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Regimes of ion dynamics in current sheets: The machine learning approach
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Current sheets are spatially localized almost-one-dimensional (1D) structures with intense plasma currents.
They play a key role in storing the magnetic field energy and they separate different plasma populations in
planetary magnetospheres, the solar wind, and the solar corona. Current sheets are primary regions for the
magnetic field line reconnection responsible for plasma heating and charged particle acceleration. One of the
most interesting and widely observed types of 1D current sheets is the rotational discontinuity, which can
be force-free or include plasma compression. Theoretical models of such 1D current sheets are based on the
assumption of adiabatic motion of ions, i.e., ion adiabatic invariants are conserved. We focus on three current
sheet configurations, widely observed in the Earth magnetopause and magnetotail and in the near-Earth solar
wind. The magnetic field in such current sheets is supported by currents carried by transient ions, which exist
only when there is a sufficient number of invariants. In this paper, we apply a machine learning approach, AI
Poincaré, to determine parametrical domains where adiabatic invariants are conserved. For all three current sheet
configurations, these domains are quite narrow and do not cover the entire parametrical range of observed current
sheets. We discuss possible interpretation of obtained results indicating that 1D current sheets are dynamical
rather than static plasma equilibria.
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I. INTRODUCTION

Current sheets are a common feature of space plasma sys-
tems. They are observed in planetary magnetospheres [1], the
solar wind [2,3], and the solar corona [4,5]. Current sheets
are characterized by spatially localized plane (surface) current
density supporting strong magnetic field gradients. Depending
on the value of plasma β (ratio of thermal plasma pres-
sure and magnetic field pressure), current sheets may contain
mostly diamagnetic cross-field currents (large-β systems, like
planetary magnetotails [6–11]) or mostly field-aligned cur-
rents (low-β systems, like the solar wind [12–15]). In some
space plasma systems, depending on external conditions, both
large-β and small-β regimes may occur. The current sheets
with cross-field currents are compressional plasma slabs,
whereas current sheets with purely field-aligned currents are
force-free compressionless slabs. An example is the planetary
magnetopause, a boundary between the solar wind flow and
planetary magnetosphere, where various β regimes are ob-
served [16–20]. Current sheets play an important role in the
magnetic field energy dissipation leading to plasma heating
and charged particle acceleration [21–23]. Magnetic field-line
reconnection is a key process for such dissipation [24–26]
and releases of the stored magnetic field energy. The onset
of magnetic reconnection and details of particle acceleration
strongly depend on magnetic field in stationary current sheets
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[27–30]. Such configurations are solutions of a stationary
Vlasov-Maxwell system describing a self-consistent magnetic
field and charged particle distributions [31]. Stationary solu-
tions are based on particle distribution functions written in
terms of particle integrals of motion (e.g., Refs. [32,33]), (see
also reviews of current sheet models in Refs. [4,22,34,35]).
In one-dimensional (1D) stationary systems, where the energy
and two canonical momenta are conserved, there are sufficient
number of such integrals (see examples of 1D current sheet
models for solar wind and magnetopause in Refs. [36–40]). In
2D systems (where the energy and one canonical momentum
are conserved), stationary current sheets without field-aligned
currents can be constructed (see planetary magnetotails exam-
ples in Refs. [33,41–43]). However, such 1D and 2D current
sheets describe tangential discontinuities, the most unstable
[44–47] and less observed (see discussion in Refs. [48,49])
types of current sheets. The most interesting in the context
of the solar wind [23,50,51] and planetary magnetospheres
[52–54] are rotational discontinuities with or without field-
aligned currents. They do not possess a sufficient number
of exact integrals of motion to construct a self-consistent
spatially localized plasma equilibrium. Thus, models of such
current sheets often include additional adiabatic invariants,
approximately conserved for specific magnetic fields (see dis-
cussion in Refs. [55–59]). Therefore, to determine the number
of adiabatic invariants is quite important for current sheet
model construction.

The presence of adiabatic invariants is a consequence
of a quasiperiodical motion of charged particles [60]. For
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strong magnetic fields, such motion is naturally decomposed
into three periodical motions with corresponding adiabatic
invariants: Magnetic moment for gyrorotation, the second
adiabatic invariant for bounce oscillations in magnetic field
traps, and the third adiabatic invariant for azimuthal drift
(in time-dependent systems with closed drift paths) (e.g.,
Refs. [61–63]). The situation is more complicated in current
sheets where the separation of different timescales is not so
pronounced (see Refs. [59,64,65]). For many concrete con-
figurations it is not known if there are adiabatic invariants.
Recently, an approach for the invariant search based on ma-
chine learning was proposed [66]. In this study we apply this
approach to studying the ion’s motion in three current sheets
typical for the Earths magnetopause or magnetotail and the
solar wind to check number of invariants for different param-
eters. Note that this approach can also be used to analyze the
motion of electrons with the corresponding changes in mass
and electric charge in the basic equations.

The structure of the paper is as follows. First, in Sec. II,
we discuss several relevant aspects of the dynamical systems
theory, in particular several timescales that describe systems
and their simulations. In Sec. III, we describe the adaptation of
a machine learning approach from Ref. [66] to ion dynamics
in current sheets. Then we describe results of application of
this approach for the ion’s motion in three current sheets in
Sec. IV. Finally, we discuss the obtained results and formulate
main conclusions of this study in Sec. V.

II. DYNAMICAL SYSTEMS

We consider Hamiltonian functions H (X, λ), where vector
X = [x, p] consists of particle’s coordinates x and momenta
p, and λ is the vector of system parameters, assumed to be
constant. Since H (X, λ) does not depend on time explicitly,
the total energy H is an integral of motion. Our goal is to
determine whether there are additional integrals of motion.

In our work we are searching for both exact and adia-
batic invariants. Adiabatic invariants are features of multiscale
quasiperiodic systems. They are the quantities approximately
conserved in the process of motion. The accuracy of their
conservation (or, equivalently, the rate of destruction) depends
on the ratio of the timescales of quasiperiodic motions con-
stituting a multiscale system. The rate of destruction defines
the time over which an adiabatic invariant can be assumed to
be (approximately) conserved, TAI. This timescale should be
compared with two other timescales: A residence time TR of a
given particle (phase point) in the system and the lifetime TSyst

of the system itself. In well-defined multiscale quasiperiodic
systems it is assumed that all these timescales are much longer
than the longest of the (quasi-) periods. In the presence of adi-
abatic invariants, the effective number of conserved quantities
detected in any numerical simulations depends on the duration
of simulation, TSim. In our work we are interested only in total
number of integrals conserved on timescales TSim ∼ TSyst, and
we make no difference between the exact and adiabatic ones.
However, AI Poincaré [66], the method described below, can
also be used to determine timescales of approximate invariants
conservation.

For a dynamical system with a state vector x ∈ RN , the
phase space of X is D = 2N-dimensional. Each conservation

FIG. 1. Poincaré map for an artificial system. The motion is
periodic in all three dimensions. Particle trajectory in a 3D space
(blue); Poincaré surface of section, x3 = 0 plane (shaded gray); and
Poincaré cross section (points of intersection of the trajectory with
section plane) (red dots).

law (corresponding to an invariant of motion) reduces the
number of independent variables. If there are K independent
integrals of motion, then all particles trajectories lie on man-
ifolds M with a dimension M = D − K . Thus, the problem
of determining the number of conservation laws (integrals
of motion) can be reduced to the problem of estimating of
dimensionality of the manifold M.

Sometimes it is more convenient to study not the particle
trajectory itself, but its Poincaré map (see a schematics in
Fig. 1). The dimensionality of the Poincaré map is DP =
2N − 1. Trajectories of all systems in this study quasiperi-
odically cross a certain plane x j = const. If a trajectory is
on an embedded manifold M, then the real dimension of
its Poincaré map is M = 2N − 1 − K . From the estimated
real dimensionality of the Poincaré maps we can estimate the
number of conserved quantities K .

III. THE MACHINE LEARNING APPROACH

Several machine learning approaches have been proposed
for searching integrals of motion [66–69]. They are mostly
based on the assumption that if additional invariants exist, the
particle trajectories reside on a lower-dimensional manifold
embedded in a phase space (e.g., Refs. [70–72]). One of the
proposed approaches is to estimate M (and thereby K) directly
from numerical trajectories by using a nonlinear generaliza-
tion of the principal component analysis (PCA) (see, e.g.,
Ref. [73]).

A. Principal component analysis

Classical PCA is a linear method widely used for dimen-
sionality reduction of datasets. It is an affine transformation
of a multidimensional dataset with D variables onto a new
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orthogonal coordinate system of principal components (PCs).
The PCs, which are unit vectors, are constructed con-
secutively, each new principal component PC j+1 must be
orthogonal to all previous PCk , k = 1, . . . , j, and must maxi-
mize the variance var j+1 of the original data projected onto
it. The PCA is characterized by the explained variance ra-
tios (or explained ratios) of the PCs: σ j = var j/(

∑D
k=1 vark ).

Each subsequent PC has a smaller value of σ j and if σ j = 0
for some j, it means that the data are constant along PC j ,
i.e., we can exclude all PCs starting from the jth without
a loss of information. In realistic applications, there is a fi-
nite threshold σmin > 0 (although its definition is somewhat
heuristic): If σ j � σmin for some j, then the real dimension-
ality of the dataset is M = min( j) − 1. In this case there is
an M-dimensional manifold M (M < D) embedded into the
D-dimensional dataset.

In most of applications, if an embedded manifold exists,
then it is not a hyperplane. A direct application of classical
PCA on the whole dataset can lead to an incorrect estimate of
M. For example, for the trajectory in Fig. 1, a direct use of
PCA to the whole data gives almost equal values of explained
ratios σ j ∼ 0.33, because all variables x1, x2, x3 have the same
variations. In this case an estimate of the manifold dimension-
ality is M = 3. However, as the points lie on a smooth curve,
the real value is M = 1.

To estimate the dimensionality of a nonplanar M, we
start by obtaining a large dataset X. In our work, X is a
Poincaré map of numerically integrated particle trajectories
(see Sec. III D). Then we apply PCA locally, in a small vicin-
ity of any particular point X∗. For that we need sufficiently
many points near X∗. To sufficiently populate a vicinity of
X∗, we need to integrate particle trajectories over long time
interval(s) or to use proportionally many initial conditions,
which may take a long time and may be CPU intensive. Alter-
natively, we can use a neural network (NN) to create a “cloud”
of data points near X∗. After that, the local PCA is performed
at some (randomly selected) points Xi, i = 1, . . . , Ns, on the
dataset. The average values of the explained variance ratios
are computed as σ̂ j = (1/Ns)

∑Ns
i=1 σ i

j , where σ i
j are computed

near Xi and j = 1, . . . , DP. The value of M is then defined
as a number of explained ratios σ̂ j which are greater than a
predefined threshold σmin.

B. AI Poincaré

AI Poincaré is a recently developed machine learning ap-
proach for determining of a total number of conservation
laws [66]. The main advantages of this approach are that it
is fully automatic and requires only a dataset of numerically
integrated trajectories. AI Poincaré can be used to estimate
the dimensionality of any data subset, including the Poincaré
maps. The pipeline of AI Poincaré consists of three modules
(see Fig. 2(a) or Fig. 1 in Ref. [66]):

(1) preprocessing or whitening
(2) Monte Carlo sampling
(3) linear dimensionality estimation
AI Poincaré can optionally include the whitening of

the variables [73]. On the whitening step, we use a PCA
to transform the coordinates and momenta into a new
orthogonal basis X → χ such that the new variables χ have

FIG. 2. A schematic diagram of AI Poincaré (the same as in
Fig. 1 in Ref. [66]). (a) The method’s pipeline. (b) Schematic of the
Monte Carlo sampling module. (c) An example of the explained ratio
diagram with one identified conservation law.

zero means and their covariance matrix is the identity matrix,
i.e., the scales of all new variables are equal to 1. Whitening
is applied to the whole dataset X. Figure 3 shows an example
of whitening for a two-dimensional dataset (X1, X2) = (x, z).
Figure 3(a) shows two PCs in the original coordinate system.
Figure 3(b) shows a scatter plot of new variables (χ1, χ2),
transformed to the PCA coordinate system and whitened. This
step is optional and the method works without it, but whiten-
ing simplifies the next module, when we train the neural
network, because the scales of all the coordinates in χ are
equal.

The Monte Carlo sampling module is used to obtain new
state vectors χ̂i which lie close to the trajectory in the vicinity
of a known vector χi lying on the trajectory. This procedure is
performed in two steps [see Fig. 2(b)]:

(1) Walk step: χ → ξ = χ + n. We perturb a state vector
by adding an isotropic Gaussian noise n with a zero mean and

FIG. 3. An example of the PCA procedure with whitening for
a two-dimensional dataset. (a) A scatter plot of the the original
coordinates (X1, X2) = (x, z) ∼ N (μ, σ 2) with μ = (5, 6), σ 2 = (22

24

)
and the orientation of PCs. (b) Transformed variables (χ1, χ2) ∼
N (μ, σ 2) with μ = (0, 0), σ 2 = (10

01

)
.
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covariance matrix l2I, i.e., n ∼ N (0, l2I), where l is the noise
scale.

(2) Pull step: ξ → χ̂. We map the perturbed vector back
toward the manifold.

For the pull step we construct a mapping operator P :
P(ξ, θ, l ) = χ̂, parameterized as a feed-forward NN with four
hidden layers of 256 neurons each with Rectified Linear Unit
(ReLU) activation functions [74]. Parameters θ are weights
and biases of the neurons. They are determined using the
backpropagation algorithm [75] by optimizing the MSE Loss
function:

⎧⎪⎨
⎪⎩

Loss(θ̂, l ) = 1
Ntrain

∑Ntrain
i=1 |P(ξi, θ̂, l ) − χi|22

θ = argminθ̂[Loss(θ̂, l )],
(1)

where Ntrain is the number of samples for training.
In our work we use the adaptive moment estimation opti-

mizer (Adam) [76] to optimize the loss function (1), which
is one of the most frequently used modifications of the
stochastic gradient descent (SGD). As opposed to SGD, Adam
maintains an individual adaptive learning rate for each NN
parameter from estimates of the first and second moments
of the gradients. Adam usually improves performance in
solving deep learning problems and often outperforms other
algorithms [77].

For training and validation, we start with Poincaré map
dataset consisting of Nc = 10 000 state vectors χ, that were
transformed to the PCA basis on the preprocessing step.
We perturbed each sample vector χi from the Poincaré map
dataset with 10 different random vectors: ξk

i = χi + nk
i , k =

1, . . . , 10 (Walk step). The NN takes the perturbed vectors ξ

as an input while the unperturbed vectors χ serve as a targets,
i.e., NN tries to denoise the perturbed vectors (Pull step). The
training or validation dataset contains Ntotal = 100 000 pairs
of vectors ξ. This dataset is randomly divided into training and
validation subsets of Ntrain = 70 000 and Nvalid = 30 000 vec-
tors (this is a typical proportion most often used in machine
learning) and used to train the mapping operator P(ξ, θ, l ).
With many training samples, NN learns the general shape of
the trajectory [see schematics in Fig. 2(b)]. In the optimum
scenario, the NN is trained to orthogonally project ξ back
onto the trajectory. Validation subset is used to control the
overfitting of the NN: We stop the training if the loss function
on the validation subset does not change for 50 epochs.

The main hyperparameter of this algorithm is the noise
scale l . We need to train a separate NN for each value of l .
When l is large (l � 1) or very small (l � 10−3), we cannot
correctly estimate M [66]. As the scales of χ ∼ 1, so in the
first case the noise has about the same scale as the variables
and projected points are distributed all over the manifold.
In the second case, the noise scale is too small and all the
projected points lie too close. The optimal value of l usually
is around l ∼ 0.1, so we trained mapping operators for l ∈
[10−2, 0.3]. If l is appropriately chosen and the NN training is
successful, then the mapped points χ̂ = P(ξ, θ, l ) are close to
the manifold and describe its local tangent space.

C. PCA and estimating the dimensionality

Once the mapping operator P(ξ, θ, l ) is obtained, we can
perform the local PCA in different segments of the mani-
fold. We randomly selected Ns = 2000 points χi from the
Poincaré map dataset. This number is rather arbitrary and
barely affects the speed of the algorithm; sufficiently large
number of points smooths out potential errors in determining
the local dimensionality of the manifold. At each point χi
we did Nwp = 10 000 walk-pull steps χi → ξk

i = χi + nk
i →

χ̂k
i = P(ξk

i , θ, l ), k = 1, . . . , Nwp. Then we performed PCA to
the set of χ̂k

i , fixed i and k = 1, . . . , Nwp, to get the values
of explained variance ratios σ i

j (l ), j = 1, . . . , DP. The bases
of local PCA may be different at different χi. Each σ i

j (l )
gives us a local estimate of the dimensionality in the vicinity
of χi. Then we averaged the explained ratios to get σ̂ j (l ) =
(1/Ns)

∑Ns
i=1 σ i

j (l ). Note that σ̂ j can depend on the noise
scale l .

The output of the algorithm, the explained ratio diagram,
allows us to estimate the dimensionality of the manifold and,
thus, the number of conserved quantities. Figure 2(c) schemat-
ically shows the averaged values of explained ratios σ̂ j (l )
as a function of the noise scale l . Following Ref. [66], we
set the threshold at σmin = 0.1/DP, where DP = 2N − 1 for
the Poincaré map and N is a dimension of state vector x
(in our work N = 2 and thus σmin = 0.1/3). If for some l ,
σ̂ j (l ) < σmin, then we assume that the data are constant along
the jth principal component. Thus the dimensionality of the
manifold M can be estimated as

M = min(Ml ), Ml = min ( j) − 1 : σ̂ j (l ) � σmin (2)

and thus K = DP − M = 2N − 1 − M.

D. Datasets

In the present paper we consider three dynamical systems
with Hamiltonians depending on two coordinates (x1, x2) =
(x, z) and two conjugate momenta (p1, p2). Trajectories reg-
ularly cross the plane x2 = z = 0. Therefore, instead of
using trajectories themselves, we use Poincaré cross sec-
tions {x1, p1, p2}|x2=0 to reduce the NN training time.

We integrated trajectories using the fourth-order Runge-
Kutta scheme with nondimensional �t = 5×10−4. Each
integration started from some initial point and we attempted
to accumulate Nc = 10 000 crossings of the x2 = z = 0 plane.
If or when a particle moved too far from the x2 = z = 0
plane, then we took a new initial point, satisfying all the
requirements as the original initial point, and continued ac-
cumulating crossings until Nc crossings are collected. After
the preprocessing step of AI Poincaré all the state vectors
are transformed to the PCA basis {x1, p1, p2} → {χ1, χ2, χ3}
to get the Poincaré map dataset. Note that in different sys-
tems, and for different initial conditions and parameter values,
10 000 crossings of the (x2 = z = 0) plane are accomplished
in very different times. The results presented in the rest of the
paper indicate the number of invariants over whatever time it
takes to accumulate 10 000 crossings.
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E. Computational times

A typical time required to accumulate 10 000 z = 0 cross-
ings is 5–10 minutes for one set of parameters. A typical
time of one NN training in our work is several minutes on
an AMD Ryzen 5900× processor and Nvidia RTX 3060 ti
graphic card. The time needed to train the projector operator
for one particular l is about 2 min. The first operation can be
efficiently parallelized and we used 24 threads of the AMD
Ryzen 5900× processor. If we find an appropriate noise scale
for a given Hamiltonian and certain set of parameters, for the
nearby systems we can start training the projector operator for
the same value of l . Most probably, that or a close value of l
would be valid. For the figures in the following sections we
used 600 different combinations of system parameters and the
total time of computations for one system (particular view of
Hamiltonian function) is about 24 h. This time can be reduced
by using more powerful CPU and graphic cards.

IV. ION DYNAMICS IN CURRENT SHEETS

Current sheets observed in the planetary magnetotail, mag-
netopause, and solar wind are characterized by a reversal
of the main magnetic field component, Bx, across a neutral
plane, z = 0. Note that we use local current sheet coordi-
nate systems with the z axis normal to the neutral plane.
A standard approximation of this field is Bx ≈ B0 · (z/L),
where B0 and L are characteristic magnetic field magnitude
and the current sheet thickness. The ratio B0/L is typically
determined in spacecraft observations from the current density
jm measurements: B0/L = 4π max jy/c [78,79]. The presence
of a normal magnetic field component, Bz ≈ const, makes
magnetic field line curved and allows particles to cross the
neutral plane. Separation of magnetic field magnitudes B0 and
Bz defines what part of particle dynamics is fast and what part
is slow. When B0 � Bz, which is typical for 1D current sheets
[80], oscillations of x are fast and of z are slow. Thus there
is an adiabatic invariant corresponding to the averaging over
fast oscillations [55,81,82]. When Bz � B0, the magnetic field
reversal Bx is embedded in a strong background Bz field. In
such systems the conserved adiabatic invariant is the magnetic
moment [83–85]. These adiabatic invariants are widely used
to construct current sheet models (e.g., Refs. [52–54,86,87]).
They supplement the conservation of the total energy (in sta-
tionary current sheet models) and generalized momentum py

(in current sheet with Bz �= 0 and 1D inhomogeneity coordi-
nate, z).

The number of invariants (conserved quantities) is the most
important characteristic for construction of the kinetic plasma
equilibria describing the current sheets. A velocity distribution
function defined as a function of invariants is a solution of the
stationary Vlasov equation. Thus the duration of conservation
of adiabatic invariants, TAI, determines the lifetime Tsyst,model

of the plasma equilibrium described by such model. A com-
parison of the predicted lifetime Tsyst,model of the model with
observational lifetime TSyst of current sheets can be used to
verify the model applicability.

In the absence of adiabatic invariants (or when they are
destroyed over the residence time of a particular particle in
the current sheet, TAI < TR) the class of possible equilibrium

current sheet models is reduced to 2D solutions of Grad-
Shafranov equation (e.g., Refs. [42,88,89]).

For 1D current sheets the problem of invariant conservation
can be reduced to determining the rate of adiabatic invariant
destruction (and thus TAI) for the so-called transient parti-
cle trajectories [55,57,58]. Particles moving along transient
trajectories carry the most significant current density in 1D
current sheets [86,90–92], and destruction of the correspond-
ing adiabatic invariant may be interpreted as a destruction of
the current sheet equilibrium (see discussion in Refs. [93,94]).
The adiabatic invariant for transient particles experiences two
random jumps per bounce period when a particle approaches
the current sheet and when a particle departs from the current
sheet. Each individual jump is called scattering, with the same
term also describing the cumulative effect of multiple jumps.
Characteristic magnitudes of these jumps are quite different
for different current sheets. Therefore, the rate of the adiabatic
invariant destruction (and correspondingly TAI and Tsyst,model)
are determined by a specific current sheet and the values
of system parameters. Additionally, for some values of the
parameters, there are no separation of timescales of motion,
and there are no adiabatic invariants at all. In this study we
aim to apply the machine learning approach to determine
parametrical domains of existence of adiabatic invariant over
observationally relevant times TSim ∼ TSyst in three typical
current sheets shown in Fig. 4.

Particle scattering and the corresponding adiabatic invari-
ant destruction (e.g., Refs. [58,95,96]) are most effective when
the minimum radius of curvature of magnetic field line, Rc =
BzL/B0, is comparable to the maximum particle gyroradius,
ρ = v0mc/eBz (v0, m, and e are particle speed, mass, and
charge, respectively). Thus, the ratio

κ =
√

Rc/ρ = (Bz/B0)
√

LeB0/v0mc

is a key quantity defining the number of adiabatic invariants
and the overall properties of particle dynamics for all three
systems.

In the rest of this section we introduce three current sheets
and then look at them in some detail. In Sec. V we discuss
obtained results of the number of invariants in the context of
construction of plasma equilibria for realistic space plasma
systems.

A. Three current sheet models: Overview

The first, and the simplest, configuration describes the
compressional (with magnetic field magnitude variation) pla-
nar current sheet (all field lines are within a plane) with By =
0, see Fig. 4(a). Such current sheets are typical for planetary
magnetotails [6–11] and can be found at the magnetopause
around reconnection regions [97–99]. The Hamiltonian for
particles in such configurations is

H = 1

2m
p2

x + 1

2m
p2

z + 1

2m

(
py + eBzx

c
− eB0

c

z2

2L

)2

.

We normalize coordinates and momentum as z →
z/

√
Lv0mc/eB0, x → x/

√
Lv0mc/eB0, px → px/mv0,

pz → pz/mv0, and energy and time as H = H/mv2
0 ,

t → tv0/
√

Lv0mc/eB0. Constant py → py/mv0 can be
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FIG. 4. Three current sheets: Magnetic field-lines for current sheets with (a) Bx (z); Bz �= 0, and By = 0; (b) Bx (z), Bz �= 0, and constant
By �= 0; (c) Bx (z), Bz �= 0, and By(z). Color indicates the magnitude of the magnetic field B.

removed by shift the x axis. A new Hamiltonian is

H = 1
2 p2

z + 1
2 p2

x + 1
2

(
κx − 1

2 z2
)2

. (3)

The value of Hamiltonian H can be set to h = 1/2 by a proper
choice of v0. Particle scattering in such current sheets was
extensively studied for κ 
 1 regime [64,100,101] and for
κ � 1 regime [102–105].

For strongly curved magnetic field lines, when κ 
 1, par-
ticle scattering results in adiabatic invariant destruction over
the timescale TAI ∼ κ−3 due to particle crossing the separatrix
that is present on the phase plane of fast variables (z, pz )
(see details in Refs. [58,106,107]). In the opposite case of a
large background Bz field, when κ � 1, TAI ∼ κ exp(κ2) [96],
which is a typical accuracy of adiabatic invariant conservation
for systems without a separatrix [95,108,109]. In Sec. IV B we
investigate a full κ range to determine parameters correspond-
ing to one (total energy) and two (total energy and adiabatic
invariant) conserved quantities in Hamiltonian (3).

The second configuration may occur in current sheets in
the solar wind and at planetary magnetopauses [see Fig. 4(b)].
Such current sheets are embedded into strong shear By fields
and thus typically are less compressional than magnetotail
current sheets, (e.g., Refs. [19,20,49]). These fields are de-
scribed by a vector potential Ax(z), and for constant By the
Hamiltonian is

H = 1
2 p2

z + 1
2 (px − sz)2 + 1

2

(
κx − 1

2 z2
)2

s = (By/B0)
√

LeB0/v0mc. (4)

Particle scattering in current sheets with By = const was stud-
ied in, e.g., Refs. [110–113]. For weak By (s < 1), there is a
separatrix on the fast (z, pz ) phase plane. Thus TAI ∼ κ−3 for
κ 
 1 and TAI ∼ κ exp(κ2) for κ � 1. For sufficiently strong
fields, s � 1, there is no separatrix, and thus TAI is expected to
be much longer [114]. In Sec. IV C we determine the domain
in the parametric space (κ, s) where system contained two
invariants (total energy and adiabatic invariant).

The third configuration defines totally compression-
less current sheets (so-called force-free current sheets,
see Fig. 4(c) and Refs. [39,115,116]), which are widely
observed in the solar wind [49,117] and at the magne-
topause [17,19,20]. Such current sheets describe rotational
discontinuities with strongly curved magnetic field lines,
with By =

√
B2

0 − B2
x . For the typical thin current sheets,

L ≈ mv0c/eB0, Hamiltonian is

H = 1
2 p2

z + 1
2

(
px − z + 1

3 z3
)2 + 1

2

(
κx − 1

2 z2
)2

. (5)

Ion dynamics in such current sheets was studied in, e.g.,
Refs. [65,118], where a very strong destruction of adiabatic
invariants were found. This destruction is due to geometrical
jumps of the adiabatic invariant [119,120]. In Sec. IV D we
determine this effect as a function of κ .

B. Current sheet with Bx(z), Bz �= 0, and By = 0

We start the analysis from small κ , and then move to larger
κ . Figures 5(a) and 5(b) show two typical trajectories in the
(z, κx, px ) space for the Hamiltonian (3) for κ = 0.142 (κ 
 1
regime). In the normalized variables, px = κy, and thus
Figs. 5(a) and 5(b) effectively show orbits in 3D Cartesian
coordinates. Particle dynamics defined by the Hamiltonian
(3) is a combination of fast oscillations in the (z, pz )
plane and slow quasiperiodical motion in the (κx, px ) plane.
Figure 5(a) shows a so-called transient orbit that consists
in two fragments: With and without z = 0 crossing during
one (z, pz ) oscillation. Transient particles leave the vicin-
ity of the plane z = 0 and move along magnetic field
lines to large Bx values, where they are reflected by mag-
netic mirrors. The right panel shows a so-called trapped
orbit, that crosses z = 0 twice each period of (z, pz ) os-
cillations. Trapped particles reside near the z = 0 plane.
Averaging over fast (z, pz ) oscillations yields an adiabatic
invariant Iz = (2π )−1

∮
pzdz [55,82]. Repeating transitions

between regimes with and without z = 0 crossings re-
sult in the destruction of the Iz conservation [58,121].
Figures 5(c) and 5(d) show the Poincaré maps confirming this
difference between transient and trapped orbits. Conservation
of Iz on trapped orbits reduces the number of degrees of
freedom from 3 to 2, and thus the Poincaré section of the
orbit by the z = 0 plane is a simple closed curve [Fig. 5(d)].
Destruction of Iz on transient orbits makes ion’s orbits
stochastic, and the Poincaré section of the orbit by the z = 0
plane is a 2D set of points. The empty circle in the center of
the Poincaré section for the transient orbit in Fig. 5(c) is the
part of the plane belonging to the trapped orbits.

Transient and trapped orbits are separated in the paramet-
rical (κx0, κ ) space, where κx0 is an initial particle position
at px = 0 (recall that z0 and pz0 are defined in such a way
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FIG. 5. [(a) and (b)] Typical particle trajectories in (κx, px, z)
space for the Hamiltonian system (3) for κ = 0.142. Initial condi-
tions were κx0 = −0.35 for (a) and κx0 = 0.35 for (b), [(c) and (d)]
corresponding Poincaré maps for these two orbits, (e) the number of
invariants in the (κ, κx0 ) plane.

that all particles have the same energy h = 1/2). For κx0 ∈
(−1, 0.1234), particles move along transient trajectories for
which the destruction of Iz is controlled by κ: TAI ∼ κ−3

[58,64].
Up to κ ∼ 5×10−3, Iz is conserved on the timescales with

hundreds of z = 0 crossings for each trajectory, and both
trapped and transient orbits have two invariants (energy and
Iz), see Fig. 5(e). As κ increases, the destruction rate of Iz

for transient particles with κx0 � 0.1234 also increases (and
TAI decreases). At κ � 10−1, transient orbits have only one
invariant (energy), whereas trapped orbits have two invariants.

At κ � 0.3 the Hamiltonian system (3) loses the separation
between fast (z, pz ) and slow (κx, px ) motions, and adiabatic
invariant disappears for both trapped and transient orbits.
Around κ ∼ 1 there is a range of fully stochastic motion,
where only energy is conserved. For κ � 2.5 there is a new
separation of timescales: (κx, px ) become fast variables and
(z, pz ) become slow variables. For fixed values of (z, pz ),
Hamiltonian (3) always has a single minimum as a function of
κx. Therefore, there is a single regime of the (κx, px ) oscilla-
tions. For large κ , magnetic field lines near z = 0 are along the
z axis (normal to the current sheet) and the adiabatic invariant
Ix = (2π )−1

∮
px dκx is the magnetic moment, which is con-

served with an exponential accuracy ∼ exp(−κ2) [96,109] for
all κx0. Thus, for κ > 2.5 all particle trajectories in the system
have two invariants (energy and Ix) on all realistic timescales.

FIG. 6. (a) A typical transient trajectory in (κx, px, z) space
for the Hamiltonian (4) for s = 0.7, κ = 0.142 and κx0 = −0.35,
(b) corresponding Poincaré maps for the orbit from panel (a) (blue
dots) and a trapped orbit (red circle), and (c) number of invariants in
the (κ, κx0 ) plane.

Note that all threshold values of κ depend on the time
interval of the simulations, i.e., on the relation between the
timescale of Iz or Ix destruction (TAI) and the interval of
simulation (TSim).

C. Current sheet with Bx(z), Bz �= 0, and constant By �= 0

Figure 6(a) shows a typical transient orbit in the (z, κx, px )
space for Hamiltonian (4) with κ = 0.142. For sufficiently
small By magnitudes (s < 1), there are well-separated tran-
sient and trapped orbits. For transient orbits, in addition to the
Iz destruction due to changes of the type of motion (with and
without z = 0 crossings), there is a splitting of Iz into several
values: Particles jumps between different values of Iz [113]
are called geometrical jumps of adiabatic invariant [119,120].
For symmetric magnetic fields, these jumps are reversible and
by themselves do not contribute to the long-term Iz destruc-
tion. However, in combination with the Iz destruction with a
rate of ∼κ3 [58,64], these jumps make transient orbits more
stochastic [59,114]. Poincaré section in Fig. 6(b) confirms that
transient orbits (blue dots) are stochastic and possess only one
invariant (energy), while trapped orbits (red circle) are regular
and possess two invariants (energy and adiabatic invariant Iz).
Separating such random and regular the Poincaré maps, we
determine number invariants in the (κx0, κ ) plane.

Figure 6(c) shows that for small κ < 10−2 both transient
and trapped orbits have two invariants for s = 0.7. At κ ∼
10−2 transient orbits (smaller κx0) lose one invariant. Com-
parison of Figs. 5(e) and 6(c) shows that both for systems with
s = 0 and s �= 0 there is a range near κ ∼ 1 of fully stochastic
motion with a single invariant (energy) for all orbits. The
threshold κ value, where Ix appears, is slightly smaller for
s �= 0 than for s = 0: Two invariants for all κx0 exist for κ > 2
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FIG. 7. Number of invariants in the (κ, s) plane for the Hamil-
tonian (4) for two κx0. Top: κx = −0.35 (transient orbit); bottom:
κx = 0.35 (trapped orbit).

at s = 0.7 and for κ > 2.5 at s = 0. This is likely an effect
of magnetic curvature decrease and corresponding weakening
of the particle scattering and magnetic moment Ix destruction
[58,96] with s �= 0 (for By �= 0).

Figure 7 shows the total number of invariants in the (s, κ )
parametric space. Two panels correspond to transient (κx0 =
−0.35, top) and trapped (κx0 = 0.35, bottom) trajectories.
The low-s region (s < 1) resembles Fig. 6(c): When κ <

10−2 there are two invariants (energy and Iz) for trapped and
transient orbits, when κ ∼ 10−1 the adiabatic invariant for
transient orbits is destroyed, while there two invariants for
trapped orbits, when κ ∼ 1, there is a single invariant (energy)
for trapped and transient orbits, when κ > 2.5 there are two
invariants (energy and Ix) for trapped and transient orbits
(for κ so large there is no real separation between trapped
and transient orbits). The large-s region (s > 1) shows two
invariants for all κ . This is the effect of magnetic radius of
curvature increase (due to large By) and trajectories with and
without z = 0 crossing are similar. When s > 1, the adiabatic
invariant Iz resembles the magnetic moment with a very weak
destruction rate [114].

D. Current sheet with Bx(z), Bz �= 0, and By(z)

Figure 8(a) shows a typical transient orbit in the (z, κx, px )
space for Hamiltonian (5) that describes particle motion in
curved magnetic field lines of force-free current sheets, typical
for the solar wind and Earth’s magnetopause [see Fig. 4(c)].
Poincaré section in Fig. 8(b) shows an almost uniform
distribution of transient trajectories. Transient particles expe-
rience strong scattering [65,118] due to geometrical jumps of
adiabatic invariant. As magnetic field lines are not planar,
this change occurs within a relatively small domain in the

FIG. 8. (a) A typical trajectory in the (κx, px, z) space for
Hamiltonian (5) for κ = 0.142 and κx0 = −0.35; (b) corresponding
Poincaré maps for the orbit from panel (a) (blue dots) and a trapped
orbit (red circle); (c) number of invariants in the (κ, κx0 ) plane.

(κx, px ) plane [118]. Trapped particles do not experience the
geometrical destruction of Iz, which explains the presence of
regular curves in the Poincaré section [Fig. 8(b)].

Comparison of Figs. 5(e) and 8(c) shows several dif-
ferences in particle dynamics between compressional and
force-free current sheets. First, the κ range corresponding
to one invariant (energy) for transient orbits (κx0 < 0.2) is
wider for force-free current sheet: κ ∈ [3×10−4, 2] for force-
free versus κ ∈ [5×10−3, 2] for compressional current sheets.
Second, in force-free current sheets there is a range of κx0

between transient and trapped regions where particles have
two invariants for all κ values. There is no such population in
compressional current sheets, where for κ ∼ 1 the entire κx0

range is filled by stochastic orbits having only one invariant
of motion (energy). The large-κ boundary where the second
invariant (likely Ix) is at κ ∼ 2 for both current sheets.

V. DISCUSSION AND CONCLUSIONS

In this study we applied a machine learning approach,
AI Poincaré [66], to determine the number of invariants of
ion motion in several current sheets. We considered three
configurations most typical for planetary magnetopauses and
magnetotails and for the solar wind. For all three config-
urations, the AI Poincaré determines parametrical domains
with two invariants (energy and an adiabatic invariant of
fast periodical oscillations) and those with a single invariant
(energy). In the latter domains either the adiabatic invariant
is destructed by particle scattering, or there are no separa-
tion of timescales of motion, and thus there are no adiabatic
invariants at all. We investigated the number of invariants
for transient orbits, whose contribution dominates the current
density [86,91,92,122,123]), and for trapped orbits, which do
not contribute to the current density in Bz = const current
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sheets [124]. In parametrical domains with a single invari-
ant (energy), particle distribution functions do not support
any current density. Therefore, the existence of stationary
current sheet models with Bz = const (or, more generally,
the existence of stationary current sheets with Bz = const) is
determined by the presence a population of transient particles
with two invariants. Taking this into account, the most impor-
tant conclusions of our study are as follows:

(1) For all three considered current sheets, there are no
additional (exact or approximate) invariants of ion’s motion
besides the energy and one adiabatic invariant. Therefore
plasma equilibria describing such current sheets should be
constructed with the particle velocity distributions written as
one or two-invariant distributions. There is no hidden sym-
metry allowing generalization of existing classes of equilibria
[52,53].

(2) For all three considered current sheets, for strongly
curved magnetic field lines (κ 
 1) the parametrical domain
with two invariants is limited to very small κ � 5×10−3 val-
ues. The shear By magnetic field (both constant and with a
peak at z = 0 plane) increases the κ threshold for two invariant
domain near the boundary between transient and trapped par-
ticles (around κx0 ∼ 0), i.e., there is a current carrying particle
population supporting the current sheets even with κ ∼ 10−1

(see Figs. 6 and 8).
(3) For compressional current sheets [see Fig. 4(a)], there

is a large parametrical domain with a single invariant for
transient particles: κ ∈ [5×10−3, 2], that quite typical values
of κ for observed current sheets. Thus, there is almost no
transient particles carrying current in stationary 1D current
sheets for such κ . For observed current sheets, this range
of κ includes all reasonable energies (mv2

0/2 ∝ κ−4) of ion
populations. Current sheets observed within this range should

be nonstationary [93,94] and are quickly destroyed or evolve
into essentially 2D structures (where the current is carried by
trapped ions drifting in ∂Bz/∂z, see Refs. [41,125]).

The obtained results show that 1D stationary current sheets
with Bz �= 0 have at best two invariants and do not have a
sufficiently wide parametrical range filled by transient parti-
cles with two invariants, although some small domains can
be found for By �= 0 configurations. As in realistic space
plasma systems fluctuations of the background system pa-
rameters (Bz, By) alter boundaries of such domains (if they
do exist), and the very existence of fully stationary 1D cur-
rent sheets is questionable. Most likely, observed 1D current
sheets are dynamical equilibria, where the inflow of tran-
sient particles compensates scattering of resident particles
(scattering leads to adiabatic invariant destruction and cur-
rent density reduction). Such inflow can be supported by
external sources of transient particles (see, e.g., discussion
in Refs. [126–128]) or scattering of trapped particles into the
parametrical domain corresponding to transient particles (e.g.,
due to magnetic field line curvature [129,130] or small-scale
transient fluctuations of magnetic field [131–134]). Existing
stationary 1D current sheet models are essentially based on
the assumption of eternal adiabaticity of transient particle
dynamics [33,52,53,135,136]. Further modification of such
models with inclusion of dynamical effects (scattering, in-
flows, and trapped or transient population exchange) should
describe lifetimes of observed current sheets.
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