a
single initial condition is estimated from data [19].

The order parameters play an important role in the BM-
PDE. The order parameters can extract symmetries of the
pattern and identify the two patterns that are generated with
the same parameters but the different initial conditions. This
identification is a necessary step to marginalise the initial
patterns.

Our method is designed so that the estimated model repro-
duces a pattern close to the objective pattern from as many
initial conditions as possible. This is particularly the case
when generated patterns in two models are equally close to the
objective pattern. When the true model has several coexisting
patterns, the estimated model may be biased in the sense that
we choose a model that prefers one of the several coexist-
ing patterns. Nevertheless, we believe our method is natural
because we do have only one pattern as data. A possible
extension, when a true model has several coexisting patterns
and we have data of all the patterns, is to revise the cost
function to measure the distance from generated patterns of
estimated parameters to all the objective patterns.

The estimation without ground truth: The BM-PDE works
not only for a numerically produced pattern, which has ground
truth of parameters, but also for an synthesized pattern by
superposition of plane waves of Eq. (19) (see Sec. II B). In
the latter case, our family of models does not include ground
truth. To demonstrate the ability to estimate the model for
the structure without ground truth, we have used experimental
data [Fig. 4(b)]. Even in this case, we have successfully esti-
mated the best PDE model and its parameters. This is because
the BM-PDE quantifies the uncertainty by estimating the opti-
mal noise amplitude, and is robust against noise. A promising
direction is to use our method for the estimation of a PDE for
a pattern obtained by molecular dynamics simulations.

Our method may be used to find a structure that we do
not know how to reproduce by a PDE model. We have found
the three-dimensional DDQC from the estimated parameters
for its approximant. To our knowledge, this is the first three-
dimensional DDQC found in the PDE model.

The generality of BM-PDE: In the BM-PDE, the choice
of models and the cost function are independent. Therefore,
we may replace the models with any other PDE models. To
demonstrate this feature, we have shown in Sec. V the esti-
mation of parameters not only in the linear operator but also
in nonlinear terms. The choice of the objective pattern is also
flexible. By comparing two patterns in the space of the order
parameter, we can estimate the model that can reproduce a
similar pattern in the sense that it has the same symmetry as
the objective pattern. Due to this feature, the BM-PDE works
for the noisy objective pattern.

VIII. METHODS

The main framework of BM-PDE consists of three parts:
a family of PDE models, characterization of a structure with
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order parameter, and statistical inference. Here we summarize
their basic steps.

A. PDE models

We consider a pattern described by a scalar density field
ψ (x) in a box with a periodic boundary condition, and x ∈
[−Lx/2, Lx/2] × [−Ly/2, Ly/2] in two dimensions and x ∈
[−Lx/2, Lx/2] × [−Ly/2, Ly/2] × [−Lz/2, Lz/2] in three di-
mensions. The density field ψ (x) is obtained by an unknown
model of a partial differential equation. In this study, we focus
on a family of the phase-field crystal (PFC) models given by

∂tψ = Lψ + 	ψ3 (11)

with the linear operator denoted by L and the nonlinear term
is given in the second term. The family is constructed by
modifying the linear operator L so that the system has one
or more length scales. The simplest PFC model is a conserved
version of the SH equation [5]. The equation is given by

∂tψ = 	[−εψ + (q0 + 	)2ψ + ψ3], (12)

where the total mass is conserved as

ψ̄ = 1

V

∫
ψ (x) dx. (13)

Here V is the total volume (area in two dimensions) in the sys-
tem, and q0 is a characteristic wave number corresponding to
the length scale 2π/q0. The parameter ε controls whether the
uniform state ψ (x) = ψ̄ is stable ε � 0 or unstable ε � 0. The
precise value of the threshold is dependent on other parame-
ters and a type of patterns. The PFC equation reproduces a
stripe (also called lamellar or smectic) and hexagonal patterns
in two dimensions [30,52], and a lamellar, hexagonal cylinder,
BCC, and hexagonal closed packing patterns [35,36]. A finite
mean density ψ̄ plays a role as the quadratic nonlinear term in
Eq. (12). This can be seen by subtracting the mean density as
ψ → ψ + ψ̄ in Eq. (12) as

∂tψ = 	[(−ε + 3ψ̄2)ψ + (q0 + 	)2ψ + 3ψ̄ψ2 + ψ3].
(14)

The PFC equation has a single characteristic length at
which a real part of the eigenvalue is positive (or, at least,
negative but close to zero). The linear spectrum is shown in
Fig. 15 in the Appendix. To extend Eq. (12) for the arbi-
trary number of length scales, we use m characteristic wave
numbers, q0, q1, . . . , qm−1, and the values of the spectral,
a0, a1, . . . , am−1, at the wave number k = qi. A family of
our models is conveniently described by the equations for
the Fourier transform of the density field, that is, ψ̃ (k) =
F[ψ (x)]. Our models corresponding to Eq. (11) are given by

∂t ψ̃ (k) = Lkψ̃ (k) + F[	ψ (x)3], (15)

and its linear operator is expressed in the Fourier space as

Lk = a0S0(k) + a1S1(k) + · · · + am−1Sm−1(k)

+ k2(q0
2 − k2)2

(
q2

1 − k2
)2 · · · (q2

m−1 − k2
)2

. (16)

The function Si(k) for i ∈ [0, m − 1] is chosen so that the
coefficient ai corresponds to the peak as a function of k of Lk

at k = qi [see Figs. 5(f)–5(h)]. Since we may freely choose a
unit of length scale, we fix to be q0 = 1 when i � 2 in m = mi.

This implies that we impose the length scale 2π/qi. The con-
crete form of Si(k) is shown in Appendix B 1. The parameter
s0 describes the sharpness of the peaks. To make the spectrum
sharp enough, we chose the parameter to be s0 = 100 for
the one-length and two-length models, and s0 = 2000 for the
three-length model. Both ai and qi are chosen as parameters
to be optimized. We have other parameters such as the system
size L in each direction and the mean density of a pattern ψ̄ .
In this study, we use the periodic boundary condition. A set
of parameters is thus μ = {Lα, ψ̄, a0, q0, . . . , al−1, ql−1} with
α ∈ [1, . . . , d] in space dimension d .

In order to make a pattern, higher-order spatial derivatives
are necessary. Polynomial expansion in terms of the wave
number k instead of Eq. (16) may be available to make several
length scales (see Fig. 15). Nevertheless, it suffers from the
large value of the coefficient of each order in the polynomi-
als because we may not use prior distribution to confine the
parameter space (see also Appendix B 2).

1. Numerical simulations of PDE models

Numerical simulations of the PDEs are performed using
the pseudospectral method in which the linear terms are
computed in the Fourier space, and the nonlinear terms are
computed in real space. Since our PDEs contain higher-order
derivatives, we use the operator-splitting method [53,54].
Both real and Fourier spaces are discretized into Nd meshes
in d-dimensional space. Instead of changing the system size
Li in each dimension i ∈ [1, d] under the periodic domain, we
change the mesh size dxi so that the system size becomes Li =
(N − 1)dxi. In the estimation of this study, we estimate both
dx1(= dx) and dx2(= dy) for numerically generated DDQC
in two dimensions, but we assume dx1 = dx2 = dx3 for other
cases.

The number of mesh points is fixed to be N = 128 in
two dimensions and N = 32 in three dimensions. The larger
N is better in terms of accuracy, but computational time is
scaled roughly as O(Nd ). In REMC, we need to simulate it
in Nrep replicas, and therefore, the choice of N is made by the
balance between accuracy and realistic computational time. In
addition, the larger system size suffers from longer relaxation
time and a higher probability that topological defects such that
dislocations and disclinations appear. We set the total number
of steps to be 105 with a time step dt = 0.01. We confirmed
this is enough to obtain the stationary patterns studied in
this work, but may be changed depending on the pattern of
interest. Note that statistical inference in this study is entirely
independent of the algorithm of numerical simulations solving
a PDE. An efficient algorithm would improve the performance
of estimation, and one may replace the numerical scheme suit
for one’s purpose.

2. Formation of three-dimensional DDQC

To generate the DDQC in three dimensions, we have to add
noise in Eq. (5),

∂tψ (x, t ) = L(m)
μ̂ ψ (x, t ) + N [ψ (x, t )] + γ (t )ξ (x, t ). (17)

Note that the noise is state noise, and has nothing to do with
the observation noise. In the annealing process, the amplitude
of the noise γ (t ) is decreased in time. The annealing schedule
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is chosen as γ (t ) = 0.198/ log(t + τa) with τa = 104. This
choice ensures γ (t ) ∼ 1/ log t for large t [55]. The Gaussian
white noise with the zero mean 〈ξ (x, t )〉 = 0 and its variance

〈ξ (x, t )ξ (x′, t ′)〉 = −2	δ(x − x′)δ(t − t ′) (18)

is used. The Laplacian in Eq. (18) ensures the conservation
of the density and ensures to reach the equilibrium state.
We may also use other statistical properties of the noise as
long as the density conservation is ensured. For example,
we have tested 〈ξ (x, t )ξ (x′, t ′)〉 = 2δ(x − x′)δ(t − t ′) with∫

ξ (x′, t ′) dx = 0. We have confirmed in all cases, the DDQC
appears when the amplitude of the noise γ is decreased.

Fluctuation of the DDQC is studied by fixed γ . We set it to
be γ = 0.171. Note that the DDQC is destroyed for the noise
with the amplitude of γ 2 = 0.198.

B. Objective patterns and characterization of patterns

1. Objective pattern

An objective pattern ψ∗(x) is prepared in two ways. One is
a numerical solution of Eq. (5) for given parameters under a
given model. The resulting pattern is numerically transformed
into the Fourier space, and then the order parameter �∗

l is
calculated.

The second way is completely independent of the models.
The objective pattern is expressed as a density field ψ∗(x) that
is a superposition of the cosine function. The simplest case is
a stripe pattern, which is described only by one wave in one
direction in a two-dimensional space. Similarly, a hexagonal
pattern is expressed by two-dimensional waves in three direc-
tions. The objective pattern is expressed as

ψ∗(x) =
∑

i

bi cos(q∗
i · x), (19)

where the wave vectors q∗
i are chosen at the position appro-

priate to express symmetries of the objective pattern. The
amplitude of each mode bi is also chosen properly. We
numerically make the Fourier transform of Eq. (19) to ob-
tain ψ̂∗(k) = F[ψ∗(x)] and calculate the Fourier spectrum
|ψ̂∗(k)| from which we obtain the order parameter. The
Fourier transform of Eq. (19) defined in the infinite domain
is expressed by the superposition of the delta function at the
position of q∗

i . Nevertheless, the numerical Fourier transform
in the bounded domain results in peaks smeared around q∗

i . To
remove the artifact, we set |ψ∗(k)| = 0 except for the region
|ψ∗(k)| > αmax|ψ∗(k)|. Here the value of α is chosen so that
the peaks of the minimal height are left. We choose α = 0.6
for the two-dimensional objective patterns, whereas α = 0.01
for the three-dimensional objective patterns.

The dodecagonal QC pattern in two dimensions is synthe-
sized by ψ = ∑12

i=1 cos(q∗
i · x) in which the wave vectors q∗

i
are chosen at the position of the vertices of the hexagon with

a radius |q∗
1| = 2π/

√
2 + √

3 and the hexagon with a radius
|q∗

2| = 2π rotated by π/12. The DG pattern is expressed by
24 wave vectors of q∗ = (±2,±1,±1) and 12 wave vec-
tors of q∗ = (±2,±2, 0) with their permutation along the
x, y, z directions [56,57]. The amplitude of the latter wave
vector is

√
8/6 � 1.15 times longer than the former waves.

The FK A15 pattern is expressed by 24 wave vectors q∗ =
(±2,±1, 0), 24 wave vectors q∗ = (±2,±1,±1), 6 wave

vectors of q∗ = (±2, 0, 0) with their permutation along the
x, y, z directions [58]. The amplitude of the peaks in the struc-
ture factor of FK A15 is chosen as the values obtained in the
experiments of [26].

2. Order parameters

To assure translational invariance, we use a spectrum of
the Fourier transform of the pattern and expand it by the
basis functions, each of which expresses certain point group
symmetries. In two dimensions, the basis functions reflect
n-fold rotational symmetry, as shown in Fig. 1(b), whereas
in three dimensions, spherical harmonics expansion is used.
Projection of the Fourier spectrum of the pattern onto the basis
function is given by Al,± in two dimensions, and Alm in three
dimensions.

The order parameter is a rotational invariant form of the
quantity Alm with l ∈ [0, l0] and m ∈ {±1} in two dimensions
and m ∈ [−l, l] in three dimensions. In two dimensions, Al,±1

is described by

Al,±1[ψ] =
∫

|ψ (k)|
(

cos lθk

sin lθk

)
dk2, (20)

where +1 (−1) corresponds to cos lθk (sin lθk ), respectively,
and θk is a polar angle in the Fourier space. We use the Fourier
transform of the pattern as

ψ̃ (k) =
∫

ψ (x)eik·x dx, (21)

ψ (x) =
∫

k
ψ̃ (k)e−ik·x, (22)

where the volume in the Fourier space is
∫

k = 1
(2π )d dd k. We

denote Al,± in the vector form as Al = (Al,+, Al,−). The max-
imum mode is denoted by l0. In three dimensions, Alm is given
by

Alm[ψ] =
∫

|ψ (k)|Y m
l (θk, ϕk ) dk3 (23)

with spherical harmonics Y m
l (θk, ϕk ) in the spherical coor-

dinates of the Fourier space (k, θk, ϕk ). Note that m in the
superscript of Y m

l (θk, ϕk ) and subscript of Alm should not be
confused by m describing a model in M. The zeroth mode
l = 0 corresponds to the mean amplitude of ψ̃ (k), which is
independently considered by ψ̄ . We, therefore, use the sum for
l ∈ [1, l0] in the cost function. The maximum mode is denoted
by l0. We use the convention of spherical harmonics

Y m
l (θ, ϕ) =

√
(2l + 1)(l − m)!

4π (l + m)!
Pm

l (cos θ )eimϕ, (24)

where Pm
l (cos θ ) is associated Legendre polynomial with in-

tegers l and m ∈ [−l, l]. Any continuous function on a unit
sphere may be expanded.

We define the order parameter �[ψ (x)] = {�l [ψ (x)]}l0
l=1

by a rotationally invariant form of the coefficients, Al,± or Alm,

�l = ‖Al‖ ≡
√

A2
l,+1 + A2

l,−1, (25)

in two dimensions, and

�l = ‖Alm‖ ≡
√

4π

2l + 1

√√√√ l∑
m=−l

(−1)mAl,mAl,−m (26)
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in three dimensions. Here the prefactor is included because
(Y 0

l )2 + ∑l
m=1 Y m

l (θ, ϕ)Y m∗
l (θ, ϕ) = (2l + 1)/(4π ), and the

sum of |Alm|2 scales 2l + 1.
We numerically evaluate Al for patterns ψ (x) and A∗

l for
an objective pattern ψ∗(x). Since both real space and Fourier
space density fields are expressed by values at a finite number
of mesh points, the range of a mode l is truncated at the
maximum mode l0. The larger mode extracts a finer structure
in the Fourier spectrum, and the structure finer than the mesh
size is invalid. We thus take l0 = N . Note that for odd l ,
Alm � 0 and therefore, the dimension of � is l0/2.

C. Statistical inference

1. Bayesian formulation

We may extend our model naturally toward the Bayesian
formulation, which enables us not only to choose the optimal
PDE, i.e., parameters and the number of the characteristic
length scales, but also to evaluate their uncertainty [23,24]. To
do this, we assume the order parameter �[ψs] of the stationary
pattern ψs is observed as that of the objective pattern ψ∗ with
the additive noise ξl :

�∗
l = �l (ψs; ψ0, μ) + ξl , (27)

where ξl is the random variable for each mode l distributed
according to zero-mean Gaussian distribution with variance
β−1 � 0. The noise ξl and the corresponding inverse temper-
ature β play a role of the uncertainty of the measurement. Here
ψs and ψ0 are the stationary and initial states of ψ in Eq. (11),
respectively, and μ is the set of parameters. The dependence of
�l [ψs] on ψ0 and μ is explicitly represented by �l (ψs; ψ0, μ).
The assumption Eq. (27) is equivalently represented as the
conditional probability density

p(�∗
l | ψ0, μ, β ) =

√
β

2π
exp

{
−β

2
[�∗

l − �l (ψs; ψ0, μ)]2

}
.

(28)

We consider the parameter estimation of μ by marginal-
izing ψ0. Hereafter the discretization ψ0 = {ψ ( j)

0 }Nd

j=1 and

the reparametrization ψ
( j)
0 → ψ̄ + ψ

( j)
0 are also considered,

where ψ̄ and ψ
( j)
0 are the mean density and the (relative)

density at the mesh point j, respectively. By Bayes’ theorem,
the conditional joint probability density of ψ0 and μ under
given {�∗

l }l0
l=1, β and the model class m is represented as

p
(
μ | {�∗

l }l0
l=1, ψ0, β, m

)
= p(μ | m)

p
({�l}l0

l=1 | β, m
) l0∏

l=1

p(�∗
l | ψ0, μ, β ),

∝ exp

[
−β

2
E (ψ∗, ψs; ψ0, μ)

]
, (29)

where m denotes the number of the characteristic length scales
such as Eq. (B1), (B2), or (B5). Here p(μ | m) and p(ψ0) are
the prior distribution defined as the uniform distribution, and

the marginal likelihood p({�l}l0
l=1 | β, m) is given by

p
({�l}l0

l=1 | β, m
)

=
(

β

2π

) l0
2

∫
exp

[
−β

2
E (ψ∗, ψs; ψ0, μ)

]

× p(ψ0)p(μ | m) dψ0 dμ. (30)

The dependence of E [ψ∗, ψs] on ψ0 and μ is explicitly
represented by E (ψ∗, ψs; μ,ψ0). Note that we assume the
causality

p
(
ψ0, μ | {�∗

l }l0
l=1, β, m

)
= p(ψ0)p

(
μ | {�∗

l }l0
l=1, ψ0, β, m

)
, (31)

which ignores (i) the dependence of ψ0 on {�∗
l }l0

l=1 and β

and (ii) the correlation between ψ0 and μ. This assumption
reflects our ansatz that ψ0 is not uniquely determined only by
ψ∗ (or {�∗

l }l0
l=1). Here ψ0 is treated as a latent variable. By

marginalizing out ψ0, the posterior distribution of μ is given
by

p
(
μ | {�∗

l }l0
l=1, β, m

) =
∫

p
(
ψ0, μ | {�∗

l }l0
l=1, ψ0, β, m

)
dψ0.

(32)

The posterior mean estimator μ̂, i.e., the mean of p(μ |
{�∗

l }l0
l=1, β, m), is adopted as our best parameter set. The

standard deviation of p(μ | {�∗
l }l0

l=1, β, m) plays a role of the
error in μ̂.

We consider both the hyperparameter estimation of β and
model selection of m [21,22,25,59,60]. By Bayes’ theorem,
the joint probability density of β and m under given {�∗

l }l0
l=1

is represented as

p
(
β, m | {�∗

l }l0
l=1

) = p
({�∗

l }l0
l=1 | β, m

)
p(β )p(m)

p({�∗
l }l0

l=1)
, (33)

where p({�∗
l }l0

l=1) is the normalization constant. Here p(β )
and p(m) are the prior distributions defined as the uniform
distribution. The maximum a posteriori estimator, or equiva-
lently the empirical Bayes estimator in this setup, is adopted
as the pair of our optimal model and temperature

(β̂, m̂) = argmax
β,m

p
(
β, m | {�∗

l }l0
l=1

)
(34)

= argmax
β,m

p
({�∗

l }l0
l=1 | β, m

)
. (35)

For convenience, the Bayes free energy F (β, m) =
− log p({�l}l0

l=1 | β, m) is defined. Using the Bayes free
energy, we may see the optimal model and temperature
(β̂, m̂) minimize F (β, m). If ∂F/∂β = 0 is satisfied at
β = β̂, then we obtain the self-consistent equation

β̂ = 1

〈E (ψ∗, ψs; ψ0, μ)〉β̂
, (36)

where

〈· · · 〉β =
∫

(· · · )p
(
ψ0, μ | {�∗

l }l0
l=1, β, m

)
dψ0 dμ. (37)
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By marginalizing out β, we can also evaluate the uncertainty
of m as the probability

p
(
m | {�∗

l }l0
l=1

) =
∫

p
(
β, m | {�∗

l }l0
l=1

)
p(β ) dβ. (38)

Note that p(m1 | {�∗
l }l0

l=1),..., p(mimax | {�∗
l }l0

l=1) demonstrate
the probability of each model m1,..., mimax , respectively, based
on the observations {�∗

l }l0
l=1.

2. Setup of a prior distribution

We assume no prior information about parameters and
latent variables except their range. The prior density of each
variable is defined by the continuous uniform distribution
whose support equals the domain of each variable. The prior
density of ψ0 is defined by

p(ψ0) =
Nd∏
j=1

ϕ
(
ψ

( j)
0

)
, (39)

where ϕ(ψ ( j)
0 ) is the continuous uniform distribution whose

support is ψ
( j)
0 ∈ [−0.1, 0.1]. For equationEq. (28) with m

length scales, the set of parameters is defined by

μ = {dx, dy, ψ̄, a0, q1, a1, q2, a2, . . . , qm−1, am−1}, (40)

where dim(μ) = 2m + 2 in two dimensions. In three dimen-
sions, the mesh size along the z axis dz is added in the
parameters. The prior density of μ is also defined by

p(μ | m) = ϕ(dx)ϕ(dy)ϕ(ψ̄ )ϕ(a0)
m−1∏
i=1

ϕ(ai )ϕ(qi ), (41)

where ϕ(dx), ϕ(dy), ϕ(ψ̄ ), ϕ(ai ), and ϕ(qi ) are the
continuous uniform distributions, whose supports are
respectively dx ∈ [1 − (1/q∗N ), 1 + (1/q∗N )], dy ∈
[1 − (1/q∗N ), 1 + (1/q∗N ), ], ψ̄ ∈ [−1, 0], ai ∈ [−0.2, 0.2],
and qi ∈ [0, 1]. Here 2π/q∗ is the wavelength that is used to
synthesize the objective pattern.

We also assume no prior information for the model and hy-
perparameter; the prior distribution of each variable is defined
by the discrete uniform distribution. The prior distribution
p(β ) is also defined by the discrete uniform distribution with
β ∈ {βα}Nrep−1

α=0 , where β0 = 0 and

βα = 10log10 βmin+ α−1
Nrep−1 log10(βmax/βmin ) (42)

for α ∈ {1, 2, . . . , Nrep − 1}. Here we set as Nrep = 40, βmin =
10−3 and βmax = 102. Equation (42) means that discretization
of β is finer at the large β (lower variance of noise). The
prior distribution p(m) is defined by the discrete uniform
distribution at m ∈ {mi}i=1,2,...,imax . Each grid point (mi, βα )
can be regarded as the candidate of model selection equally
possible in prior.

3. Sampling from a posterior distribution
with Monte Carlo method

The realization of p(μ | �∗, ψ0, m, β ) is carried out by
Monte Carlo (MC) sampling in the parameter space. For each
point in the parameter space, we compute a stationary pattern
ψs in the model of Eq. (5) under the randomly chosen initial

condition ψ0. Then, the parameters are changed stochasti-
cally according to the Metropolis criterion defined by the cost
function (energy) E [ψ,ψ∗] and inverse temperature β. We
use the REMC method [27,28] with different inverse temper-
atures β in parallel. The REMC is an efficient method for
the estimation of the optimal variance β̂−1 of the observation
noise because the method enables us to sample parameters
simultaneously under various β. The method also makes an
efficient sampling to avoid a local trap in the parameter space.
Bridge sampling [61,62] is used to calculate F (m, β ) for each
m. The error bars of F (m, β ) are calculated by the bootstrap
resampling [63].

The joint distribution p(ψ0, μ | {�∗
l }l0

l=1, β, m) is realized
by the Gibbs sampling based on the relation of Eq.(31),
i.e., the alternately iterative sampling from p(ψ0) and p(μ |
{�∗

l }l0
l=1, ψ0, β, m). The sampling from p(ψ0) simply follows

Eq. (39). The sampling from p(μ | {�∗
l }l0

l=1, ψ0, β, m) follows
the procedure below. First, we solve the model of Eq. (11)
under a given initial state ψ0 and parameters μ of Eq. (40) for
a model m. Then, the similarity of an obtained pattern ψs as a
stationary state and an objective pattern ψ∗ is evaluated by the
cost function E (ψ∗, ψs; ψ0, μ), describing the distance shown
in Eq. (2) in the space of the order parameter �l [see Eqs. (25)
or (26)]. Changing μ, we may iterate numerical simulations
and evaluation of the similarity between them. Following the
Metropolis criterion at an inverse temperature β, we compare
a current cost function with a cost function in a previous step,
and decide whether a current set of parameters is accepted or
not.

By using the replica-exchange Monte Carlo (REMC)
method, we sample ψ0 and μ from p(ψ0, μ | {�∗

l }l0
l=1, βα, m)

for Nrep replicas in parallel [27,28]. At higher temperature
(smaller β), the motion of one MC step in the parameter space
is large, whereas, at the lower temperature (larger β), each
motion is small so that it intensively samples parameters near
the minimum of the cost function. For every two steps, the
parameter sets of neighboring β were exchanged following
the Metropolis criterion. This process enables us to sample
parameters weighed with likelihood effectively [27,28].

The initial parameter set is sampled from the prior dis-
tribution of Eq. (41). The lowest cost function is typically
achieved by 1000–2000 MC steps. In one MC step, the Gibbs
sampling is used to perform motion in the parameter space in
all directions one by one. After finding the lowest cost func-
tion, we restart REMC from the initial parameter set of the
lowest energy state to sample its steady state. This is because
the relaxation under smaller β is much faster than the larger
β. After 1000 MC steps, we cut the initial burn-in steps and
compute the statistical quantities after 200 MC steps. Bridge
sampling was used to calculate F (β, m) for each m [61,62].
The error bars of F (β, m) were calculated by the bootstrap
resampling [63].

D. Regression method for noisy data

In the BM-PDE, the estimation from data with noise is
performed by adding zero-mean Gaussian noise ξ in the ob-
jective pattern, namely, ψ∗(x) → ψ∗(x) + ξ . In addition to
this estimation using BM-PDE, another parameter estimation
method is tested. We performed parameter estimation using
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the regression method in which the following cost function
was used

E = 1

2

∫ [
ψ∗ − f dt

μ (ψ∗)
]2

dx. (43)

Here the objective pattern ψ∗ is numerically forward in dt by
the model of Eq. (5) with a parameter set {μ} as f dt

μ [ψ (t )] =
ψ (t + dt ). If the objective pattern is the stationary solution of
the model, namely, if the parameters are ground truth to obtain
the objective pattern, the cost function must be zero. This
approach is philosophically the same as the regression method
in previous studies in which the cost function is a difference
between the left-hand side (time derivative) and the right-hand
side (force to change ψ), that is, E = (1/2)‖∂tψ − fμ(ψ )‖,
under an appropriate norm ‖ · ‖ [48,64]. The norm is typically
chosen as the L2 norm

E = 1

2

∫
[∂tψ − fμ(ψ )]2dx. (44)

In the current system, our model is no longer linear in the
parameters, and therefore, we cannot use linear regression (in-
cluding conventional sparse regression). In order to carry out
nonlinear regression, we used the REMC method to minimise
the cost function, Eq. (43). The method is similar to our main
algorithm in which we sample parameters and estimate the
optimal noise by temperature β. Following Bayes’ theorem,
we estimate the best parameters by the sampled values and
their error by the standard deviation.
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APPENDIX A: RELATED WORK

Our method covers interdisciplinary research fields such as
materials science of soft materials and crystalline structures,
nonlinear dynamics of pattern formation, and data-driven sci-
ence techniques of machine learning and inverse problems. In
this section, we review related works.

1. Pattern formation and crystalline structure

First, we give a brief review of nonlinear dynamics on
pattern formation and self-assembly of crystalline-like struc-
tures. The nonlinear partial differential equations, such as
the Swift-Hohenberg (SH) equation [1], have been used to
describe a periodic pattern as a minimal model. SH was orig-
inally derived for stationary finite number instability of fluid

convection [1,65–68], and then has later been applied to optics
[69], ecosystem [70], and other seemingly distinct problems.
The Ohta-Kawasaki-Oono (OKO) equation, which is similar
to the SH equation, was proposed to describe the micro-phase
separation of block copolymers [71,72], whereas the SH equa-
tion may also have been used for the same problem [33,73].
In the theory of block copolymers, the SH equation is instead
called the Landau-Brazovskii theory. These equations repro-
duce a stripe (also called lamellar or smectic) and hexagonal
patterns in two dimensions [52], and lamellar, hexagonal
cylinders, BCC, hexagonal closed packing patterns, also gy-
roid patterns in three dimensions [32,33,36]. The essence of
these models is that there is a specific length scale, or wave
number, at which the uniform state becomes unstable. Re-
cently, the conserved version of the SH equation has been used
for the description of crystalline structures [4,5]. This model
is specifically called the phase-field crystal (PFC) model. The
models that we used in this work are extensions of the PFC
model.

All these models are based on nonlinear partial differen-
tial equations (PDEs). This approach has an advantage and
disadvantage compared to particle-based simulations, such as
molecular dynamics and Monte Carlo simulations that are
widely used to describe crystalline structures. The advantage
is that the system is expressed using a continuum (mostly
scalar) field in which the position of a particle is identified
by a peak of the field. Because the density field is defined
everywhere in the system, it is easier to analyze structures
(symmetry, length scale, and so on) and deviation from a per-
fect crystalline structure (dislocation and disclination). These
topological defects have been studied not only in solids [74],
but also in soft materials [3,75]. The dynamics of defects have
been studied by using PDEs [5,52]. The PFC is a natural ex-
tension of the conventional phase-field model, and is capable
of describing diffusive timescales as well as local crystalline
order [4]. Therefore, the PFC captures both elasticity and
plasticity, and long-time behaviours of defect dynamics. The
disadvantage is that there is no explicit form of the interaction
potential between particles, and efforts are necessary to map
molecular interactions to the associated linear and nonlinear
terms in PDEs [76].

The extension of the PFC (or SH) has been proposed in sev-
eral ways. One is to introduce two length scales to destabilize
the uniform state [14,77]. This results in stable quasicrys-
talline patterns such as decagonal (10-fold) and dodecagonal
(12-fold) QCs in two dimensions. This model also reproduces
an icosahedral pattern in three dimensions [42], although in
this case, the two length scales are not linearly unstable but
close to neutral stability. The QC pattern appears due to a
nonlinear selection mechanism. The second type of extension
is to use many order parameters as a model of a multicom-
ponent system. Along this line, QC patterns are reproduced
in two dimensions [78] and in three dimensions [79]. The
third type of extension is the weak crystallization theory
based on the Landau-Brazovskii theory [80]. The simplest
version of this theory is nothing but the SH equation. In the
weak crystallization theory, anisotropic nonlinear terms are
included to make complex patterns to reproduce, for example,
QCs in two dimensions [81]. The model using the anisotropic
nonlinear terms corresponds to an anisotropic interaction in a
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microscopic model, for example, using Janus particles, patchy
particles [82,83], or polyhedral-shaped particles [84].

2. Inverse structural optimization

Studies on inverse structural design have been performed
mostly using particle-based models. The two major direc-
tions of the research is a control of the structure through
the external template, and the design of potential interaction
between particles. The template method is more intuitive than
the potential design, but it requires a good template before-
hand. On the other hand, the design of potential interactions
does not need the prescribed structure, and the structure ap-
pears spontaneously from a uniform disordered state. This
self-assembly of discrete particles has an advantage against
the template approach because after optimization, the struc-
tures are reproduced without external aids, and thus it is
easy to scale up the structures [85–87]. Most of the studies
along this line are discrete particles using either Monte Carlo,
molecular dynamics simulations, or an extension of them.
Examples include simulated annealing for the parameters in
Lennard-Jones-type isotropic interactions using the difference
of the particle position from the objective lattice in real space
as a cost function [88,89] (see also [90,91] and references
therein). These studies initiate the inverse structural design of
the self-assembly of materials [92,93]. The design is based
on various optimization techniques such as gradient method
[94,95], generic algorithm [96], swarm optimization [97,98],
the covariance matrix adaption-evolutionary strategy (CMA-
ES) [99,100], and statistical physics-inspired inverse design
(SP-ID) [100,101].

Recently, the optimization of interaction potentials by min-
imization of the relative entropy combined with Monte Carlo
simulations has been proposed [94,95,102–106]. In those
studies, parameters in a potential function are optimized by
a gradient of pair-potential with respect to the parameters
using the difference between the radial distribution functions
in objective and generated patterns. The objective structure
is given by the positions of particles, and by adding fluctua-
tion around the positions, the radial distribution function for
the structure is obtained. This method treats the probability
of the microscopic structures for given parameters by the
Boltzmann distribution. The inverse structural design has been
applied to various soft materials such as colloidal assembly
[94,95,102–104,106], block copolymers [97,98], and granular
media [107]. These methods, thus far, are the point estimate
in which only the most likely parameters are estimated. In
the BM-PDE, we compute the posterior distribution from
which the uncertainty of the parameters can be evaluated. We
also optimize the noise amplitude described by the inverse
temperature β. This optimization has not been performed in
the previous works, and it is essential to estimate the best
parameters for the objective pattern with noise and without
ground-truth parameters. Lack of optimization of the noise
amplitude results in overfitting of the parameters for the ob-
jective pattern under noise [25]. Besides, the BM-PDE is an
inverse structural design of the model described by PDEs.
The optimization problem of PDEs has focused on time-series
data, and therefore, for the snapshot of a stationary structure,
the inverse problem has not been formulated.

3. Parameter estimation of governing equations

The automatic discovery of the governing equations from
data is a relevant topic in data-driven science. Parameter esti-
mation of nonlinear PDEs has been studied [39,50,108] along
the lines of system identification, optimization, and control of
nonlinear dynamical systems [38]. Initiated by the success of
physical laws for double-pendulum [109,110], it is becoming
feasible to estimate an equation of motion from data ψ . Re-
cently, the method of sparse linear regression was successfully
applied to ordinal differential equations (ODEs) [48] and par-
tial differential equations (PDEs) for time-series data [51,64].
The key idea is to minimise the error of ‖∂tψ (t ) − f [ψ (t )]‖
under a certain norm ‖ · ‖ with a regularization term. The
function f (ψ ) is expanded in terms of polynomials of ψ

with their coefficients. The polynomials may be replaced by
a list of candidate terms of ψ . Then the problem reduces
to an estimation of their coefficients. Estimation based on
sparse regression helps to make many coefficients zero, so that
only a few terms remain in the estimated governing equation.
Parsimony is an underlying philosophy of the method; the
governing equation should be described by minimal terms
in ψ and minimal terms in spatial derivatives in the case
of PDEs. The idea of sparsity has also been combined with
neural networks to estimate symbolic equations [111].

Our problem to estimate the governing PDE from a given
objective pattern is fundamentally different from those studies
in several respects. First, the methods mentioned above are
based on the regression for the time-series data and therefore
demand an accurate observation of ∂tψ [38,50,112,113]. The
objective pattern in our problem is only one snapshot ideally
satisfying ∂tψ = 0 without noise, and therefore, we cannot
use optimization with respect to ∂tψ (t ) − f [ψ (t )]. Moreover,
the information on the snapshot is far less than time-series
data because, in the latter case, there are data of ψ (t ) under
different time t . Second, our interest is to estimate not only
parameters but also the best model. Third, our objective pat-
tern is not necessarily produced from a numerical result but
synthesized by a function of Eq. (19) that is independent of
the models.

Another feature of BM-PDE is uncertainty quantification.
The statistical inference has been widely used to estimate
parameters with their errors (uncertainty) [22,114]. This
approach is well established in the linear regression prob-
lems. However, fewer studies have been made in uncertainty
quantification for the estimation of governing equations, par-
ticularly for nonlinear PDEs [40,115–117]. The majority of
the methods are based on point estimation in which param-
eters are estimated by minimizing the cost function (energy)
[48,51,64]. To estimate parameters in ODEs, statistical infer-
ence has been used for time-series data using approximate
Bayesian computation [118].

4. State-space model

To summarize the related studies on the parameter estima-
tion of the dynamical equations, it is instructive to consider
the state-space model. We first explain the estimation from
time-series data, and then discuss the difficulty in estimating
the stationary problem. In the state-space model, the cost
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function is given by

E =1

2

∑
i,α

[ψ∗(xi, tα ) − ψ (xi, tα )]2

+ λ

2

∫
{∂tψ (x, t ) − fμ[ψ (x, t )]}2dx dt, (A1)

where the indices i and α are measurement points in space
and time, respectively [see also Eq. (1)]. Within this model,
the data at hand are ψ∗, and the model is parametrized by μ.
The first term in Eq. (A1) makes the pattern ψ (x, t ) closer to
the data (measurement). The second term penalises the pattern
that deviated from the model fμ(·) under the parameters μ

(model). Here λ sets a balance between the two terms in
Eq. (A1). The cost function equation (A1) implies that both
measurement and model have noise,

ψ∗(x, t ) = ψ (x, t ) + ξ1 (A2)

∂tψ (x, t ) = fμ[ψ (x, t )] + ξ2. (A3)

When the noise ξ1 and ξ2 are taken from the normal distribu-
tion, the likelihood is given by e−E .

When the model is expressed by a deterministic equa-
tion, the trajectory of the solution ψ (x, t ) is described by
the flow map from the initial condition, ψ (x, t ) = �t [ψ0(x)].
In this case, the cost function is E [ψ∗(x)|ψ0(x), μ] [20].
Then, using Bayes’ theorem, we may consider the poste-
rior distribution from three choices. The first choice is the
posterior distribution of parameters p(μ|ψ∗(x), ψ0(x)) from
the prior distribution of the parameters p(μ) with a fixed
initial condition. The second choice is p(ψ0(x)|ψ∗(x), μ)
from the prior distribution of the initial conditions p[ψ0(x)]
with a fixed parameter. The third choice is p(ψ0(x), μ|ψ∗(x))
from both the prior distribution of parameters and the ini-
tial conditions. Even in the first and the second choices,
the parameters and the initial conditions may be estimated
from hyperparameter estimation [22]. In data assimilation, the
initial condition is often estimated, and the parameters are es-
timated by hyperparameter estimation (second choice) [119].
When both the initial condition and the parameters are esti-
mated (third choice), state augmentation has been used [19].
In this method, the parameters are treated as state variables.
In [120], parameters in the phase-field model are estimated,
and the initial condition is estimated by hyperparameter esti-
mation. All the choices discussed above estimate the unique
initial condition. However, for the stationary data in pattern
formation, the same pattern appears from different initial con-
ditions. It is rather desired that the objective pattern can be
generated from a wide range of the initial conditions. In our
method, we consider the posterior distribution of parameters
p(μ|ψ∗(x), ψ0(x)) with a fixed initial condition (first choice),
but the posterior distribution is marginalized about the initial
conditions. This marginalization is a core of our approach, and
it enables us to avoid nonunique estimation for stationary data,
and to estimate the model that generates the objective pattern
as a stable state.

When there is no measurement noise, that is ξ1 = 0, and
the measurement is dense in time so that the time derivative
∂tψ is accurately measured [see Fig. 14(a)], we may drop the

FIG. 14. Schematic estimated trajectories for dense observation
(a), sparse observation (b), and stationary data (c), (d). The obser-
vations ψ∗ are shown in red points. The true trajectory is shown in
the solid curve, whereas the estimated trajectories ψ̂ are shown in
dashed curves. For the stationary data, two models are shown. (c) The
stationary data are generated from broad initial conditions. (d) The
stationary data are generated from narrower initial conditions. In this
case, most of the initial conditions lead to the metastable state. In
both cases, the unstable solution cannot be achieved from the initial
conditions, even though it satisfies f (ψ ) = 0.

first term in Eq. (A1), and the cost function becomes

E reg = 1

2

∑
i,α

{∂tψ (xi, tα ) − fμ[ψ (xi, tα )]}2. (A4)

We call this cost function the regression model, which has
been used to estimate μ for a PDE model in [38,50,108]. By
adding the L1 regularization term in E reg, the sparse estima-
tion of the parameters was demonstrated in [48,51,64,121].
With this regularization, only a few parameters become
nonzero. This sparse regression method is appealing because
even when the dynamical equation f (ψ ) is nonlinear, the
model can be parameterized by linear terms in the param-
eters, such as μ2ψ

2, μ2,1∇ψ2, and so on [51]. Therefore,
the estimation of the parameters falls into the linear re-
gression problem, which can be handled in various ways
[122]. The uncertainty of the estimation is also obtained
once the linear regression problem is reformulated in the
Bayesian framework [114,123]. Sparsity may be included
in the prior distribution [121]. Nevertheless, in the re-
gression model, the error is included only in the model.
Therefore, when there is measurement noise in data, the
estimation does not work even for the linear regression prob-
lem [38]. This issue has been studied by the total least
square [38].

When the measurement is sparse in time, ψ in Eq. (A1) is
available only at sparse points as ψ∗ [Fig. 14(b)]. In this case,
both the parameters μ and the unknown solution of the PDE
ψ (x, t ) need to be estimated. The simplest way is to inter-
polate the unobserved data in time and space, for example, by
the spline method [124,125]. Clearly, to interpolate accurately,
the observation point should be dense if not complete, and
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the noise should be small [50,108]. If the interpolation works
well, the estimation of the parameters can be made in the same
way as the above-mentioned regression method.

When the observation is so sparse that the interpolation
does not work, both the parameters μ and the solution of the
PDE ψ (x, t ) must be estimated. Even if the observation is
linear as ψ∗ = ψ + ξ2, and the model is assumed to be linear
in the parameters, the estimation for the sparse observation is
inevitably nonlinear. This is in contrast with the regression
method discussed above. The reason is that the dynamical
equation fμ(ψ ) is nonlinear, and the solution of the PDE
is a nonlinear function of the parameters μ. Therefore, the
estimation under the sparse observation is far more difficult
than that under the dense observation. To handle this issue,
various methods have been proposed. Below we discuss these
methods briefly and point out the difficulty for applying them
to stationary data.

To our knowledge, all the studies on the estimation of
governing equations described by PDEs are based on time-
series data. Our problem is to estimate the best model and
parameters from one snapshot of a pattern at the stationary
state. Trajectory matching cannot be used for this problem
because there is no information about the initial condition.
We need to eliminate the dependence on the initial condition.
To do this, we marginalize the initial condition, which is
taken from a random distribution. We also have to identify
the same patterns which have a different orientation. The
different orientation arises from different initial conditions un-
der the same model and the same parameters. This argument
is the reason why the order parameter has to be introduced
in BM-PDE.

a. Gaussian process

First of all, when both the observation and the model are
linear, the Gaussian process is a very powerful tool [126].
Because the time and spatial derivatives are linear operations,
the pattern ψ (x, t ) taken from the Gaussian prior distribution
remains Gaussian. Therefore, the posterior distribution may
be computed by inversion of the matrix of the kernel. This
method has been used for linear ODEs and PDEs [127–130].
The method using the Gaussian process is robust against noise
[127,130] and can handle hidden variables [128] and bound-
ary conditions [129], but the method is limited to the linear
models. For nonlinear problems, the Gaussian process may
be used by marginalizing the time derivative of the variables
[131–133]. When the time derivative of the solution ψ (x, t )
can be measured in the dense observation, the model can be
linearized between the small time steps between the two ob-
servations. In this case, the Gaussian process works even for a
nonlinear model [134]. The drawback of the Gaussian process
is the interpretability of the estimated model. The estimated
model can reproduce the observation, but its physical mean-
ing is hardly understood from the estimation results. Another
issue is computational cost. For the PDEs, the method assigns
the Gaussian prior at each spatial and time point. The matrix
inversion requires O(M3) computation where M is the total
spatial points M ∼ Nd where N is the number of mesh points
in each spatial direction. Therefore, for higher dimensional
systems, this method is not feasible.

b. Shooting method

The second method is the shooting method (also mul-
tiple shooting and extended multiple shooting method)
[50,135,136]. The idea is to solve Eq. (A1) explicitly by
using the measured data as an initial condition. In most cases,
solving the model is performed numerically. The estimated
solution of ψ (x, t ) is obtained under the given parameters.
By minimizing the first term in Eq. (A1) with respect to the
parameters, the best parameters may be estimated.

In the simplest shooting method, we use only one measure-
ment for the initial condition and use the rest of the data to
compute the cost function. When the model is sensitive to the
initial condition, such as chaotic dynamical systems, the error
grows exponentially in time. Therefore, this method results in
a larger error away from the initial condition. To handle such
data, in the multiple shooting method, several data are used as
initial conditions, and ψ is estimated in a short period of time
for each of the initial conditions.

c. Filtering and sequential data assimilation

Sequential data assimilation is widely used to fit data to
a model at hand [19,20]. It consists of three steps: prediction,
filtering, and smoothing. In prediction, the model is evaluated,
and the state at the next step in time ψ (x, t + 	t ) is predicted
from the current time ψ (x, t ). In filtering, the predicted value
ψ (x, t + 	t ) is revised to fit the measurement ψ∗. These steps
are carried out sequentially in time. Finally, in smoothing, the
estimated ψ̂ (x, t ) is further revised to fit all the past measure-
ments.

For the deterministic model, the value of ψ (x, t ) at any
time t may be expressed by the flow map ψ (x, t ) = �t (ψ0)
for the initial condition ψ0. Therefore, sequential assimilation
is often used to estimate the initial conditions. The estimation
of the parameters can also be included in the sequential data
assimilation.

d. Adjoint method and sensitivity analysis

The adjoint method is called the variational method or
4DVAR in data assimilation. The main idea is to introduce
a Lagrange multiplier λ and define the cost function as

Eadj = 1

2

∑
i,α

[ψ∗(xi, tα ) − ψ (xi, tα )]2

+
∫

λ(x, t ){∂tψ (x, t ) − fμ[ψ (x, t )]}dx dt . (A5)

The variation of the cost function with respect to the
parameters results in the gradient dynamics of both the pa-
rameters and the Lagrange multiplier. The equation of the
Lagrange multiplier is nothing but solving the model back-
wards to correct the error between the estimated trajectory
and the measurement. This method was successfully applied
to pattern-forming PDEs [39,40]. However, in this method,
the initial condition has to be fixed because the method makes
an estimation by solving the model in forward and backward
directions in time. Estimating the initial condition may be pos-
sible by the hyperparameter estimation. We are not aware of
the discussion about the marginalization of initial conditions
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and the stability of the estimated model within the adjoint
method.

5. Estimation of the model with a stationary state

When the observation is made only at the stationary state,
the data does not have information about trajectories before
reaching the stationary state [Figs. 14(c) and 14(d)]. As we
have seen in the previous section, the various methods for
the parameter estimation of the state-space model rely on
time series. Clearly, the method using the time derivative or
its interpolation cannot be applied to the stationary problem.
Only the stationary data are the sparsest measurement in the
time series. The shooting method, the sequential data assimi-
lation, and the adjoint method essentially estimate trajectories
between two measurements in time. In the stationary problem,
there are many initial conditions leading to the same stationary
state. We are interested in the model that can reproduce the
stationary objective pattern from a wider range of the initial
conditions. Then the estimated model is expected to reproduce
the objective pattern as a stable state.

Besides such obvious differences from the estimation from
time series, the estimation from the stationary data has several
difficulties. There are two types of problems for the estimation
from the stationary data; the first is to find parameters μ for

fμ(ψ∗) = 0. (A6)

The second is to find the parameters for ψ∗ as a solution of

∂tψ = fμ(ψ ) (A7)

at t → ∞. Our method, BM-PDE, focuses on the second
problem. The advantage is that it is possible to make sure that
the estimated model can reproduce approximately the objec-
tive pattern as a stable solution. This is done by marginalizing
the initial conditions. When the solution is obtained from a
wide range of the initial conditions, the model should repro-
duce the pattern in a stable manner.

The first problem does not care about the initial conditions.
When the model fμ(ψ ) is nonlinear, there may be several
stable and unstable solutions. For this problem, it is not guar-
anteed whether the objective pattern is a stable or unstable
solution of the estimated model. In addition, the estimation of
parameters is not unique; when fμ(ψ∗) = 0, a close neighbor-
hood, μ + δμ, of μ may also satisfy fμ(ψ∗) = 0 as long as f
is not at a bifurcation point. To make the estimation unique,
we need a regularization term. The ridge regression (L2 reg-
ularization) or sparse regression (L1 regularisation) may fix
the estimation, but they are independent of the stability of
the objective pattern. Therefore, these regularization methods
do not guarantee that the estimated model reproduces the
objective pattern as a stable state.

APPENDIX B: FAMILY OF MODELS

1. Phase-field crystal model and its generalization

For a single wavelength, we have m = 1, and we recover
the conserved SH equation (the simplest PFC model). In order
to control the position and amplitude of unstable mode, we use

FIG. 15. Linear stability of multi-length-scale phase-field crystal
equations. The plots show eigenvalues as a function of the wave
number. Positive eigenvalues imply the uniform state is unstable.

the following form:

Lk = −a0

q4
0

k2(k2 − 2q2
0

) − s0k2(q2
0 − k2)2

. (B1)

With this form, patterns with k = q0 appear, and its stability is
denoted by a0 (see Fig. 15). Here s0 expresses sharpness of the
peak in the spectrum. For larger s0, the peak becomes sharper
(Fig. 15).

For two length scales, we use another length scale k = q1

in addition to k = q0, and the linear stability around the uni-
form state for the two length scales, a0 for k = q0 and a1 for
k = q1 as shown in Fig. 15. This model has been used to
reproduce QC patterns [42]. The explicit form of the linear
operator is given by

Lk = a0S0(k) + a1S1(k) − s0k2

q4
1

(
q2

0 − k2
)2(

q2
1 − k2

)2
, (B2)

S0(k) = 1

q4
0

(
q2

0 − q2
1

)3 k2
(
q2

1 − k2
)2

× [(
q2

1 − 3q2
0

)
k2 + q2

0

( − 2q2
1 + 4q2

0

)]
, (B3)

S1(k) = 1

q4
1

(
q2

0 − q2
1

)3 k2
(
q2

0 − k2
)2

× [(
3q2

1 − q2
0

)
k2 + q2

1

(
2q2

0 − 4q2
1

)]
. (B4)

To make sharp enough peaks, we use s0 = 100.
For three length scales, we may extend the above-discussed

expressions and obtain

Lk = a0S0(k) + a1S1(k) + a2S2(k)

− s0k2
(
q2

0 − k2
)2(

q2
1 − k2

)2(
q2

2 − k2
)2

, (B5)

S0(k) = 1

q4
0

(
q2

0 − q2
1

)3(
q2

2 − q2
0

)3 k2
(
k2 − q2

1

)2(
k2 − q2

2

)2

× [
q2
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( − 6q4
0 + 4q2

0q2
2 + 4q2

0q2
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1q2
2
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+k2
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, (B6)

S1(k) = 1

q4
1

(
q2

0 − q2
1

)3(
q2

1 − q2
2

)3 k2(k2 − q2
0

)2(
k2 − q2

2
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× [
q2

1
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0q2
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, (B7)
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FIG. 16. (a) Snapshots of two-dimensional pattern with two length scales under different inverse temperature β during the Monte Carlo
simulations for the objective pattern of numerically produced dodecagonal QC. (b)–(d) The cost function during the steps in replica-exchange
Monte Carlo (REMC) simulations in the parameter space at the steady state with one (c), two (b), and three (d) length scales, respectively.
(e)–(h) Histogram of the estimated parameters during REMC steps with vertical dashed lines indicating their ground truth. The different colors
show different inverse temperature, β.
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The linear spectrum is shown in Fig. 15.

2. Polynomial expansion of the linear operation
with respect to wave numbers

Our family of models is based on the number of length
scales. This is demonstrated in the functional form of the
linear operator in the Fourier space shown in Fig. 15 and
Eqs. (15) and (16). The benefit of this approach is that pa-
rameters μ have clear physical meaning: the wave numbers
qi correspond to the characteristic length scales and stability
at the wave numbers ai. The disadvantage of this approach
is that we have to treat the different number of length scales
independently. This implies that the two-length-scale model

m = m2 does not include the one-length-scale model. If q0

and q1 are overlapped in m = m2, the operator L diverges, as
seen, for example, in Eq. (B3). On the other hand, we may
consider a family of the model by expanding Lk in Eq. (16)
by a polynomial expansion of k. In this section, we discuss
the drawbacks of this approach and explain why we use our
family of models by Eq. (16).

Within the approach of polynomial expansion, parameters
{μ} are chosen as coefficients of a polynomial expansion of
Lk = ∑

i μiki. The advantage of this expansion is that we may
express Lk of different models with the different number of
length scales in Fig. 15 in a unified way. Once we truncate
the expansion up to k14, we may express a three-length-scale
model, and when the coefficients of k12 and k14 are identically
zero, the model describes two length scales. We may use
sparse regression by adding regularization and use a particular
type of prior distribution of the parameters [137].

The disadvantage of this method is that the coefficients
of the expansion in terms of polynomials of k do not have
explicit physical meanings. In practical terms, the range
of the parameters is too broad, so that estimation is not

TABLE I. The ground-truth and estimated parameter values for numerically produced 12-fold QCs. Errors are evaluated from the standard
deviation of all data.

Parameter Ground truth Estimated (one length) Estimated (two length) Estimated (three length)

dx 1.020 0.987 ± 0.00615 1.0217 ± 0.0024 1.003 ± 0.00033
dy 1.026 0.994 ± 0.0135 1.0232 ± 0.00319 1.0040 ± 0.0033
ψ̄ −0.826 −0.389 ± 0.0272 −0.820 ± 0.0163 −0.682 ± 0.018
a0 0.00794 0.055 ± 0.0113 0.0391 ± 0.0594 −0.150 ± 0.0081
q1 0.518 – 0.518 ± 0.00214 0.729 ± 0.0023
a1 0.0306 – 0.0375 ± 0.0140 0.0383 ± 0.020
q2 – – – 0.368 ± 0.0018
a2 – – – −0.136 ± 0.011
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FIG. 17. Top: The objective pattern and the generated pattern
from the estimated PDE in real and Fourier space. Bottom: His-
tograms of the cost function of the REMC sampling for the objective
pattern of dodecagonal QC that is synthesized by the function of
Eq. (19). The horizontal axis is shown in the logarithmic scale.

possible. For example, the numerically produced dodecagonal
QC discussed in Fig. 5 is expressed as

Lk ≈ −99.7k2 + 945.6k4 − 2984.8k6 + 3531.8k8

− 1392.8k10, (B9)

and the precision of 0.1 is necessary to obtain QC. Therefore,
the range of the parameters should be [−4000.0, 4000.0].
Practically, it is impossible to get a reasonable estimate from
such wide range of the parameters, and even if possible, un-
certainty is certainly much larger than 0.1, and thus there is no
guarantee to obtain a QC within the error.

Finally, we should point out that the sparse regression does
not work when parameters are correlated [138]. In the system
that we are studying, the parameters must be correlated be-
cause the amplitude and position of the unstable wave number
are set by the peak of Lk , and it is determined by the balance
of several terms in the polynomial expansion.

APPENDIX C: EXAMPLES

1. Objective pattern produced by a numerical simulation:
Two-dimensional dodecagonal QC

The process of parameter estimation is shown in Fig. 16(a).
At the initial parameters, estimation is poor in all temper-
atures, β (corresponding to the observation noise). After

several MC steps, the cost function decreases drastically at
the lower temperature, and reaches its steady state. At the
steady states, sampled patterns are very close to the objective
pattern. At the higher temperature, the parameter change in
each MC step is too large to converge to a unique pattern;
rather, it exhibits nearly random motion in the parameter
space. In Fig. 16(b) we demonstrate successful sampling in
the parameter space by showing the cost function, or we call
it energy, covers a wide range of its values. The distribution
of the cost function has two regions connected by the energy
gap. The lower cost function corresponds to a QC, which is
qualitatively similar to the objective pattern, while the higher
cost function is dominated by hexagonal patterns. This result
implies that there are multiple minima of the cost function.
This means that the standard MC simulation does not con-
verge to the ground truth unless an initial parameter set is
chosen nicely,

The same algorithm is used for the different models with
one length scale or three length scales [Figs. 16(c) and 16(d)].
Both REMC simulations converge to their steady histograms
of the cost function, both of which are higher than the his-
togram of the two-length-scale model. This result means the
two-length-scale model is indeed most likely for the objec-
tive pattern. In fact, the marginal likelihood, which we also
call free energy F (β, m), shown in Fig. 5(e) has the lowest
value for the two-length-scale model m = m2. Because this
objective pattern has corresponding ground-truth parameter
values and the model of Eq. (5) is deterministic, the minimum
of the free energy is, strictly speaking, achieved at β → ∞.
Nevertheless, we obtain a clear deviation of the free energy
of the wrong models m = m1 and m = m3, as they increase at
large β. This is because the wrong models do not have exactly
the same pattern as the objective pattern in their solution, and
therefore, the best estimation is made at the finite noise level,
resulting in the minimum at the finite β. In those models,
estimation of parameters is carried out at the optimal tem-
perature β̂ at which the marginal likelihood has its minimum
value.

The probability of each model is calculated by marginaliz-
ing the probability P ∝ e−F [β] at each temperature, β, about
the whole temperature range. This probability is also well
captured by the minimal value of the marginal likelihood (free
energy) of each model. The result is shown in the inset of
Fig. 5(e). In this example, the probability of selecting the
two-length-scale model is almost 100%.

The estimate parameters are shown in Table I, together
with the uncertainty of the estimation. The uncertainty

TABLE II. The estimated parameter values for functionally synthesized dodecagonal QCs. Errors are evaluated from the standard deviation
of each sample from the REMC at the optimal temperature.

Parameter Estimated (one length) Estimated (two length) Estimated (three length)

dx = dy 0.986 ± 0.0092 0.980 ± 0.0018 0.992 ± 0.0039
ψ̄ −0.183 ± 0.0497 −0.748 ± 0.0192 −0.613 ± 0.0149
a0 0.010 ± 0.0120 −0.132 ± 0.0443 −0.0581 ± 0.0213
q1 – 0.514 ± 0.0037 0.916 ± 0.0174
a1 – 0.0153 ± 0.0085 −0.155 ± 0.0214
q2 – – 0.507 ± 0.0029
a2 – – 0.0245 ± 0.00762

065301-24



BAYESIAN MODELING OF PATTERN FORMATION … PHYSICAL REVIEW E 106, 065301 (2022)

TABLE III. The estimated parameters values for functionally synthesized stripe pattern. Errors are evaluated from the standard deviation
of each sample from the REMC at the optimal temperature.

Parameter Estimated (one length) Estimated (two length) Estimated (three length)

dx = dy 0.992 ± 0.0153 0.995 ± 0.0119 0.988 ± 0.0146
ψ̄ −0.0471 ± 0.0351 −0.0648 ± 0.0426 −0.0390 ± 0.0281
a0 0.0329 ± 0.0115 −0.0337 ± 0.0952 −0.0877 ± 0.0788
q1 – 0.571 ± 0.127 0.728 ± 0.240
a1 – 0.0112 ± 0.0420 −0.0781 ± 0.0756
q2 – – 0.636 ± 0.187
a2 – – 0.0097 ± 0.0451

quantification is made by the standard deviation of the pos-
terior probability distribution of the parameters around their
mean value. The ground truth is indeed within the error.

Histograms of the parameters at each β under m = m2 are
shown in Figs. 16(e)–16(h). As we can see, at a lower temper-
ature (higher β in the blue line), the distribution accumulates
around the ground truth whereas, at the higher β (low β shown
in the red line), the distribution covers the whole range of the
parameters. From the high β to the low β, the distribution
gradually becomes shrinking. This suggests that RMEC can
well sample the true parameter distribution.

The width of the histograms at the low β varies from pa-
rameter to parameter. For the wavelength q1, the distribution
is narrow around the ground truth, as demonstrated in the
small standard deviation in Table I. The mean density ψ̄ and
the spectrum amplitude at q = q1 (see Fig. 15) has broader
distribution, but still, there is a clear peak near the ground
truth. On the other hand, the distribution of the spectrum
amplitude at q = q0 is very broad even at the lowest β. In
fact, the error in the estimation of a0 is comparable to its
estimated value, suggesting that we have a poor estimation
on a0. We suspect that this is because the model does not
care about the value of a0 once the mode at the wavelength
q1 becomes unstable as its amplitude a1 > 0. Due to non-
linear interaction between different modes, even the mode
with a negative spectrum, which is linearly stable, becomes
unstable and grows. Therefore, the mode at the wavelength
q0 = 1 may have arbitrary amplitude as long as its spec-
trum is close to zero that it can be destabilized by the mode
at q1.

The estimated parameters in the one-length-scale and
three-length-scale models deviate from the ground truth. One
length scale is not enough to reproduce a quasicrystalline

pattern, and therefore, the estimated parameters correspond
to hexagonal patterns. The three-length-scale model, on the
other hand, does reproduce a quasicrystalline pattern, which
is similar to the objective pattern. Therefore, the estimated
parameters, particularly the wavelength q1 and q0 satisfy
the ratio q0/q1 � 1.997, which is close to 2 cos(π/12).
Nevertheless, the cost function is higher than that of the two-
length-scale model because the three-length-scale model is
not a true model, and the sampled pattern is quantitatively
different from the objective pattern. We note that the cost
function of the three-length-scale model is still lower than
the one-length-scale model in which the estimation is quali-
tatively wrong.

2. Objective pattern synthesized by a function:
Two-dimensional dodecagonal QC

The same algorithm was used for the objective pattern
synthesized by functions by Eq. (19) for the two-dimensional
stripe, hexagonal, and dodecagonal QC patterns, and the
three-dimensional DG pattern. The results are summarized in
Fig. 7.

The objective pattern of a dodecagonal QC is synthesized
by the function of superposition of 12 plane waves as Eq. (19)
(see Sec. VIII B). The pattern has 12-fold rotational symmetry,
as demonstrated in the pattern in the Fourier space (Fig. 17).
We may generate a similar pattern from the estimated PDE to
the objective pattern, if not exactly the same.

The obtained histogram of the cost function is qualitatively
similar to the objective pattern of the numerically produced
dodecagonal QC [see Figs. 17 and 5(a)–5(c)]. The two-length-
scale model has two distinct energy scales associated with QC
and hexagonal patterns. At the lower cost function, we obtain

TABLE IV. The estimated parameter values for a functionally synthesized hexagonal pattern. Errors are evaluated from the standard
deviation of each data.

Parameter Estimated (one length) Estimated (two length) Estimated (three length)

dx = dy 0.990 ± 0.00778 1.007 ± 0.00642 1.03 ± 0.00518
ψ̄ −0.226 ± 0.0536 −0.171 ± 0.0445 −0.170 ± 0.0399
a0 0.0408 ± 0.0126 0.0438 ± 0.0341 −0.121 ± 0.0450
q1 – 0.492 ± 0.0162 0.635 ± 0.113
a1 – 0.0534 ± 0.00713 −0.102 ± 0.0408
q2 – – 0.483 ± 0.00261
a2 – – 0.0424 ± 0.00586
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TABLE V. The estimated parameters values for functionally synthesized DG pattern in three dimensions. Errors are evaluated from the
standard deviation of each sample from the REMC at the optimal temperature.

Parameter Estimated (one length) Estimated (two length) Estimated (three length)

dx = dy = dz 0.528 ± 0.0261 0.561 ± 0.00380 0.565 ± 0.00995
ψ̄ −0.0559 ± 0.0326 −0.090 ± 0.0266 −0.165 ± 0.0102
a0 0.0548 ± 0.0149 0.127 ± 0.0236 0.0713 ± 0.0123
q1 – 0.838 ± 0.0187 0.349 ± 0.188
a1 – 0.112 ± 0.0208 −0.0604 ± 0.0336
q2 – – 0.855 ± 0.0156
a2 – – 0.146 ± 0.0398

QCs. The three-length-scale model also reproduces QCs, but
the cost function is higher than that of the two-length-scale
model. Therefore, the two-length-scale model will most likely
give the objective pattern.

The log marginal likelihood (free energy) at each temper-
ature, β, is calculated for each model [see Fig. 8(c)]. The
models with one- and three-length scales show qualitatively
the same β dependence of the log marginal likelihood with the
results for numerically produced objective pattern [Fig. 5(e)].
On the other hand, the two-length-scale model m = m2 shows
qualitatively different β dependence, namely, there is a min-
imum at β ≈ 16. This is because there is no ground truth
in this objective pattern. Intuitively, this situation is similar
to the objective pattern with noise. In both cases, the model
of Eq. (5) cannot reproduce exactly the same pattern as the
objective pattern. The Bayesian modeling is suitable in such
cases because it gives us an optimal noise level [25]. Even
though the cost function, or energy, is lower at the lower
temperature, β, the posterior distribution is too narrow so that
a slightly higher β than the lowest β gives the best estimate.
This is exactly how our method estimates the observation
noise in the objective pattern, and avoids overfitting. When
the problem does not have the ground truth, there is a nonzero
observation error in the objective pattern. By estimating the
optimal β, we can quantify how the best-estimated model is
close to the objective pattern.

The estimated parameters are shown in Table II, and the
corresponding histograms for each β are shown in Fig. 18.
The histograms of the sampled parameters are qualitatively
similar to the results of the numerically produced objective
pattern. The distribution of the estimated wave number is well
accumulated around the value that is necessary to make QCs,
that is, q1 ≈ 0.51, which is close to 1/[2 cos(π/12)] under

q0 = 1. The width of the distribution is sharp because if the
ratio q1/q0 does not satisfy the appropriate value, the coupling
between the two modes cannot occur. Other parameters do not
have specific values that they should satisfy, and therefore,
show broader distribution than that of the wavelength. In fact,
there is a region where the dodecagonal QC can appear in the
parameter space spanned by mean density ψ̄ and the spec-
trum amplitude a1. These parameters are distributed inside
the region. In particular, the mean density is a good quantity
separating the dodecagonal QC from the stripe and hexagonal
patterns. This is because ψ̄ manifests the strength of coupling
among three modes, that is, the coupling of two modes affects
another mode in the dynamic equation [see the quadratic term
in Eq. (14)]. The stripe pattern has a symmetry of ψ → −ψ ,
and therefore, this coupling must be weak. The hexagonal
pattern does not have this symmetry, and this requires stronger
coupling; the dodecagonal QC requires even far stronger cou-
pling [14]. Therefore, |ψ̄ | 
 0. This is in agreement with the
result of the estimation in Fig. 18(b). The distribution of a0 is
broad for the same reason in the case of numerically produced
dodecagonal QC pattern.

3. Objective pattern synthesized by a function: Stripe and
hexagonal patterns

We apply our method to stripe and hexagonal patterns.
These patterns are simpler than the dodecagonal QC, and
the one length scale is enough to reproduce the patterns. For
the stripe pattern, the histograms of the cost function and
the estimated parameters are shown in Fig. 19 and Fig. 20,
respectively. For the hexagonal pattern, they are shown in
Fig. 21 and Fig. 22. In contrast with the dodecagonal QCs,
the cost function of these patterns can be very low up to about

TABLE VI. The estimated parameters values for functionally synthesized FK A15 pattern in three dimensions from experimental data.
Errors are evaluated from the standard deviation of each sample from the REMC at the optimal temperature.

Parameter Estimated (one length) Estimated (two length) Estimated (three length)

dx = dy = dz 0.533 ± 0.0364 0.461 ± 0.0037 0.466 ± 0.00705
ψ̄ −0.341 ± 0.0235 −0.335 ± 0.0357 −0.384 ± 0.0361
a0 0.0131 ± 0.005 0.101 ± 0.0483 0.118 ± 0.0377
q1 – 0.889 ± 0.0270 0.919 ± 0.0264
a1 – 0.0673 ± 0.0721 0.0532 ± 0.0267
q2 – – 0.599 ± 0.0533
a2 – – −0.140 ± 0.0473
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FIG. 18. Histogram of the estimated parameters for the objective
pattern of dodecagonal QC that is synthesized by the function of
Eq. (19). The vertical dashed line in the histogram of wave num-

ber indicates q1 =
√

2 − √
3, which is necessary to reproduce the

dodecagonal pattern.

E ≈ 10−5–10−4. In addition, the shapes of the histogram un-
der different models are qualitatively similar. Accordingly,
the minimum log marginal likelihood and probability of each
model are comparable among different models. Nevertheless,
we estimate the one-length-scale model m = m1 is the best
model in both stripe and hexagonal patterns [Figs. 7(a) and
7(b)]. The dependence of the log marginal likelihood on β is
indistinguishable among the three models. The marginal like-
lihood monotonically decreases as the temperature decreases
(or β increases), and therefore, the minimum log marginal
likelihood is attained at the highest β (lowest temperature).
The difference of the log marginal likelihood among the three
models is small, but still, by looking at marginalized proba-
bility, we find the one-length-scale model is more likely than
other models, as shown in Figs. 7(a) and 7(b).

The generated patterns from the estimated PDE are similar
to the objective pattern in both stripe (Fig. 19) and hexagonal
patterns (Fig. 21). We stress that thanks to the order parameter
�, we are able to identify two patterns up to translation and
rotation. In fact, the generated pattern from the estimated
parameters in Fig. 19 has a different orientation.

The estimated parameters under the one-length-scale
model are shown in Fig. 20 and Table III for the stripe pattern
and in Fig. 22 and Table IV for the hexagonal pattern. The
estimated wave number is close to that of the objective pattern
q0 = 0.5 in both patterns. The relevant parameter to distin-
guish between the stripe and hexagonal patterns is the mean
density ψ̄ . It is known that the stripe pattern appears near
ψ̄ = 0 because in this region, the pattern has parity symmetry,
ψ = −ψ [4]. The hexagonal pattern breaks this symmetry,
and also it requires the three-body interaction, which is the
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FIG. 19. Top: The objective pattern and the generated pattern
from the estimated PDE in real and Fourier space. Bottom: His-
tograms of the cost function of the REMC sampling for the objective
pattern of a stripe pattern that is synthesized by the function of
Eq. (19). The horizontal axis is shown in the logarithmic scale.

quadratic term in ψ in the dynamical Eq. (5). The hexagonal
pattern is expressed by the superposition of three plain waves

ψ1 = eix and ψ2,3 = ei(− 1
2 x±

√
3

2 y). The coupling between ψ2

and ψ3 gives rise to e−ix, which is the complex conjugate to
ψ1, and thus this quadratic term appears in the equation of
ψ1. In fact, the stripe pattern appears near ψ̄ = 0, whereas the
hexagonal pattern appears ψ̄ 
 0.

4. Objective pattern synthesized by a function: Double gyroid
and Frank-Kasper A15

Estimation of a PDE that generates a three-dimensional
pattern is performed similarly to a two-dimensional pattern.
The only difference is the definition of order parameter �.
As discussed in Sec. VIII B 2, three-dimensional patterns may
have several invariants for each l . We expect including all
the invariants is necessary to classify complex patterns, but
in this study, we consider only one invariant similar to the
two-dimensional problem. We found this assumption works at
least for the patterns that we study here: DG and FK A15. We
have confirmed our method also works for a simpler pattern
such as lamellar pattern (stripes in three dimensions) and
cylindrical pattern (hexagonal pattern in three dimensions).

In Fig. 23 the histogram of the cost function of each model
is shown. The DG pattern is reproduced by all models(m =
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FIG. 20. Histogram of the estimated parameters for the objective
pattern of a stripe pattern that is synthesized by the function of
Eq. (19).
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FIG. 21. Top: The objective pattern and the generated pattern
from the estimated PDE in real and Fourier space. Bottom: His-
tograms of the cost function of the REMC sampling for the objective
pattern of a hexagonal pattern that is synthesized by the function of
Eq. (19). The horizontal axis is shown in the logarithmic scale.

m1, m2, m3). In fact, the generated pattern from the estimated
PDE is identical to the objective pattern up to translation,
and they have almost the same patterns in the Fourier space
(Fig. 23). The histograms of the cost function of all models
are qualitatively similar, but m = m2 has slightly smaller en-
ergy on average. The probability of the two models shown
in Fig. 7(d) is comparable, but m = m2 is chosen. The log
marginal likelihood decreases as the temperature decreases
(β increases), and therefore, within the current choice of the
range of β, the minimum of the log marginal likelihood is not
attained. If we use the temperature range containing larger β,
the log marginal likelihood may attain its minimum.

Estimated parameters are shown in Fig. 24 and Table V.
The estimated wave number distributes near the wavelength
that we have imposed. The mean density ψ̄ is accumulated
near ψ̄ = 0 but with a slight deviation. This is consistent with
previous theoretical and numerical results; the DG pattern, in
fact, appears between lamellar (stripe) and cylinder (hexago-
nal) patterns [33,34,36]. As discussed in Appendixes C 2 and
C 3, the stripe pattern appears near ψ̄ = 0 including ψ̄ = 0,
whereas the hexagonal pattern appears at |ψ̄ | 
 0. The region
where the DG pattern appears is between the two regions, and
thus the mean density should be 1 
 |ψ̄ | > 0. This is exactly
observed in Fig. 24(b).
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FIG. 22. Histogram of the estimated parameters for the objective
pattern of a hexagonal pattern that is synthesized by the function of
Eq. (19).
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FIG. 23. (a), (b) The objective pattern and the generated pattern
from the estimated PDE in real ψ (x) and Fourier |ψ̃ (k)| space for
DG patterns. In Fourier space, each point corresponds to a peak of
|ψ̃ (k)|, and the intensity is described by the size of the points. (c)–
(e) Histogram of the cost function of the REMC sampling for the
objective pattern of a DG pattern that is synthesized by the function
as Eq. (19). The horizontal axis is shown in the logarithmic scale.
Patterns with higher energy are also shown in the insets.

The FK A15 pattern is expressed by 24 wave vectors
q∗ = (±2,±1, 0), 24 wave vectors q∗ = (±2,±1,±1), six
wave vectors of q∗ = (±2, 0, 0) with their permutation along
the x, y, z directions [58]. In the unit cell, a center particle is
surrounded by eight particles at the position of the corners,
and two particles are located at each face [Fig. 25(a)]. In
Fig. 25 the histogram of the cost function for each model
is shown. The FK A15 pattern is reproduced by all models
(m = m1, m2, m3). The generated pattern from the estimated
PDE is similar to the objective pattern up to translation,
and they have almost the same patterns in the Fourier space
[Fig. 25(b)]. The similarity is also demonstrated in their side
views. The histograms of the cost function are shown in

1.00.80.60.40.20
wave number

1.0

0

hi
st

og
ra

m

0.5

0-0.2-0.4-0.6-0.8-1.0
mean density

0.20.10-0.1-0.2
amplitude at k=q0

(a) (b) (c)

FIG. 24. Histogram of the estimated parameters for the objective
pattern of a DG pattern that is synthesized by the function of Eq. (19).
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FIG. 25. (a), (b) The objective (a) and estimated (b) patterns in
real ψ (x) and Fourier |ψ (k)| space for the objective pattern of FK
A15. In Fourier space, each point corresponds to a peak of |ψ (k)|,
and the intensity is described by the size of the points. The side view
of the real-space images is also shown in the middle panels. In the
side view, neighboring domains of the periodic boundary are added
around the main domain to clarify periodicity. (c)–(e) Histogram of
the cost function in the REMC sampling for the objective pattern of
a FK A15 pattern that is synthesized by the function of Eq. (19). The
horizontal axis is shown in the logarithmic scale. (f)–(h) Histogram
of the estimated parameters for the objective pattern of a FK A15
pattern that is synthesized by the function.

Figs. 25(c)–25(e). The probability of the two models shown
in Fig. 7(e) is comparable, but m = m1 is chosen for this
objective pattern. The log marginal likelihood decreases as
the temperature decreases, and therefore, within the current
choice of the range of temperature, the minimum of the log
marginal likelihood is not attained. If we use the temperature
range containing larger β, the log marginal likelihood may
attain its minimum.

Estimated parameters are shown in Figs. 25(f)–25(h) and
Table VI. The estimated wave number distributes near the
wavelength that we have imposed q = 0.5. In contrast with
the DG pattern, the mean density ψ̄ is away from ψ̄ = 0. In
fact, FK A15 has been found in higher resolution of ψ̄-a0

FIG. 26. The correlation between sphericity and the cost func-
tion for the generated patterns using the estimated parameters for
one-length-scale model m1 and two-length-scale model m2. The
sphericity of the objective pattern is shown in a vertical dashed line.

phase diagram using the self-consistent field theory, which
describes block copolymers [9]. The position of FK A15 in
the phase diagram used to be BCC, but recently several FK
phases have been found in this region. The BCC pattern has
been found at ψ̄ 
 0, and thus our estimated ψ̄ is consistent
with the observation. We note that, to our knowledge, FK
A15 has not been reported in the framework of PFC. Because
PFC is considered as an approximation of various model,
including self-consistent field theory and density functional
theory of atomic alloy, this pattern should appear in various
pattern-forming systems.

Each domain of the objective pattern of FK A15 is de-
formed [Fig. 25(a)]. Figure 25(b) shows that the generated
patterns using the estimated parameters are also deformed.
To see the deviation from a spherical shape quantitatively,
we extract the center of each domain in the density field
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FIG. 27. Estimated wave numbers for numerically generated QC
by BM-PDE equation (2) for the damaged objective pattern.

065301-29



NATSUHIKO YOSHINAGA AND SATORU TOKUDA PHYSICAL REVIEW E 106, 065301 (2022)

ψ (x) of the generated patterns. The density field is binarized
using the threshold of half of the maximum density. Then,
the connected components are extracted from the binary field,
and the center of each connected component is computed.
We also compute a gyration tensor of each domain, from
which we obtain three eigenvalues associated with lengths of
three axes of an ellipsoid. Sphericity is defined by the ratio
between the maximum and minimum eigenvalues. When the
domain is a spherical shape, sphericity is one, whereas it is
larger than one when the shape is deformed. Figure 26 shows
the correlation between sphericity and the cost function. The
one-length-scale model m1 generates patterns that are more
deformed than those generated by the two-length-scale model

m2. Accordingly, the cost functions of the generated patterns
by the one-length-scale model are lower.

APPENDIX D: DAMAGED OBJECTIVE PATTERN

In addition to the estimation for the objective pattern with
noise in the text, we perform the estimation for the damaged
objective pattern. The damaged pattern is made by setting
ψ = 0 at randomly distributed spatial points. We vary the
fraction of the damaged point from 0 to 50%, and estimate
the wave number, which is the most relevant parameter to
reproduce dodecagonal QC. Figure 27 shows that up to 30%
of the damage, the correct wave number can be estimated.
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