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As a complex nonlinear medium, gas discharge plasma can exhibit various nonlinear discharge behaviors.
In this study, in order to investigate the chaos phenomenon in the subnormal glow region of an undriven
direct current glow discharge, a two-dimensional plasma fluid model is established coupled with a circuit
model as a boundary condition. Using the applied voltage as control parameter in the simulation, the complete
period-doubling bifurcation and inverse period-doubling bifurcation processes in the oscillation region are found,
and the influence of the applied voltage on the spatiotemporal distribution of plasma parameters during the
bifurcation-remerging process is examined. In addition, the spatial distribution of the plasma parameters of the
bifurcation-remerging process is also examined. Also, a series of periodic windows are present in the chaotic
region, where the positions and relative order are generally consistent with the universal sequence. Additionally,
this study showed that the intermittent chaos appears near the period-3 window, and the bursts appearing in the
approximate periodic motion becomes more and more frequent as the control parameters move away from the
saddle-node bifurcation point, which shows the typical type-I intermittent chaos characteristics.

DOI: 10.1103/PhysRevE.106.065207

I. INTRODUCTION

In recent years, gas discharge plasma technology has been
advancing relatively rapidly, and the low-temperature plasma
generated by gas discharge has many important applications
in the fields of material modification [1], waste water and
gas treatment [2], sterilization and disinfection [3,4], thin film
growth [5], nanopowder preparation [6], plasma display [7]
and [8]. It has significant research value and far-reaching
research prospects and its good economic benefits have grad-
ually become apparent.

Among all the low-temperature plasma generation meth-
ods, direct current (dc) glow discharge is one of the earliest
studied and most widely used methods [9]. In industrial
production and daily applications, plasma stability is often re-
quired. However, as a highly nonlinear medium, gas discharge
plasma often exhibits many complex nonlinear behaviors due
to complex internal interactions [10–12]. The study of non-
linear phenomena in gas discharge plasma contributes to our
understanding of the plasma discharge process with the aim
of eventually controlling chaos in low-temperature plasma
[13–15]. In addition, it is also important for research on
relaxation oscillators in the fields of electronic circuits and
neurodynamic [16], etc. Since the first observation of period-
doubling bifurcation and chaos in helium dc glow discharge
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plasma by Braun et al. [17], motivated many researchers to
investigate the nonlinear phenomena occurring in gas dis-
charge plasma with the aim of finding other routes to chaos
in gas discharge plasma [18–20]. Researchers have achieved
significant progress in the nonlinear dynamic behavior of gas
discharge plasma for a variety of discharge structures. Numer-
ous spatiotemporal nonlinear phenomena have been observed
in laboratory plasmas, from dc glow discharge [21–27],
dielectric-barrier discharge (DBD) [28–31], gas discharge-
semiconductor system (GDSS) [10,32], and plasma jet [33],
which involve self-pulses, self-organization, period-doubling
bifurcation, intermittency, homoclinic bifurcation, and chaos.
At present, it is believed that the nonlinear phenomena in gas
discharge plasma are mainly due to the plasma operating in
the negative differential conductivity section of the discharge
current-voltage characteristic (CVC) curve [34]. Although
outstanding achievements in the study of the complexities of
gas discharge plasma have been made, most previous studies
only go as far as describing experimental phenomena. Due
to the limitation of measurement accuracy and the inevitable
influence of noise, some discharge phenomena have not been
consistently and reasonably explained, and the variation of
discharge modes with external control parameters is not en-
tirely clear.

In this study, a two-dimensional (2D) plasma fluid model
is established to study the time-domain oscillation phenomena
between the Townsend discharge region and the glow dis-
charge region, coupling the external circuit into the model as
a boundary condition. The entire process of mode transition is
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demonstrated using applied voltage as the control parameter.
The results showed that, with the increase of applied voltage,
the discharge will undergo a transition from regular periodic
oscillations to chaos via period-doubling bifurcation, and then
return to periodic oscillations via an inverse period-doubling
bifurcation process. The results are in good agreement with
the experimental observations contained in Refs. [21,22]. The
article is organized as follows. After this introduction, the
governing equations and the boundary conditions are given
in Sec. II. Then, the calculation results and discussion are
presented in Sec. III and finally the conclusions drawn from
the simulations are summarized in Sec. IV.

II. MODEL

A. Governing equations

The simulation is based on the fluid model, solved to obtain
the spatial distribution of the particle number density, electron
energy density, and electric potential. Argon is used as the
working gas since it has simple chemical reactions and has
been extensively investigated.

The particle density of different species (electrons, excited
atoms and ions) nk is determined by the particle number
balance equation,

∂nk

∂t
+ ∇ · �k = Sk, (1)

where Sk represents the source term due to the collision
reaction, the particle flux �k under the drift-diffusion approx-
imation has the form,

�k = −μknkE − Dk∇nk, (2)

The electron energy density nε is determined using the elec-
tron energy conservation equation,

∂nε

∂t
+ ∇ · �ε = −e�eE + Sε, (3)

where the first term on the right-hand side represents the Joule
heat source and the second term indicates the increased energy
due to the collision. The relationship between the electron
energy density and the electron density can be expressed as
nε = neε, where ε = 3/2kBTe is the mean electron energy, and
the energy flux �ε can be expressed as

�ε = −μεnεE − Dε∇nε, (4)

the electric potential ϕ is determined by the Poisson equation,

−ε0∇2ϕ =
∑

k

qknk, E = −∇ϕ. (5)

In the above equations, μ and D represent the mobility and
diffusion coefficient, respectively. For electrons, the mobility
μe and diffusion coefficients De are calculated from Eqs. (6)
and (7),

μe = −2e

m

∫ +∞

0

ε

3νea

√
ε

∂

∂ε
f0(ε)dε, (6)

De = 2e

m

∫ +∞

0

ε

3νea

√
ε f0(ε)dε, (7)

where ε is the electron kinetic energy, νea is the momentum
transfer frequency. In the fluid model, the electron energy

FIG. 1. Cross sections of chemical reactions in the model.

distribution function (EEDF) f0(ε) should be predefined. It
is worth noting that although the use of different EEDFs
can significantly affect the rate constants of the chemical
reactions, at a macroscopic level it still gives qualitatively
similar CVCs, which are of more interest to us. Therefore,
it is assumed that in the simulation, the electrons follow the
Maxwell distribution, which has proven to be feasible in the
related experiments [9,35,36]. The relationships με = 5/3μe

and Dε = 5/3De are satisfied between the electron energy
transport coefficient and the electron transport coefficient.

In the fluid model, the source terms Sk and Sε in the
above continuity equation are related to the chemical reactions
involved in the plasma. In the model, neutral argon atoms,
electrons, ions, and metastable state argon atoms are consid-
ered. The chemical reactions involved in the simulations are
given in Table I, whose collision cross sections of the electron
collision reactions are shown in Fig. 1. Thus, the source term
Sk and Sε can be expressed as,

Se = Si = k2n0ne + k5nmne + k6n0nm, (8)

Sm = k3n0ne − k4nenm − k5nenm − 2k6n2
m − k7n0nm, (9)

Sε = −3/2δνeanekB(Te − Tg) + k2n0ne�E2

+ k3n0ne�E3 + k4nmne�E4 + k5nmne�E5, (10)

where n0 is the density of neutral argon atoms, δ = 2me/mg,
the background gas temperature Tg = 300 K, and kn is the
rate constant corresponding to the nth reaction, the cross sec-
tion data is obtained from the Phelps database [37], and the
relationship with the collision cross section is

kn =
∫ ∞

0
σn(ε)v(ε)

√
ε f0(ε)dε. (11)

B. Boundary conditions

The normal flux of electrons and electron energy are given
by

n · �e = 1 − re

1 + re

(
1

2
ve,thne + neμe(E · n)

)
+

∑
i

γi(�i · n)

(12)
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TABLE I. Chemical reactions considered in the simulation.

Reaction Type � E (eV ) Constant

e + Ar → e + Ar Elastic collision 0 Calculated from Eq. (11)
e + Ar → 2e + Ar+ Direct ionization 15.8 Calculated from Eq. (11)
e + Ar → e + Ar∗ Excitation 11.5 Calculated from Eq. (11)
e + Ar∗ → e + Ar Deexcitaion −11.5 Calculated from Eq. (11)
e + Ar∗ → e + Ar+ Stepwise ionization 4.4 Calculated from Eq. (11)
Ar∗ + Ar∗ → e + Ar + Ar+ Penning ionization – Ref. [37]
Ar∗ + Ar → Ar + Ar Metastable quenching – Ref. [37]

n · �ε = 1 − re

1 + re

(
5

6
ve,thne + nεμε(E · n)

)
+

∑
i

γiεi(�i · n)

(13)

where n is the outer normal direction unit vector of the wall;
v j = √

8kBTj/πmj ( j = e, i, m) is the thermal velocity; γ is
secondary electron emission coefficient, which is set to 0.25
in the model; εi is the mean energy of secondary electrons. For
positive ions, particle number loss due to migration should be
considered, and the boundary condition is given by,

n · �i = 1/4nivi − αniμi(n · E ), (14)

where the coefficient α = 1 when (n · E ) > 0, otherwise α =
0. For excited atoms, the boundary condition is as follows:

n · �m = 1/4nmvm. (15)

For the electric potential, consider the coupling of RC external
circuit, we set ϕ = 0 at the cathode and ϕ = U at the anode,
which is satisfied by,

dU

dt
+ 1

C

(
I − U0 − U

R

)
= 0, (16)

where U0 is the total voltage, I is the total current, R is the
ballast resistance, and C is the capacitance.

III. RESULTS AND DISCUSSION

A. Current-voltage curve

A dc gas discharge between two parallel electrodes in a
vacuum tube is considered in this work. The length of the
discharge tube is L = 15 cm, the radius is R0 = 1.25 cm, and
the electrode gap is d = 7 cm. The parameters of the RC
external circuit are selected as R = 106 � and C = 10 pF.
A 2D fluid model is built using the built-in plasma module
in COMSOL MULTIPHYSICS software. The CVC curve for the
discharge pressure p = 40 Pa, shown in Fig. 2, where the
abscissa is presented in logarithmic scale, contains a rapidly
declining negative slope section and a relatively flatter pos-
itive slope section, which allows us to consider the plasma
as an electronic component with the current-controlled neg-
ative resistance characteristics. Multiple previous studies on
nonlinear electronic circuits have suggested that a negative
differential conductivity is required to cause self-sustained os-
cillations [38–40]. With the consideration of the coupling with
the external circuits, the unstable oscillation will occur when
the equilibrium point of the discharge, i.e., the intersection of

the load line U = U0 − IR and CVC U = U (I ), is in the blue
dashed region in Fig. 2. The two sides of the oscillation region
correspond to the stable Townsend discharge region and the
glow discharge region, respectively. The present simulations
find that under appropriate parameters, the undriven dc glow
discharge system can show rich dynamical behaviors.

B. Evolution characteristics of dynamical behaviors

In this section, we present a detailed investigation of the
mode transitions in the oscillation region. The solution in the
stable glow discharge state is used as the initial condition
for subsequent calculations, where the solution time is long
enough so that eventually the system state will no longer
change. The first and second rows in Fig. 3 show the evolution
of the time-domain oscillations of the plasma voltage and
current for the applied voltage U0 = (a) 205.1 V, (b) 210 V, (c)
212.6 V, and (d) 214 V. The third row displays the trajectory
in the current-voltage phase space and the fourth row shows
the return map An × An+1 of the voltage waveform, where An

is the n-th maximum of the voltage amplitude. The results
in Figs. 3(a1)–3(a2) reveal that, since the applied voltage
U0 increases to a value slightly above its critical value of
about 205 V, the equilibrium point will lose its stability and
the system no longer converges to the stable state, instead,
periodic oscillations around the equilibrium point will appear.
The attractor in the phase space evolves into a limit cycle [as
shown in Fig. 3(a3)], which indicates a Hopf bifurcation and
a self-sustained oscillation of the system in the absence of an

FIG. 2. Current-voltage characteristics of the discharge in argon,
pressure is p = 40 Pa.
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FIG. 3. Evolution of the time-domain oscillations of discharge voltage (first row), evolution of the time-domain oscillations of discharge
current (second row), phase trajectory in current-voltage phase space (third row), and return map (fourth row) for different applied voltages
U0 = (a) 205.1 V, (b) 210 V, (c) 212.6 V, (d) 214 V.

externally periodic forcing. From the number of loops of the
limit cycle and the return map in Fig. 3(a4), it can be con-
cluded that the system is in the period-1 oscillation mode. As
U0 continues to increase, a new phenomenon appears, as can
be observed in Figs. 3(b1)–3(b4), in which the system under-
goes a period-doubling bifurcation. In this case, each voltage
and current pulse no longer maintains the same amplitude,
instead a high-amplitude pulse is followed by a low amplitude
pulse, with one oscillation period containing two pulses with
different amplitudes. The phase diagram shows that a new
loop is created from the previous limit cycle, so that the period
of the new limit cycle is twice that of the old one. The data in
the return map is almost concentrated at two points, indicating
that the system switches from a period-1 oscillation mode to
a period-2 oscillation mode, which means that the instability
of the system increases as the control parameter U0 increases.
Further period-doubling bifurcation will occur at higher U0,
as can be seen in Figs. 3(c1)–3(c2), where the voltage and
current waveforms will contain four pulses of different am-
plitudes in one period at U0 = 212.6 V. The phase diagram
in Fig. 3(c3) and the return map in Fig. 3(c4) show that
the system undergoes a transition from period-2 to period-4.

According to Feigenbaum’s theory, the parameter interval
�U0 between each period doubling occurrence will gradually
decrease, and eventually the system will transition to a fully
chaotic state after numerous period-doubling bifurcation. For
U0 = 214 V, it can be seen from Fig. 3(d1) and Fig. 3(d2)
that the oscillation waveforms in the time-evolution diagrams
of the current and voltage will be completely irregular, and
the system will transition to a nonperiodic motion. In this
case, the trajectories in the phase space will fill a certain area
densely. In addition, it can be seen from the return map that the
data are almost concentrated on a smooth single-peaked curve
with extremely narrow width, which is almost identical to the
return map obtained from a one-dimensional single-peaked
mapping (e.g., logistic map), suggesting that the transition to
the chaotic regime in the plasma occurs through a period dou-
bling bifurcation, in keeping with the Feigenbaum’s theory.

Apparently, as U0 continues to increase, the system will
not sustain the chaotic state (which will transition to a stable
glow discharge state at a sufficiently high applied voltage).
The transition of the discharge from a chaotic state to a glow
discharge state was investigated subsequently. The results
show that in dc glow discharge systems there exists not only
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FIG. 4. Evolution of the time-domain oscillations of discharge voltage (first row), evolution of the time-domain oscillations of discharge
current (second row), phase trajectory in current-voltage phase space (third row) and return map (fourth row) for different applied voltages
U0 = (a) 218 V, (b) 219.8 V, (c) 220.5 V, (d) 223 V.

a bifurcation process from periodic oscillation state to chaos,
but also a process of reforming an ordered oscillation state
after chaos. Figure 4 shows the evolution of the time-domain
oscillations for discharge voltages (first row) and discharge
currents (second row), the trajectories in voltage-current phase
space (third row) and the return map (fourth row) for applied
voltages of U0 = (a) 218 V, (b) 219.8 V, (c) 220.5 V, and
(d) 223 V, respectively. The transient processes at the initial
moments are also neglected. It can be seen in Figs. 4(a1)–
4(a4) and 4(b1)–4(b4), while U0 is increased from 218 V to
219.8 V, the discharge transitions from a chaotic state with
irregular oscillations to a periodic oscillation state, where
each period contains four voltage (current) pulses of different
amplitudes. Both the phase space trajectory and the return
map indicate that the system transitions to a period-4 os-
cillation state. As the voltage increases further, the inverse
period bifurcation process will be observed, and the transi-
tion to the period-2 and period-1 oscillation states can be
obtained at U0 = 220.5 V [Figs. 4(c1)–4(c4)] and U0 = 223
V [Figs. 4(d1)–4(d4)]. Eventually, the discharge transitions
to a stable glow discharge state once the applied voltage is
above 224 V and the periodic oscillation disappears. From

the above analyses, as the control parameters are gradually
increased, the process of period-doubling bifurcation and in-
verse period-doubling bifurcation will occur successively in
the oscillation region, the discharge transitioned from regular
periodic oscillation to irregular chaotic oscillation and then
to regular periodic oscillation again, the system undergoes an
order-chaos-order transition.

C. Global nonlinear dynamic characteristics

In order to briefly visualize the evolution of the oscilla-
tion mode, a bifurcation diagram is constructed as shown in
Fig. 5(a), in which the data points represent local maxima in
the voltage waveform. The detail enlargements of the left and
right parts of the bifurcation diagram are shown in Fig. 5(b)
and 5(c), respectively. The bifurcation diagrams shown in
Figs. 5(a)–5(c) reveal that with the gradual increase of the
control parameter, the system undergoes a transition from a
periodic oscillation state to a chaos state through a typical
period-doubling bifurcation route, and subsequently transi-
tions back to regular periodic oscillations through an inverse
period-doubling bifurcation route. The system has undergone
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FIG. 5. (a) Amplitude bifurcation diagram. (b) Period-doubling bifurcation process. (c) Inverse period-doubling bifurcation process.
(d) Period-5 window between 218.765 V and 218.79 V. (e) Period-3 window between 215.4 V and 217.3 V.

the bifurcation-remerging process. In addition, there is a fine
structure within the chaotic region. As shown in the Fig. 5(a),
there are several periodic windows within the chaotic re-
gion. Two distinct periodic windows are the period-3 and the
period-5, respectively, which are indicated in the diagram in
Fig. 5(a). The period-5 window occupies a relatively narrow
parameter range, while the period-3 window occupies a wider
parameter range and connects the period-doubling bifurcation
process with the inverse period-doubling bifurcation process.
The position and order of the periodic windows essentially
correspond to the universal sequence of periodic orbits. Ac-
cording to the Li-Yorke theorem, the presence of the period-3
window means that arbitrary integer periods can be found,
which implies that the system has an infinite self-similar struc-
ture. Magnified views of the period-3 and period-5 windows
are shown in Fig. 5(d) and Fig. 5(e), respectively. The voltage
waveforms for the period-5 oscillation mode (U0 = 218.79 V)
and the period-3 oscillation mode (U0 = 216.5 V) are shown
in Fig. 6(a) and Fig. 6(b), respectively. For the period-5 oscil-
lation mode, five pulses of different amplitudes are contained
in one period, while for the period-3 oscillation mode, one
period contains three pulses of different amplitudes.

D. Spatial distribution of plasma parameters

To determine the plasma properties of the bifurcation-
remerging process, the time-evolution curves of the discharge
current for U0 = 205.1 V (red line) and U0 = 223 V (blue
line) are depicted in Fig. 7(a). It can be seen that both curves

exhibit a period-1 oscillation and the period of oscillation be-
comes significantly shorter with higher voltage. Meanwhile,
the duration of the current pulse does not increase signif-
icantly, which is the characteristic discharge time after the
electrode gap is broken down. The axial spatial evolution
curves of the electron density and electric potential for the two
above-applied voltages, at the moments of the maximum cur-
rent indicated by a circle and the minimum current indicated
by a square in Fig. 7(a), are shown in Figs. 7(b) and 7(c). The
spatial distribution at the moments of the maximum current
for both applied voltages shows obvious characteristics of the
glow discharge, as can be seen in Fig. 7(b). The cathode sheath
region, which contains almost the entire potential drop, the
negative glow region with the highest electron density and
the positive column region where the electron density remains
essentially constant are clearly visible. However, when the
current is at a minimum, a clear difference in the spatial
distribution appears. The dashed line in the Fig. 7(c) reveals
that for U0 = 205.1 V, the maximum of the electron density
is only about 1011 m−3. Meanwhile, the quasineutral region is
not formed and the spatial distribution of the electric potential
is essentially undistorted. Thus, it can be concluded that the
electrode gap has not yet breakdown and the discharge is in a
typical Townsend discharge mode. Instead, for the condition
of U0 = 223 V, compared with U0 = 205.1 V, the electron
density and current are two orders and one order of mag-
nitude higher, respectively. Meanwhile, the electric potential
is somewhat distorted, with the potential drop starting to be
concentrated near the cathode. At this condition, the system

065207-6



NUMERICAL SIMULATION OF THE … PHYSICAL REVIEW E 106, 065207 (2022)

FIG. 6. (a) Voltage waveform in period-5 window, where U0 = 218.79 V. (b) Voltage waveform in period-3 window, where U0 = 216.5 V.

exhibits neither the characteristics of Townsend discharge nor
glow discharge, and can be considered to be in the transition
stage of both, i.e., a subnormal glow discharge mode. There-

fore, it can be concluded that for the unstable discharge at low
applied voltage (bifurcation stage), the system transitions be-
tween the Townsend discharge mode and the glow discharge

FIG. 7. (a) The temporal evolution curves of discharge current for U0 = 205.1 V (red line) and U0 = 223 V (blue line). (b) The axial spatial
evolution curves of the electron density (red line) and electric potential (blue line) for U0 = 205.1 V (dotted line) and U0 = 223 V (solid line)
at the moments of the maximum current indicated by a circle. (c) The axial spatial evolution curves of electron density (red line) and electric
potential (blue line) for U0 = 205.1 V (dotted line) and U0 = 223 V (solid line) at the moments of the minimum current indicated by a square.
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FIG. 8. Waveforms of discharge voltage at different applied voltages U0 = (a) 217.3 V, (b) 217.4 V, (c) 217.5 V, (d) 217.6 V, (e) 217.7 V,
(f) 215.4 V, (g) 215.3 V, (h) 215.2 V, (i) 215.1 V, (j) 215 V.

mode, while for the high applied voltage (remerging stage),
the system transitions between the subnormal glow discharge
mode and the glow discharge mode.

E. Intermittent chaos near the periodic window

Another phenomenon is the presence of intermittent chaos
near the periodic window. The voltage waveform on both sides
of the period-3 window are illustrated in Fig. 8, where the
parameters in Figs. 8(a)–8(e) are chosen to be U0 = 217.3–
217.7 V with a spacing of 0.1 V, while the parameters in
Figs. 8(f)–8(j) are chosen to be U0 = 215.4–215 V with a
spacing of −0.1 V. The results in Figs. 8(a) and 8(f) reveal
a stable period-3 oscillation similar to that in Fig. 6(b). When
the applied voltage U0 exceeds the critical value Uc, several
occasional irregular bursts appear in the voltage waveform
[e.g., in the blue area of Figs. 8(b) and 8(g)]. Beyond the
irregular bursts the waveform still maintains an approximate
period-3 oscillation state. The system is in a state that the
regular and irregular oscillations alternate. As the voltage
gradually moves away from the critical value, such irregu-
lar bursts will become more frequent and the proportion of
approximate periodic oscillation will decrease, as shown in
Figs. 8(c)–8(e) and 8(h)–8(j). Eventually, a transition to a fully
chaotic regime can occur, which is typically characteristic of
intermittent chaos.

The type-I intermittent chaos will occur near the critical
point of the saddle-node bifurcation. The third-iteration map
An × An+3 for U0 = 217.7 V is shown in Fig. 9(a), and the
iterative process inside the gray dashed box is shown in

Fig. 9(b). It can be seen that when intermittent chaos occurs
in the system, three narrow channels are formed between the
third-iteration map and the diagonal. When the orbit enters
the entrance of one of the narrow channels, it will require
several iterations to leave the channel. Due to the narrow
width of the channel, the iterations within the channel will be
similar to that near the fixed point, satisfying An+3 ≈ An [as
shown by the red line in Fig. 9(b)], which corresponds to an
approximate period-3 oscillation in the waveform (sometimes
called laminar regions). As the iteration exits the channel,
there are some dramatic, irregular jumps that correspond to ir-
regular oscillating regions in the waveform (sometimes called
turbulent regions) until it enters another narrow channel. The
width of the channel is related to the distance of the control
parameter U0 from the critical value of the periodic window
Uc: As |U0 − Uc| that gradually increases, i.e., the control
parameter moves away from the periodic window, the width
of the channel increases, indicating that fewer iterations are
needed to escape from the channel; In contrast, as |U0 − Uc|
gradually decreases, the width of the channel gradually de-
creases, corresponding to a gradual increase in the laminar
width. Eventually the channel will intersect with the diagonal
when |U0 − Uc| decreases to zero, and a pair of fixed points
will appear due to the occurrence of saddle-node bifurcation.
The unstable fixed points will degenerate during the iterative
process, and the system will converge to the stable fixed point
eventually, which is given in Fig. 9(b) for U0 = 217.3 V.
The saddle-node bifurcation leads to the appearance of the
periodic window in the chaotic region.
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FIG. 9. (a) Third-iterate map for applied voltage U0 = 217.7 V. (b) Iterative process inside the grey dashed box.

IV. CONCLUSIONS

In this study, we investigated the nonlinear dynamical be-
haviors of the dc glow discharge in the subnormal glow region
by developing a 2D plasma fluid model coupled to external
circuits through boundary conditions. The time-domain non-
linear discharge behaviors and its evolution under different
control parameters (i.e., applied voltage) are investigated in-
depth. The bifurcation-remerging phenomenon and the fine
structure of chaos are found, which enriches and refines the
time-domain nonlinear phenomena in an undriven dc glow
discharge.

There is an oscillation region between the Townsend dis-
charge region and the glow discharge region due to the
negative differential conductivity. The results show that with
the increase of the applied voltage, the discharge system oc-
curs through a bifurcation-remerging process and undergoes
an order-chaos-order transition at the given discharge param-
eters. The entire process that the discharge system undergoes
as the applied voltage increases can be described as follows:
a stable Townsend discharge, bifurcation-remerging process
and stable glow discharge. For the bifurcation-remerging

process, the plasma parameter distribution is examined in
depth. The results showed that for the bifurcation stage
the plasma system transitions between the Townsend dis-
charge mode and the glow discharge mode, while for the
remerging stage the system transitions between the subnor-
mal glow discharge mode and the glow discharge mode. In
addition, several periodic windows within the chaotic region
are present, and the existence of an inverse saddle-node bi-
furcation near the critical value of the periodic window is
demonstrated by a third-iteration map. As a result, a type-I
intermittent chaos is observed near the periodic window, and
occasional irregular bursts will become more frequent as the
control parameters move away from the critical point of the
saddle-node bifurcation.
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