
PHYSICAL REVIEW E 106, 065204 (2022)

Instability of modified Zakharov-Kuznetsov solitons in an inhomogeneous partially
degenerate electron-ion magnetoplasma
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Linear and nonlinear propagation characteristics of multidimensional drift ion-acoustic (IA) solitons are
studied in an inhomogeneous partially degenerate electron-ion magnetoplasma. A modified Zakharov-Kuznetsov
(mZK) equation is deduced, accounting for the longitudinal as well as the transverse dispersions. It is shown that
the mZK equation admits a distinct solution, revealing excitation of a pulse-shaped soliton when the phase speed
exceeds by the wave dispersion. For the instability condition of the waves, a novel growth rate (γ ) is derived by
modifying the standard small-k expansion scheme. The instability criterion, given for long-wavelength IA waves,
has not been described elsewhere. Numerical analysis show that solitary pulses gain energy from the ion drift,
involving into instability: it saturates with amplification of the unstable potentials. Similarly trapped electrons
lead to unstable growth of the solitary waves by enhancing γ . This study is relevant to compact stars and to
high-density facilities where density inhomogeneity ensues the unstable drift modes. The instability analysis is
important in understanding anomalous diffusion, which reduces the lifespan (τ = γ −1) of magnetically confined
plasma.
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I. INTRODUCTION

A warm ionized matter, containing degenerate con-
stituents, constitutes partially degenerate plasma. The latter
has gained considerable importance in the investigation of
coherent modes and instabilities in high-density plasmas,
modified by modest thermal correction. The nanoscale objects
such as tunneling diodes [1], quantum dots [2], quantum wells
[3], nanotubes [4], etc., are technologically important scenar-
ios for the partially degenerate ionized matter. Such plasmas
have also stabilized the compact stars [5,6], e.g., white dwarfs,
magnetars, and neutron stars, against their self-gravitational
collapse. Similarly, a degenerate plasma with nonvanishing
thermal effect emerges when matter is irradiated by inten-
sified laser [7,8]. The quantum corrections of the plasma
state, namely, degeneracy pressure, quantum diffusion, spin
correlation, etc., therein [7,8] arise when thermal de Broglie
wavelength λj(= h̄/mjvj) of the lighter plasma species ap-
proaches or exceeds the Wigner-Seitz radius a(= 3

√
3/4πN0).

Here h̄(= h/2π ) is the reduced Planck constant, N0 the equi-
librium number density, and mj(vj) stands for the mass (speed)
of the jth degenerate particulate. The aspects of degenerate
particles noticeably alter with variations in state variables
(e.g., number density, temperature, and magnetic field) of a
dense plasma.

Bernstein et al. [9] first proposed the concept that an
electric potential adiabatically traps a charged particle whose
potential energy is greater than its kinetic energy. Gurevich
et al. [10] had extended the theory to an electron-ion (EI)
plasma by verifying that solitary excitations adiabatically trap
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electrons. Later, many researchers elaborated the impact of
trapped particles on the wave dynamics. In this context it was
noted that trapped particles evolve unstable modes that modify
the confinement parameters [11] in fusion plasma. Similarly,
drift waves due to trapped electrons [12] amplify random per-
turbations and hence deconfine magnetoplasma. In contrast,
particles trapped in a magnetic mirror [13] overcome loss of
matter. The impact of trapped particles on wave dynamics has
also been confirmed in manifold observations. For instance,
the broadband noise in the magnetosphere [14] has been rec-
ognized as the electrostatic perturbations, excited by trapped
electrons. It has been confirmed that the excitation of the wake
field in lithium-helium plasmas [15] trap electrons, which in
turn emit amplified optical pulses. Apart from the trapped
constituents, finite (but nonzero) thermodynamic temperature
also gives rise to untrapped particulate, constituting partially
degenerate plasmas. Thus Shah et al. [16] have noticed that
trapped and untrapped electrons in partially degenerate EI
plasma significantly modify the amplitude and the spatial
extension of ion-acoustic (IA) solitons. Tsintsadze et al. [17]
have reported that trapped electrons favor excitation of the
solitary potentials by extending the domain of Mach numbers.
Recently, Irfan et al. [18] have shown that trapped electrons
evolve modulational instability by piling up the harmonic
waves.

Low-frequency drift modes were extensively evaluated
for bulk heating of charged species and anomalous diffu-
sion in plasmas. It was confirmed [11] that propagation
of drift waves in magnetoplasma is accompanied by exci-
tations of vortices that cause diffusion of charges. These
waves effectively conduct heat into the fusion plasma [11]
when the confinement period saturates. Similarly, the scat-
tering of ions due to drift potentials [19] evolve the plasma
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turbulence. Vianello et al. [20] have shown that nonlinear
drift waves ensue the Alfvénic turbulence and in turn heat
magnetoplasma. Salimullah et al. [21] have pointed out that
streaming effect in dusty plasma causes instability of the
drift acoustic perturbations. Note that unstable waves can
be observed in timescales of the order of the propagation
period or less, because these excitations experience a tem-
poral growth of the perturbations. For stability analysis of
multidimensional coherent excitations, various algebraic tech-
niques were introduced. By employing a series expansion
method, Montgomery [22] had deduced a Bernstein-Greene-
Kruskal equilibrium that describes the stability condition of
the arbitrary amplitude waves. Later, Rowlands [23] derived
a stability criterion for counterstreaming waves by modifying
the series expansion scheme. Infeld [24]—introducing a stan-
dard small-k expansion technique—deduced the growth rate
of cnoidal waves. Similarly, Mamun and Cairns [25] described
the stability analysis for Zakharov-Kuznetsov solitons that
are superimposed by plane perturbations. They noticed that
the obliquity parameter (magnetic field) reduces (enhances)
the growth rate of the solitary pulses. This study elucidates
the evolution and the stability analysis of modified Zakharov-
Kuznetsov (mZK) solitons propagating in an inhomogeneous
partially degenerate EI magnetoplasma. Thus, by modify-
ing the small-k expansion scheme, the growth rate of the
mZK solitons is obtained that is not elaborated elsewhere
[24,25].

The layout of this manuscript is as follows: Section II
presents the dimensionless quantum magnetohydrodynamic
(QMHD) equations that describe multidimensional propaga-
tion of the drift ion-acoustic waves in an inhomogeneous
partially degenerate EI magnetoplasma. Thus by solving the
QMHD equations, an mZK equation is deduced that admits a
distinct solution for the IA solitary potentials as elaborated
in Sec. III. In Sec. IV an instability growth rate for the
mZK solitons is derived by modifying the small-k expansion
method. The important results, pertinent to the novel growth
rate, are discussed in Sec. V, while the conclusion is briefly
summarized in Sec. VI.

II. GOVERNING EQUATIONS AND MODEL

To examine the propagation characteristics and the stability
(instability) of modified drift IA solitons, an inhomogeneous
partially degenerate EI magnetoplasma is chosen. Owing to
finite (but nonzero) plasma temperature, the electron fluid is
taken as partially degenerate Fermi gas containing the trapped
and the untrapped constituents. The plasma is embedded in
a uniform external magnetic field B(= B0Ẑ ), acting in the Z
direction. Here B0 is the magnitude of magnetic field, whereas
Ẑ stands for direction of the z axis. The density gradient of
plasma is given by ∇N0{= −X̂∂N0(X )/∂X } and corresponds
to inhomogeneity along the x axis, where N0(X ) and ∇ des-
ignate the equilibrium density function and spatial operator,
respectively. The quasineutrality condition at equilibrium de-
mands choice of Ni0(X ) ≈ Ne0(X ) ≡ N0(X ), where Ni0(X )
and Ne0(X ) represent the equilibrium density functions for
the ions and the electrons, respectively. Thus the evolution

of multidimensional drift IA excitations is governed by the
following QMHD [18] equations:

∂N̄

∂T̄
+ ∇̄ · (N̄Ū) = 0, (1)

∂Ū
∂T̄

+ (Ū · ∇̄ )Ū + ∇̄�̄ − ω̄r (Ū × Ẑ) = 0, (2)

and

∇̄2�̄ − (N̄e − N̄ ) = 0. (3)

Here the dimensionless variables Ū(= U/Cs) and N̄ (= N/N0)
are the velocity and the number density of ions, respec-
tively, �̄(= eφ/EFe) the electric potential; moreover, T̄ (=
ωpiT ) is the temporal variable and ∇̄(= λFe∇ ) stands for
the spatial operator. The plasma frequency, Fermi length,
and Fermi acoustic speed are respectively given as ωpi(=√

4πe2N0/mi ), λFe(=
√
EFe/4πe2N0), and Cs(=

√
EFe/mi )

with electron Fermi energy EFe{= h̄2(3π2N0)2/3/2me}. The
gyro-to-plasma frequency ratio is given as ω̄r (= ωci/ωpi ),
where ωci(= eB0/mic) is the ion gyrofrequency, e(mi ) denotes
the electric charge of electron (mass of ion), and c corresponds
to the vacuum speed of light. Note that the QMHD equa-
tions (1)–(3) describe evolution of the nonlinear electrostatic
excitations [26] whose wavelength is much larger as com-
pared to the Fermi length (i.e., λ � λFe). Thus the QMHD
model cannot account for the kinetic effects, e.g., Landau
damping, multiplasmon resonances, spin-orbit interactions,
etc., arising at much shorter length scales. More importantly,
these equations remain valid as long as the kinetic energy of
degenerate constituents is greater than their interaction energy.
As the simplified QMHD model has not incorporated the spin
(relativistic) correction, therefore it holds when spin energy
(phase speed) of degenerate particles (a wave) is much smaller
as compared to the Fermi energy (vacuum speed of light).
The dimensionless electron density function N̄e(= Ne/N0) for
a partially degenerate EI magnetoplasma [16,18] is given by

N̄e = N̄0(X ){(1 + �̄)
3
2 + 
2(1 + �̄)

−1
2 }, (4)

where 
(= πTe/
√

8EFe) is the temperature ratio, Te the elec-
tron temperature, and N̄0(X ){= N0(X )/N0} corresponds to the
dimensionless equilibrium electron density. See from Eq. (4)
that finite temperature (
 > 0) deviates the plasma from
perfect degeneracy [27], giving rise to trapped electrons as
well as untrapped electrons. It has been shown [9] that an
electron, attaining negative or zero net energy (i.e., E � 0)
in a wave potential, is adiabatically trapped. Contrary to this,
the electron has unrestricted dynamics at E > 0, known as
the untrapped electron. Thus the first (second) parenthetical
term on the right-hand side in Eq. (4), evaluated at E �
(>)0, represents the trapped (untrapped) electrons, as illus-
trated in Refs. [28,29]. The compact stars contain warmly
dense magnetoplasma [27,30], described by the faint luminos-
ity spectra. The electron temperature in neutron stars (white
dwarfs) varies up to 109 K(∼ 2 × 107 K), and the degeneracy
parameter turns out to be XFe(= EFe/Te) > 1. Thus the ion-
ized matter in compact objects attains a partially degenerate
state, comprised of trapped and untrapped electrons, and is
therefore appropriately described by Eq. (4). For a perfect
degenerate electron gas when 
 ≈ 0, the second parenthetical
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term in Eq. (4) vanishes: it corresponds to the density function
of degenerate trapped electrons. Moreover, by setting �̄ = 0
in Eq. (4), one obtains the equilibrium number density of
partially degenerate electrons as N̄0 = N̄0(X )(1 + 
2). Upon
substituting Eq. (4) in Eq. (3), one arrives at

(β − ∇̄2)�̄ − N̄ ≈ 0, (5)

where β = N̄0(X )(3 − 
2)/2 is the inverse-square screening
length for partially degenerate EI magnetoplasma. Thus the
dimensionless QMHD equations (1), (2), and (5) may describe
evolution of the multidimensional IA waves, impacted by the
ion drift. The bar (−) over physical variables is dropped from
here forward for simplicity.

A. Linear wave analysis

In order to study the propagation characteristics of the
linear drift IA wave, a plane wave solution is chosen by
substituting ∂/∂T = −iω in Eqs. (1), (2), and (5). Here ω is
the angular frequency, and i(= √−1) stands for an imaginary
number. As the angular frequency of the wave is much smaller
as compared to the ion gyrofrequency [11], therefore ∂/∂T �
ωr condition holds. Thus solving Eqs. (1) and (2), one
obtains

−iωN + N0

(
−KiUX + ∂UX

∂X
+ ∂UY

∂Y
+ ∂UZ

∂Z

)
= 0, (6)

UX ≈ − 1

ωr

∂�

∂Y
, (7)

UY ≈ iω

ω2
r

∂�

∂Y
, (8)

and

UZ ≈ − i

ω

∂�

∂Z
. (9)

The parameter Ki(= −∂N0(X )/N0(X )∂X̄ ) computes inho-
mogeneity of the dynamical ions in inhomogeneous mag-
netoplasma. The former simplifies into the equilibrium
density function as N0(X ) = N0exp(−KiX ), where N0 and
N0(X ) are the ion number density at X = 0 and X > 0,

respectively. The potential gradients act in the YZ plane
(i.e., ∂�/∂Y and ∂�/∂Z ); therefore I have chosen ∂�/∂X =
0 in obtaining Eqs. (6) and (7). The Lorentz force gives
rise to ion drift along the x axis, therefore constituting a
drift IA wave. The plasma has relevance to toroidal devices
[11], where radial variations in the electrostatic potential are
vanishingly small. Equations (6) and (7) reduce into the ion
number density as

N = N0

ω2

(
ω2

ω2
r

∂2�

∂Y 2
− ∂2�

∂Z2
− iωKi

ωr

∂�

∂Y

)
. (10)

By imposing the plane wave approximation, as
� ∼ exp{i(k⊥Y + k‖Z − ωT )}, Eqs. (5) and (10) lead
to the following linear dispersion relation of the drift
IA wave:(

β + k2 + N0v2
E

)
ω2 − N0ω∗ω − N0k‖2 = 0. (11)

Here vE(= k⊥/ωr ) represents the electric drift, k(=√
k2
‖ + k2

⊥) the wave number, and k‖(k⊥) is the component of

k in the parallel (perpendicular) direction of B0. Moreover, the
drift frequency and the drift speed are given by ω∗(= vDk⊥)
and vD(= Ki/ωr ), respectively. The quadratic equation (11)
admits roots ω+ and ω−, holding ω+ > 0 and ω− < 0
conditions, respectively. Thus ω+ (ω−) is the frequency of
drift IA wave, propagating in the direction of (opposite to) B0.

See the real values for ω+ and ω−(i.e., ω2
+ > 0 and ω2

− > 0),
revealing that the inhomogeneous, partially degenerate EI
magnetoplasma is convectively stable to propagation of linear
drift IA excitations. Thus, using Eq. (11), one obtains phase
speed Up(= ω/k‖) of the drift IA waves, as

Up± =
N0vDk⊥

2k‖
± 1

2

{(N0vDk⊥
k‖

)2 + 4N0
(
β + k2 + N0v2

E

)} 1
2

β + k2 + N0v2
E

,

(12)

where Up+(Up−) is the phase speed of drift IA wave that
propagates in the direction of (opposite to) B0. Equation (12)
illustrates that the phase speed (Up±) tapers off as the electric
potential decreases.

III. MODIFIED ZAKHAROV-KUZNETSOV EQUATION

To examine the evolution of nonlinear mZK solitary waves,
one uses the iteration method [31] for simplifying the ex-
pression of angular frequency. Thus in the long-wavelength
(low-frequency) limit, setting ∇2 � β and ω � ωr conditions
in Eqs. (5) and (10), one obtains ω2 ≈ −N0∂

2/β∂Z2 [11].
The latter, combined with Eq. (10), is substituted in Eq. (5)
and simplified to obtain

ω2(β − ∇2)�

+ N0

⎛
⎝ N0

βω2
r

∂4�

∂Y 2∂Z2
+ ∂2�

∂Z2
− vDN

1
2

0

β
1
2

∂2�

∂Y ∂Z

⎞
⎠ = 0.

(13)

It can be readily checked that Eq. (13) reduces into the result
obtained in Ref. [32] when one replaces β by the correspond-
ing factor therein [32]. Substituting ∂/∂Y = ik⊥ and ∂/∂Z =
ik‖ in Eq. (13), one arrives at

ω ≈ N
1
2

0

β
1
2

{
1 − k⊥2

2β

(
1 + N0

ω2
r

)
− k‖2

2β

}
k‖

− vDk⊥N0

2β

(
1 − k‖2

2β

)
. (14)

Solving Eqs. (9) and (14) together, the following expression
is deduced:

∂�

∂Z
= N

1
2

0

β
1
2

(
∂UZ

∂Z
− vDN

1
2

0

2β
1
2

∂UZ

∂Y
+

1 + N0
ω2

r

2β

∂3UZ

∂Y 2∂Z

+ 1

2β

∂3UZ

∂Z3 − vDN
1
2

0

4β
3
2

∂3UZ

∂Y ∂Z2

)
. (15)
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Equation (15) is substituted into Eq. (2) that upon simplifica-
tion leads to the modified Zakharov-Kuznetsov equation, as

∂UZ

∂T
+ UZ

∂UZ

∂Z
+ ∂

∂Z

(
A + B

∂2

∂Y 2
+ C

∂2

∂Z2

)
UZ

+ ∂

∂Y

(
D + E

∂2

∂Z2

)
UZ = 0. (16)

The coefficients A and D (B, C, and E), appearing in
Eq. (16), account for the lower (higher) order dispersions of
the drift IA wave, given by

A =
(N0

β

) 1
2

, B = A

2β

(
1 + N0

ω2
r

)
,

and

C = A

2β
, D = −vDA2

2
, and E = −vDA2

4β2
.

Equation (16) is essentially different from the (p,2p)-mZK
equation, illustrated in Ref. [33]. The former describes
nonlinear drift IA excitations, suffered by enhanced wave
dispersions (accounted by coefficients A to E) in the parallel
and perpendicular directions of B0. Thus, setting A = D =
E = 0 in Eq. (16) while taking A = 1, B = 0, and p = 1
in the (p,2p)-mZK equation therein [33], the evolution equa-
tions reduce into the ZK equation that leads to excitation of
weakly nonlinear and weakly dispersive solitary potentials.
More importantly, the mZK equation (16) admits a distinct
solitary wave solution; it is not elaborated in the earlier studies
[24,25], as given in the forthcoming analysis.

A. Modified Zakharov-Kuznetsov solitons

For stationary solution of the mZk equation (16), the co-
ordinate axes (Y, Z ) are rotated by an angle θ that leads to
transformation of the independent variables [34–37], as

ζ = Y cos θ − Z sin θ, η = Y sin θ + Z cos θ, and τ = T .

(17)
Substituting Eq. (17) into Eq. (16), one obtains

∂�

∂τ
+ L1�

∂�

∂η
+ L2

∂3�

∂η3
+ L3�

∂�

∂ζ
+ L4

∂3�

∂ζ 3

+ L5
∂3�

∂η2∂ζ
+ L6

∂3�

∂η∂ζ 2
+ L7

∂�

∂ζ
+ L8

∂�

∂η
= 0. (18)

Here Lj represents the nonlinearity and the dispersion
coefficients, already given in Appendix A. The index
j takes positive integral values, as j = 1, 2...., 8. For a
steady-state wave solution of Eq. (18), a comoving vari-
able is chosen [38] as Z = η − Up+τ. Thus the spatial
and temporal operators of the coordinate (ζ , η) transform
as ∂/∂η → ∂/∂Z, ∂/∂ζ → 0, ∂2/∂ζ 2 → 0, ∂3/∂ζ 3 →
0, and ∂/∂τ → −Up+∂/∂Z, respectively. By imposing these
transformations, Eq. (18) appears in the following form:

(L8 − Up+)
d�

dZ + L1�
d�

dZ + L2
d3�

dZ3
= 0, (19)

where Up+ is the phase speed of the drift IA wave, propa-
gating in the direction of B0. Equation (19) is the modified

Korteweg–de Vries (mKdV) equation: it describes excita-
tion of oblique drift IA solitary potentials. Thus by solving
Eq. (19), the soliton solution is obtained, as

� = �0sech2

(Z
�

)
. (20)

The wave solution (20) is derived by imposing the bound-
ary conditions � → 0, ∂�/∂Z → 0, and ∂2�/∂Z2 → 0 at
Z → ±∞ on Eq. (19). The former represents a pulse-shaped
drift IA soliton with amplitude �0{= 3(Up+ − L8)/L1} and
spatial extension �{= √

4L2/(Up+ − L8)}, propagating in the
inhomogeneous partially degenerate EI magnetoplasma. It is
worth mentioning that the linear modes steepen upon self-
interactions [39], and therefore ensue the drift IA solitary
excitations, described by solution (20). The wave solution
relies on the shallow water wave theory, where the long-
wavelength water waves [40] encompass excitation of a
nonlinear pulse whose amplitude is much smaller than the
depth of water. Thus the solitary pulse, vanishing at Z →
±∞, also retains its shape during propagation. Importantly,
solution (20) is valid for long timescale wave phenomena
in which nonlinear steepening counterbalances the dispersion
effect. Obviously, solution (20) attains real values for the
spatial width (i.e., �2 > 0), as the phase speed exceeds the
dimensionless dispersion, holding the Up+ > L8 condition: it
leads to excitation of the soliton. The spatial width of IA exci-
tations, propagating with speed Up− (opposite to B0), turns out
to be imaginary (i.e., �2 < 0) and therefore does not ensue a
solitary pulse.

IV. INSTABILITY AND GROWTH RATE

The superimposition of drift IA waves by plane perturba-
tions may cause instability, as the instability analysis of the
mZK solitons have not been examined in the earlier studies
[34–36]. Thus, for the instability analysis of the mZK equa-
tion (18), the small-k expansion scheme is modified. For this
purpose, the stationary solution (20) is superimposed by plane
perturbations [35,37] in the following form:

� = �(Z ) + ψ (Z )exp(ikX ). (21)

Here ψ (Z ) and �(k) represent amplitude function and angu-
lar frequency (wave number), respectively, of the perturbation,
X (= lζ ζ + lηZ − �τ ) is the phase angle, and lζ (lη ) desig-
nates the direction cosine parallel (perpendicular) to B0. The
frequency of perturbation is much smaller than the wave fre-
quency, holding the � � ω condition. Thus the amplitude
function of the perturbation in Eq. (21) can be expressed in
the form as

ψ (Z ) = ψ0(Z ) + kψ1(Z ) + k2ψ2(Z ) · · · . (22)

The frequency of perturbation can be expanded as � = 0 +
k�1 + k2�2 · · ·, where �1 and �2 are the next orders of �.

Equation (22) is substituted into Eq. (18), and after setting
� → �, one obtains an expression for the zeroth-order am-
plitude function as

(−Up+ + L1� + L8)
∂ψ0

∂Z + L2
∂2ψ0

∂Z2
= C, (23)

065204-4



INSTABILITY OF MODIFIED ZAKHAROV-KUZNETSOV … PHYSICAL REVIEW E 106, 065204 (2022)

where C is the constant of integration. Comparing Eqs. (23)
and (19), after substituting C = 0 one arrives at the first
solution as ψ0 = d�/dZ ≡ F . It has been checked that a
second solution for Eq. (23) is ψ0 = F

∫
F−2dZ ≡ G. Thus

the general solution for Eq. (23) can be given as

ψ0 = C1F + C2G − CF
∫ Z G

W dZ + CG
∫ Z F

W dZ,

(24)
where C1 and C2 are arbitrary constants and W (=
FdG/dZ − GdF/dZ ) corresponds to the Wronskian func-
tion. The solution for Eq. (23), converging at Z → ±∞, is
given by

ψ0 = C1F . (25)

The perturbation scheme in Eqs. (18) and (22) is expanded
beyond zeroth order [i.e., O(k)] to obtain

d2ψ1

dZ2
+ (−Up+ + L1� + L8)

L2
ψ1

− iC1

L2

{
a + btanh2

(Z
�

)}
� = C3, (26)

where C3 is a constant of integration. The coefficients a and b,
appearing in Eq. (26), are expressed in Appendix B. Solving
Eq. (26), one obtains the following solution:

ψ1 = C4F + iC1�
2

8L2

{
(a + b)FZ + 2

3
(3a + b)�

}
. (27)

The constant of integration C4 in Eq. (27) arises due to
the characteristic solution. Notice that Eq. (27) vanishes
(i.e., ψ1 → 0) at Z → ±∞ and corresponds to a nontrivial
solution. At second-order approximation of the perturbation
series O(k2), Eq. (18), leads to the following expression:(

−Up+
d

dZ + L1
d�

dZ + L2
d3

dZ3
+ L8

d

dZ

)
ψ2

= i�2ψ0 + M3
∂ψ0

∂Z + i(�1 + Up+lη − L7lζ

− L8lη + M1)ψ1 − iM2
d2ψ1

dZ2
. (28)

The coefficients M1, M2, and M3 in Eq. (28) are given in
Appendix B. Note that the first-order frequency (�1) of per-
turbations determines the growth rate of instability. For the
frequency �1, one expresses the orthogonality condition of
the solution (�) and the kernel (ψ2) as∫ ∞

−∞
�

{
i�2ψ0 + M3

∂ψ0

∂Z + i(�1 + Up+lη − L7lζ

− L8lη + M1)ψ1 − iM2
d2ψ1

dZ2

}
dZ = 0. (29)

Equations (25)–(29), after some algebraic manipulation, lead
to the perturbed frequency, as

�1 = Re �1 + i(Im �1), (30)

where

�1r ≡ Re �1 = � − lη(Up+ − L8) + lζ L7,

and �1i ≡ Im �1 = (ϒ − �2)1/2. (31)

Here �1r (�1i ) is the real (imaginary) part of �1. The alge-
braic form for � and ϒ are given in Appendix B. It can
be noticed that the perturbed frequency (�1) significantly
alters with variations in the dispersion coefficients of the
mZK equation (16). Setting L7 = 0 and L8 = 0, the perturbed
frequency in Eq. (30) reduces into the corresponding result
of Refs. [34–36], obtained for the ZK equation. See from
Eq. (31) that �1i > 0 when ϒ > �2, revealing instability of
the mZK soliton. By substituting � and ϒ from Eqs. (44) and
(45), respectively, into Eq. (31), one obtains the growth rate
for the modified drift IA solitons, as

γ = γmaxS
1
2

N
1
2

0

(
1 + N0sin2θ

ωr
2 − N

1
2

0 vDsinθcosθ

2β
1
2

) , (32)

where γmax{= 2lζ (Up+ − L8)
√

(N 2
0 + ωr

2)/15ωr
2} is the

maximum value of γ . It can be readily checked from Eq. (32)

that γ → γmax/N
1
2

0 when θ → 0. Importantly, γ −1
max is the

minimum time required for propagation of the unstable drift
IA soliton. Here S(= S1 + S2 + S3) is the instability param-
eter, where S1, S2, and S3 are given in APPENDIX B.
Equation (32) is a novel expression illustrating the growth rate
of the mZK solitons (20) that has not been elaborated in earlier
studies [34–36]. More importantly, γ in Eq. (32) accounts
for instability growth of the solitary potentials, impacted by
two-dimensional perturbations and therefore alters with vari-
ations in obliqueness (θ ). Moreover, the growth rate of the
(p,2p)-mZk equation in Ref. [33] evaluates instability of the
soliton, superimposed by one-dimensional perturbations: it is
insensitive to variations in θ . It is important to mention that the
growth rate in Eq. (32) can be used to obtain the characteristic
length d (≈ Up+/γ ) [41] for the unstable drift IA solitons. The
instability criterion of the long-wavelength nonlinear excita-
tions is also important in understanding anomalous diffusion
in fusion plasmas. Combining Eqs. (22), (25), (27), and (30),
one arrives at

� = Re � + i(Im � ). (33)

The solution (33) represents drift IA soliton, superimposed
by two-dimensional plane perturbations. The real and imagi-
nary components of �(i.e., Re � and Im �, respectively) are
already given in Appendix B. Note that the small-k expansion
scheme is applicable when the wave number of the perturba-
tion is much smaller, holding the k � k condition. It has been
checked from Eq. (32) that the angle (θ ) of perturbing poten-
tial with the propagation vector ought to be <90◦; otherwise
γ → ∞ and corresponds to an unphysical result.

V. NUMERICAL RESULTS AND DISCUSSION

For numerical illustration, some typical parameters of an
inhomogeneous magnetoplasma have been taken, comprised
of partially degenerate electrons and dynamical ions. The
number density of plasma is N0 ∼ 1027 cm−3, the magnetic
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(a) (b) (c)

FIG. 1. (a) The angular frequencies from Eq. (11) are given at B0 = 1011 G (solid curve), 2 × 1011 G (dashed curve), and 3 × 1011 G (dotted
curve). The frequencies are plotted in (b) at drift speed: vD = 0.1 (solid curve), 0.2 (dashed curve), and 0.3 (dotted curve) and in (c) when the
temperature ratio is 
 = 0.2 (solid curve), 0.3 (dashed curve), and 0.4 (dotted curve).

field B0 ∼ 1012 G, while the electron temperature is chosen
to be Te ∼ 1 keV. Such plasma has relevance to compact
stars [5,6] and to high energy density facilities [42,43]. The
ion drift, the temperature ratio, and the degeneracy param-
eter were computed as vD ∼ 0.3, 
 ∼ 0.2, and XFe ∼ 5,
respectively. Note that the growth rate is γ ∼ 0.002 when the
instability parameter attains positive values (i.e., S > 0). Thus
the instability affects propagation of the drift IA solitons, as
described in the following discussion.

The angular frequencies (ω±) of drift IA waves from
Eq. (11) are plotted in Fig. 1(a) as a function of k‖ at
B0 = 1011 G (solid curve), 2 × 1011 G (dashed curve), and
3 × 1011 G (dotted curve). The upper (lower) branches rep-
resent the frequency of the drift IA wave, propagating in
the direction of (opposite to) B0. It reveals that intensifica-

tion of B0 enhances (reduces) ω+(ω−) by impacting the ion
gyration. As the frequency of the upper (lower) branches
is ω+ ≈ ω∗(ω− ≈ 0) when k‖ ≈ 0, it therefore constitutes
an accelerated (decelerated) drift IA mode. To examine the
impact of ion drift on the wave frequencies, Fig. 1(b) dis-
plays ω± against k‖ at vD = 0.1 (solid curve), 0.2 (dashed
curve), and 0.3 (dotted curve). Recall the ion drift enhances
the frequency ω∗(= vDk⊥) and in turn rises ω±. Figure 1(c)
depicts ω± against k‖ with variations in the temperature
ratio, as 
 = 0.2 (solid curve), 0.3 (dashed curve), and
0.4 (dotted curve). A degree enhancement in 
 increases
(decreases) ω+(ω−). The phase speed of the accelerated drift
IA wave (Up+) is illustrated versus k‖ in Fig. 2(a) at different
values of the magnetic field, as B0 = 1011G (solid curve),
2 × 1011G (dashed curve), and 3 × 1011 (dotted curve). The

(a) (b) (c)

FIG. 2. (a) The phase speed [Eq. (12)] is given at B0 = 1011 G (solid curve), 2 × 1011 G (dashed curve), and 3 × 1011 G (dotted curve).
The phase speed is also plotted in (b) at drift speed vD = 0.1 (solid curve), 0.2 (dashed curve), and 0.3 (dotted curve) and in (c) at temperature
ratio 
 = 0.2 (solid curve), 0.3 (dashed curve), and 0.4 (dotted curve).
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(a) (b)

(c) (d)

FIG. 3. The profile for drift IA soliton (20) is given vs Z at (a) obliqueness θ = 10◦ (solid curve), 15◦ (dashed curve), and 20◦ (dotted
curve), and (b) drift speeds vD = 0.1 (solid curve), 0.3 (dashed curve), and 0.6 (dotted curve). The same are illustrated with variations in
(c) temperature ratio 
 = 0.2 (solid curve), 0.4 (dashed curve), and 0.6 (dotted curve) and (d) degeneracy parameter XFe = 2 (solid curve), 3
(dashed curve), and 4 (dotted curve).

strength of B0 enhances Up+ by increasing ω+. Similarly
Up+ is plotted as function of k‖ in Fig. 2(b) (Fig. 2(c)) with
variations in vD(
). It can be noticed that an increase in the
ion drift (electron temperature) leads to excitation of faster
drift IA waves with relatively large Up+. Note that the deceler-
ated IA wave, attaining negative phase speed (Up− < 0), and
therefore cannot evolve solitary excitations, as highlighted in
the forthcoming discussion.

The solitary wave solution (20) is displayed against the
spatial variable (Z ) in Fig. 3(a) at θ = 10◦ (solid curve), 15◦
(dashed curve), and 20◦ (dotted curve). It has been checked
that the obliquity parameter tapers off (rises) the steepening
(dispersion) coefficient, namely, L1(L2), and therefore excites
taller drift IA solitons with relatively wide spatial extension.
Note that the spatial width �(= √

4L2/Up− − L8) of decel-
erated drift IA mode is imaginary, as Up− < 0 and L8 >

0 conditions hold. Thus decelerated IA harmonics cannot
evolve the solitary potential. The wave solution (20)—given
in Fig. 3(b) at vD = 0.1 (solid curve), 0.3 (dashed curve), and
0.6 (dotted curve)—shows that ion drift results in amplifica-
tion (constriction) of the pulse amplitude (spatial extension).

The profiles of solitary potential are illustrated in Fig. 3(c)
at 
 = 0.2 (solid curve), 0.4 (dashed curve), and 0.6 (dotted
curve) and in Fig. 3(d) when XFe = 2 (solid curve), 3 (dashed
curve), and 4 (dotted curve). Thus parameter 
(XFe), associ-
ating the thermal (trapping) effect to the electron, modifies the
amplitude and spatial width of the wave. The parameter S in
Eq. (32), designating the stability (S < 0) and the instability
(S > 0) of drift IA excitations, has been displayed against θ

at B0 = 1012G (solid curve), 1.2 × 1012G (dashed curve), and
1.4 × 1012G (dotted curve); refer to Fig. 4(a). The magnetic
field strength leads to excitation of the unstable solitary waves
by increasing the parametric region S > 0. Figure 4(b) depicts
S versus θ at vD = 0.1 (solid curve), 0.3 (dashed curve), and
0.6 (dotted curve). It can be seen that ion drift grows the
instability, arising in the limit of S > 0. For the impact of
electron temperature on instability, S has been given against
θ in Fig. 4(c) at 
 = 0.2 (solid curve), 0.4 (dashed curve),
and 0.6 (dotted curve). Obviously, an increase in 
 gives
rise to instability of the drift IA solitons. Contrary to this,
the instability parameter depicted at different values of XFe

in Fig. 4(d) shifts S to negative values. Thus the trapped
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(a) (b)

(c) (d)

FIG. 4. The instability parameter (S) is given against θ at (a) B0 = 1012 G (solid curve), 1.2 × 1012 G (dashed curve), and 1.4 × 1012 G
(dotted curve) and (b) vD = 0.1 (solid curve), 0.3 (dashed curve), and 0.6 (dotted curve). The parameter S is depicted at different values of
(c) temperature ratio 
 = 0.2 (solid curve), 0.4 (dashed curve), and 0.6 (dotted curve) and (d) degeneracy parameter XFe = 2 (solid curve), 3
(dashed curve), and 4 (dotted curve).

electrons evolve the drift IA solitons that are stable against the
perturbations.

By using Eq. (32), the growth rate is plotted against θ in
Fig. 5(a) with variation in the magnetic field as B0 = 1012G
(solid curve), 1.2 × 1012G (dashed curve), and 1.4 × 1012G
(dotted curve). This infers that at θ � (>)2, the magnetic field
causes γ to decrease (increase) by reducing (enhancing) the
wave instability. Figure 5(b) illustrates γ versus θ at vD = 0.1
(solid curve), 0.3 (dashed curve), and 0.6 (dotted curve). The
ion drift amplifies the pulse amplitude and in turn increases
γ . Similarly, γ is plotted against θ in Figs. 5(c) and Fig. 5(d),
changing the temperature ratio and the degeneracy parame-
ter, respectively. The electron temperature causes the wave
dispersion, thus enhancing the growth rate of instability. The
trapped electrons, on the other hand, steepen the wave, giving
rise to γ . Note that the growth rate of instability shortens the
propagation span (τ ) of a wave, as τ = γ −1. Thus the drift IA
waves that excite at small (large) angle of the magnetic field
achieve a relatively large (vanishingly small) growth rate and
therefore survive for a short (long) period.

The imaginary part of the perturbation-superimposed wave
solution in Eq. (33) is given versus Z in Fig. 6(a) at θ = 1◦

(solid curve), 4◦ (dashed curve), and 8◦ (dotted curve) when
the growth rate is γ = 0.002, 0.001, and 0.0006, respectively.
It can be noticed that the obliqueness of a solitary pulse along
with the perturbations reduces γ , which stabilizes the wave.
The imaginary solution (Im �), given in Fig. 6(b) at various
values of vD, infers that ion drift enhances γ and therefore
leads to temporal growth of the wave. Similarly, by varying
B0 and XFe, Im � has been given against Z in Figs. 6(c) and
6(d), respectively. The magnetic field (degeneracy parameter)
causes decay (growth) of the wave as it suppresses (grows) the
instability, see Figs. 5(a) and 5(b). By solving Eq. (32), the
frequency ratio (ωr ) is given versus θ and vD, respectively,
in Figs. 7(a) and 7(b) . Note that the solid curves therein
correspond to a critical frequency (ωrc), where the instability
parameter and the growth rate vanish (S = γ = 0). Moreover,
the lower (upper) shadings represent stable (unstable) drift IA
solitary potentials with frequency less than or equal to (greater
than) ωr . The enhancement in obliquity parameter (ion drift)
extends the frequency domain ωr � ωrc (ωr > ωrc), evolving
the stable (unstable) excitations. The frequency ratio, plotted
versus 
 and XFe in Figs. 7(c) and 7(d), respectively, indicates
that electron temperature (degeneracy) widens the frequency
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(a) (b)

(c) (d)

FIG. 5. The growth rate (γ ) from Eq. (32) is given vs θ in (a) at B0 = 1012 G (solid curve), 1.2 × 1012 G (dashed curve), and 1.4 × 1012 G
(dotted curve) and in (b) when vD = 0.1 (solid curve), 0.3 (dashed curve), and 0.6 (dotted curve). The growth rate is also illustrated at different
values of (c) temperature ratio 
 = 0.2 (solid curve), 0.4 (dashed curve), and 0.6 (dotted curve) and (d) degeneracy parameter XFe = 2 (solid
curve), 3 (dashed curve), and 4 (dotted curve).

regime for unstable (stable) IA solitons. It has been pointed
out [44] that the instability gives rise to anomalous diffusion
(D) that varies proportionally with growth rate (i.e., D ∝ γ ).
Since the drift IA waves in the frequency regime ωr � ωrc

have attained zero growth rate, they are not affected by the
diffusion.

VI. SUMMARY

The propagation characteristics and stability (instability) of
modified solitons have been examined in an inhomogeneous
magnetoplasma, containing partially degenerate electrons
and dynamical ions. Astrophysical objects, including white
dwarfs, magnetars, neutron stars, etc., as well as high energy
density facilities, are possible outlets for the plasma. For
the purpose, a modified Zakharov-Kuznetsov equation (16)
is derived that admits a pulse-shaped solitary wave in the
limit when phase velocity exceeds the dispersion effect. A

modification of the small-k expansion method leads to the
growth rate (32) of the mZK soliton, which has not been
described elsewhere. Furthermore, the obtained result reduces
into the growth rate of ZK solitons [34–36] in an appropriate
limit. The ion drift energizes solitary waves, increasing their
amplitude and hence instabilities. Similarly, the degeneracy
parameter (XFe) alters concentration of the trapped electrons
and in turn modifies γ . The solitary pulses achieve relatively
low growth rates while propagating at large obliqueness and
therefore last for a long time. More importantly, the drift IA
waves whose frequency is less than or equal to the critical
frequency (ωr � ωrc) do not cause the anomalous diffusion,
as these are stable to perturbations. This study is important to
understand the instability of the modified drift IA waves that
may cause deconfinement of matter in the fusion scheme.

The data that support findings of this study, are available
within the article.
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(a) (b)

(c) (d)

FIG. 6. The imaginary part of solution (33) is displayed vs Z at (a) θ = 1◦ (solid curve), 4◦ (dashed curve), and 8◦ (dotted curve) and
(b) vD = 0.1 (solid curve), 0.3 (dashed curve), and 0.6 (dotted curve). The solution Im � is depicted at (c) magnetic field B0 = 1012 G (solid
curve), 1.2 × 1012 G (dashed curve), 1.4 × 1012 G (dotted curve), and 0.6 (dotted curve) and (d) degeneracy parameter XFe = 2 (solid curve),
3 (dashed curve), and 4 (dotted curve).

APPENDIX A: COEFFICIENTS OF EQ. (18)

The coefficients, appearing in Eq. (18), are given by

L1 = cos θ, L2 = B cos θ sin2 θ + C cos3 θ + E sin θ cos2 θ, (A1)

L3 = − sin θ, L4 = −B sin θ cos2 θ − C sin3 θ + E sin2 θ cos θ, (A2)

L5 = B(2 cos2 θ − sin2 θ ) sin θ − 3C sin θ cos2 θ + E(cos2 θ − 2 sin2 θ ) cos θ, (A3)

L6 = B(cos2 θ − 2 sin2 θ ) cos θ + 3C sin2 θ cos θ + E(sin2 θ − 2 cos2 θ ) sin θ, (A4)

and

L7 = −A sin θ + D cos θ, and L8 = A cos θ + D sin θ. (A5)

APPENDIX B: COEFFICIENTS OF EQS. (26)–(33)

The coefficients in Eqs. (26) and (27) are given by

a = �1 + lη(Up − L8) − lζ L7 − �0M1

2
+ 2M2

�2
, and b = �0M1

2
− 6M2

�2
, (B1)

with

M1 = L1lη + L3lζ , and M2 = 3L2lη + L5lζ . (B2)
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(a) (c)

(b) (d)

FIG. 7. The frequency ratio (ωr ) is depicted vs (a) obliqueness θ and (b) drift speed vD. The frequency ratio is given against (c) temperature
ratio 
 and (d) degeneracy parameter XFe.

The expansion coefficient, arising at the second-order approximation [in Eqs. (28) and (29)] can be expressed as

M3 = 3L2lη
2 + L6lζ

2 + L5lηlζ . (B3)

Note that the coefficient M3 in Eq. (B3) matches exactly to the earlier result [34,35] when lη = 0 therein [34,35]. The perturbed
frequencies in the dispersion relation (31) are given as

� = 2

3

(
M1�0 − 2

M2

�2

)
, (B4)

and

ϒ = 16

45

(
M1

2�0
2 − 3

�0M1M2

�2
− 3

M2
2

�4
+ 12

M3L2

�4

)
. (B5)

The parameters S1, S2, and S3 [S(= S1 + S2 + S3) in Eq. (32)] are given by

S1 = 1 − 5N0tan2θ

3
− 5N 2

0 tan2θ

3ωr
2

, (B6)
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S2 = N
3
2

0 vDsin2θ tanθ

6
(
N 2

0 + ωr
2
)
β

1
2

{
3(ωr

2 + N0sin2θ ) + 2(N0 + ωr
2)sin2θ − N

1
2

0 vDωr
2

β
1
2 sin2θ tanθ

}
, (B7)

and

S3 = vDcosθsinθ
(
7ωr

2 + 5N0 − 2ωr
2cos2θ + 5N0sin2θ

)
6
(
N 2

0 + ωr
2
)
β

1
2

. (B8)

The real and imaginary components of �, marked as Re � and Im � in Eq. (33), can be algebraically expressed as

Re � = � +
[

(ψ0 + kC4F )coskXr − k
C1�

2

8L2

{
(ar + β )FZ + 2

3
(3ar + b)�

}
sinkXr

− k
C1�

2

8L2
(aiFZ + 2ai�)coskXr

]
exp(kXi), (B9)

and

Im � =
[

(ψ0 + kC4F )sinkXi + C1�
2

8L2

{
(ar + b)FZ + 2

3
(3ar + b)�

}
coskXi + C1�

2ai

8L2
(FZ + 2�)sinkXi

]
exp(kXr ),

(B10)

where Xr (= lζ ζ + lηZ − �1rτ ) and Xi(= �1iτ ) are the real and imaginary parts of X ; moreover, ar = � − �0M1
2 + 2M2

�2 and

ai = (ϒ − �2)
1
2 .
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