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Shear viscosity in two-dimensional dipole systems
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The results of modeling shear flows in classical two-dimensional (2D) dipole systems are presented. We
used the method of nonequilibrium molecular dynamics to calculate the viscosity at various shear rates. The
coefficients of shear viscosity are given in the limit of low shear rates for various regimes of interparticle
correlation from a weakly correlated gaseous state to a strongly nonideal liquid state near the crystallization
point. The calculations were carried out for bare (unscreened) dipole systems, as well as for dipole systems in
a polarizable medium that provide screening of the dipole-dipole interaction. The effect of shear thinning in 2D
dipole systems is reported for low values of the coupling parameter. In addition, it is shown that dipole systems
can become both less and more viscous due to the presence of a screening medium, depending on the degree of
interparticle correlation. The optimal simulation parameters are discussed within the framework of the method
of nonequilibrium molecular dynamics for determining the shear viscosity of two-dimensional dipole systems.
Moreover, we present a simple fitting curve which provides a universal scaling law for both bare dipole-dipole
interaction and screened dipole-dipole interaction.
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I. INTRODUCTION

Two-dimensional (2D) systems governed by a repulsive
dipole-dipole pair interaction are relevant for various systems.
For example, the repulsive dipole-dipole interaction is used to
describe two-dimensional colloidal systems [1–3]. In complex
plasmas, the interaction between charged dust particles can
be modified due to external fields and fluxes of ions and
electrons [4–11]. It was shown that a repulsive dipole-dipole
interaction is realized in complex plasmas under certain con-
ditions [6,9,12–18]. Furthermore, a system of polar molecules
[19] and a dipolelike excitonic phase state (created by bound
electron-hole excitons) can be described using a model of a
classical 2D system of dipoles [20,21].

The aforementioned examples have motivated studies of
various properties of classical two-dimensional systems us-
ing the repulsive dipole-dipole potential [22]. For example,
Khrapak et al. [6] investigated thermodynamic and dynamic
properties of a classical 2D system of dipoles. Earlier,
the characteristic oscillation modes of particles in the 2D
dipole system were analyzed by Golden et al. [20,21]. In
Refs. [20,21], it was demonstrated that a dipolelike excitonic
phase state created by bound electron-hole excitons in semi-
conductors can be described using a model of a classical
2D system of repulsive dipoles. These works on oscillation
modes in 2D dipole systems were continued by the study of
the dumping of the transverse excitations in the long wave-
length domain [23,24]. More recently, Aldakul et al. [17]
investigated melting, freezing, and the liquid-crystal phase
transition point of classical 2D dipole systems. In this work,
we extend these studies of 2D dipole systems by modeling
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shear viscosity and shear flows in classical 2D systems with
repulsive dipole interaction across coupling regimes.

In addition to a standard dipole-dipole interaction, in this
work we use screened dipole-dipole interaction. In the latter
case screening can be due to a polarizable medium surround-
ing the 2D dipole system [16,17,25]. For example, regarding
the aforementioned dipolelike excitonic phase state, it was
recently shown that screening due to excess charges modifies
electron-hole excitons [26]. In complex plasmas, the stream of
ions creates a focused ion cloud near a charged dust particle
in the downstream direction due to the attraction of ions by a
negative charge of a dust particle and the inelastic collision of
ions with atoms [27,28]. The focused ion cloud together with
the charged dust particle create a compound particle with zero
total charge and a nonzero dipole moment [16]. Additionally,
hot electrons—with the electron Debye length being much
larger than both the ion Debye length and the size of the com-
pound particle—provide screening of ion and dust particle
charges at long distance [16,29]. This leads to the formation
of the screened dipole-dipole interaction between compound
particles. The impact of screening on the structural properties,
oscillation modes, and thermodynamic characteristics of 2D
dipole systems was discussed in Ref. [17].

To compute the shear viscosity of 2D systems one can
use the reverse nonequilibrium molecular dynamics method
(NEMD) [30–32]. This method was used previously to inves-
tigate shear flows in classical 2D Yukawa systems [32]. It was
shown that the NEMD allows one to determine shear viscosity
in good agreement with experimental observation [33]. More-
over, the NEMD allows one to study a non-Newtonian fluid
behavior, i.e., when shear viscosity varies with the velocity
gradient. One of the peculiar properties of non-Newtonian flu-
ids is the decrease of the viscosity as shear is increased. This
effect is referred to as shear thinning. For example, following
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the original studies on simple liquids by Evans and colleagues
[34], such behavior has been reported in dusty plasmas [35].
Additionally, we compare results from the NEMD simula-
tions with the data for the shear viscosity computed using the
Green-Kubo relation connecting the shear viscosity and the
shear stress autocorrelation function.

This paper is organized as follows: In Sec. II we present the
pair interaction potentials. In Sec. III we discuss the compu-
tation method and provide simulations details. The results are
presented in Sec. IV. This paper is concluded by summarizing
the main findings.

II. BARE AND SCREENED DIPOLE-DIPOLE
INTERACTIONS

In this work, we present the results of the NEMD simula-
tions for 2D systems with the bare dipole-dipole interaction
potential,

βV (r) = �D

r3
, (1)

and with the screened dipole-dipole interaction [17,25],

βV (r) = �D

r3
(1 + κr) exp(−κr), (2)

where r is in units of the mean interparticle distance, β =
1/(kBT ) is the inverse value of the thermal energy, κ is the
screening length, and �D is a parameter characterizing the
coupling (correlation) strength [20,21].

The bare repulsive dipole-dipole pair interaction poten-
tial (1) has been used to model two-dimensional colloidal
systems [1–3] and the dipolelike excitonic phase state of
bound electron-hole excitons in semiconductors [20,21]. The
screened repulsive dipole-dipole pair interaction (2) provides
a description of dipole-dipole interaction in the presence of
a highly mobile polarizable background such as electrons in
complex plasmas [15,16,25] and an electrolyte screening field
of charged colloids [36].

The coupling parameter corresponding to the melting
(crystallization) point in the 2D system with bare potential
(1) is �m � 67 ± 4 [17]. The main effect of screening is to
change the pair interaction from a quasi-long-range potential
to short-range potential. As a result, the liquid-crystal phase
transition point shifts, e.g., to �m � 86 ± 6 at κ = 1 and to
�m � 163 ± 13 at κ = 2 [17]. Naturally, we report the shear
viscosity results for �D < �m.

III. COMPUTATIONAL METHOD AND
SIMULATION DETAILS

A. The NEMD method for generating shear rate

Let us start with a brief description of the essence of the
NEMD method for the computation of shear viscosity. The
key is to use the definition of shear viscosity in terms of a
linear relationship between the momentum flux and velocity
gradient [37]:

jx(px ) = −η
∂vx

∂y
, (3)

FIG. 1. Screenshot from a NEMD simulation after a certain
amount of time after the selection of the vertical bar of particles
(marked in blue), �D = 30, κ = 2. A horizontal shift in the position
of the particles can be observed due to the presence of two oppositely
directed flows generated in slabs A and B. The length is given in units
of the mean interparticle distance (see Sec. III C).

where the momentum flux per unit length jx, momentum px,
and shear rate ∂vx/∂y are considered to be induced by two
oppositely directed streams along the x axis.

In order to calculate shear viscosity, pointlike classical par-
ticles in a simulation box with a side length of L are simulated
with periodic boundary conditions. In the simulation box, we
define two horizontal slabs at the levels y = L/4 and y = 3L/4
(see Fig. 1). Let us designate these slabs as A and B. From
these slabs, according to the NEMD method, the particles
with the maximum and minimum values of vx are identified
and simultaneously swapped with a certain frequency (i.e.,
their momenta are interchanged without changing their coor-
dinates). In other words, the algorithm first selects the fastest
particle moving to the right in slab A and the fastest particles
moving to the left in slab B and then swaps the velocity
values of these particles. As a result, the mean velocity of the
particles in slab A is directed in one direction, and that in slab
B is directed in the opposite direction. Thus, this exchange of
particle velocities conserves energy and mimics two currents
flowing in opposite directions. This is illustrated in Fig. 1,
where a snapshot from a NEMD simulation is shown.

To find the shear viscosity from Eq. (3), first of all, the
dependence of the x component of the mean velocity vx on
the coordinate y is computed. Then, the value of the derivative
dvx/dy in the space between two slabs is calculated using the
linear regression method to find the vx(y) dependence.

Second, the momentum flux is computed using the follow-
ing relation:

jx(px ) = �p

2Lt
, (4)

where the coefficient 2 arises due to the fact that in our case
streams pass through two sides of the simulation box, t is the
simulation (measurement) time, and �p is the x component
of the total change in momentum as a result of the swapping
of velocities of particles during the measurement time.
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After finding the values of the shear rate ∂vx/∂y and of the
momentum flux �p, shear viscosity is computed as

η = �p

2tLdvx/dy
. (5)

As shown in [30], the shear rate ∂vx/∂y depends on the
swapping frequency. This means that different slope coef-
ficients will be obtained depending on how often momenta
are swapped. On the other hand, the momentum introduced
to the system also depends on the swapping frequency. This
means that, in general, the shear viscosity of a system can
depend on the swapping frequency (i.e., shear rate). However,
by varying the momentum exchange frequency parameter, it
was found that for sufficiently rare swaps, the viscosity value
is independent of the frequency of the momentum exchange
within statistical uncertainty [30,32]. It is this value that will
be considered physically meaningful and well defined. We
note that the NEMD method used in this work is similar to
the experimental method employing two counterpropagating
laser beams to measure the shear viscosity in dusty plasmas
[38], where two oppositely directed flows are generated as
illustrated in Fig. 1.

B. Shear viscosity from equilibrium molecular dynamics

As an extra cross-check, we used equilibrium molecular
dynamics to calculate the shear viscosity from the Green-
Kubo relation connecting the shear viscosity to the shear stress
autocorrelation function. We refer to this approach as the
equilibrium molecular dynamics method (EMD).

Within the EMD, the Green-Kubo relation for the shear
viscosity reads

η = 1

SkBT

∫ ∞

0
C(t ) dt, C(t ) = 〈Pxy(t )Pxy(0)〉, (6)

where S is the area of the simulation box and Pxy is the off-
diagonal element of the pressure tensor,

Pxy =
N∑

i=1

[
mvixviy − 1

2

N∑
i �= j

xi jyi j

ri j

∂V (ri j )

∂ri j

]
, (7)

with N being the number of particles and ri j = |ri − rj|.
In Eq. (6), C(t ) is the stress autocorrelation function

(SACF) of particles. In practice, in Eq. (6), the upper limit
in the integral is limited by the cutoff time, which is defined
approximately by the ratio of the simulation box length to the
sound speed [39]. Therefore, for a given number of particles,
the accuracy of the EMD based calculations depends on the
behavior of the SACF at long times. Moreover, for 2D Yukawa
systems, the SACF decays slower than t−1 and faster than t−1

with time for small and large values of the coupling parameter,
respectively [39]. The former means a diverging integral in
Eq. (6) for low values of the coupling parameter. Neverthe-
less, it turns out that Eq. (6) with a large enough cutoff time
gives meaningful results for the shear viscosity [35,40]. The
same is true for the diffusion coefficient computed from the
Green-Kubo relation connecting the diffusion coefficient with
the velocity autocorrelation function of particles [41].

We use the EMD data to validate the general features re-
lated to the dependence of the shear viscosity on the coupling
and screening parameters.

C. Simulation parameters

We consider a system of particles enclosed in a square with
periodic boundary conditions. Particles with pair interaction
potentials (1) and (2) are simulated using molecular dynamics,
where streams of particles are introduced as described in the
previous section. The side length of the simulation box is
defined by the number of particles as L/a = √

πN , with a
being the average distance between particles. We consider
N = 1024 particles. In our simulations, the length is in units
of a, and the time is in units of the inverse dipole frequency
1/ωd = [p2

d/(2πε0ma5)]−1/2 [20,21] (which is introduced in
analogy with the plasma frequency but does not describe a real
collective oscillation mode), with pd being the electric dipole
moment. The system is characterized by two dimensionless
parameters: the first is the coupling parameter �D, and the
second is the screening parameter κ . The value of the viscosity
is given in units of η0 = mnωd a2. The reduced shear rate
is defined as γ ∗ = (dvx/dy)(1/ωd ), and velocity values are
presented in units of v0 = aωd .

We study the dependence of shear viscosity on the coupling
parameter �D considering κ = 0, κ = 1, and κ = 2. The case
κ = 0 corresponds to a bare dipole-dipole interaction with the
pair potential (1). For different κ values, a system crystallizes
at different �D; therefore, for systems with different inverse
screening lengths, the coupling parameter varies within differ-
ent limits. The results presented in the following sections are
measured and averaged over 1000ω−1

d . For cross validation
of our NEMD code, we have reproduced data for the shear
viscosity of a 2D Yukawa system reported by Donkó et al.
[33]. The corresponding comparison of our results with those
of Donkó et al. is shown in the Appendix.

Using the EMD method, we calculated the shear viscosity
for three values of the coupling parameter, �D = 1, �D =
10, and �D ≈ �m. The coupling parameter values �m corre-
sponding to the melting (crystallization) point for different
screening parameters were reported by Aldakul et al. [17]. The
number of particles in our EMD simulations was set to N =
104. The SACF data were averaged over 20 independent sim-
ulations. The SACF is presented in units of C0 = η0ωd kBT S.

In the case of the bare dipole-dipole interaction, a direct
summation of the interaction force in MD is known to be
highly time-consuming and inefficient due to scaling as O(N2)
with respect to the number of particles. To avoid this prob-
lem and reduce scaling to O(N ), the gradient-shifted force
(GSF) electrostatics [42] based on the Wolf method [43] is
used. Within the GSF electrostatics, we set the cutoff value
and dumping coefficient to rc/a = 12a and α = 0.2a−1, re-
spectively. These values allow us to find converged data for
structural and dynamical properties of 2D dipole systems [17].

IV. RESULTS

A. Shear thinning effect

To begin with, in Fig. 2 we show the velocity distribution of
particles along the y axis, i.e., perpendicular to the direction of

065203-3



N. E. DJIENBEKOV et al. PHYSICAL REVIEW E 106, 065203 (2022)

FIG. 2. Velocity profiles perpendicular to the direction of flows at �D = 1 for (a) κ = 0, (b) κ = 1, and (c) κ = 2. The results are presented
for different values of the period of momenta exchange between flows.

flows, at different values of the period of momentum swap τ

between slabs A and B. The results presented in Figs. 2(a)–
2(c) are for a weakly correlated system with �D = 1 and
with κ = 0, κ = 1, and κ = 2, respectively. The presented
data are for the momenta exchange period ωdτ = 1, 5, and
10. From Fig. 2 we clearly observe that the more frequently
the permutation of moments occurs, the greater the shear rate
∂vx/∂y is. Further, as expected, the distribution of velocities
between slabs A and B is a linear function of the distance
between these slabs.

In Fig. 3, we present the velocity distribution of particles
in the case of the strongly correlated system with �D = 30.
As in the weakly correlated case, we observe an increase in
the shear rate with a decrease in the period of momentum
exchange in the slabs. Furthermore, the velocity distribution
between streams remains a linear function of the distance.
This behavior is general up to a crystallization point and al-
lows us to compute shear viscosity in a wide range of coupling
parameter values using the NEMD method.

The results presented in Figs. 2 and 3 were measured after
the system reached the stationary (equilibrium) regime. The
change in time of the shear rate γ at τωd = 10 is presented
in Figs. 4(a) and 4(b) for �D = 1 and �D = 30, respectively.
From Figs. 4(a) and 4(b), we observe that to obtain a phys-
ically valid viscosity, one needs to model for a long enough
time that the angle of inclination becomes approximately
constant. For example, at a momentum exchange period of
10 ω−1

d , it took about 60 000 ω−1
d for the bare dipole system

and about 45 000 ω−1
d for the screened dipole system to reach

a stationary regime. Therefore, a system with a stronger in-
terparticle correlation takes longer to reach a steady state. In
Fig. 4(c), the dependence of the shear rate on the momentum

exchange period τ is shown. As expected, one can observe
an increase in the shear rate with a decrease in the period of
momentum exchange in the slabs.

To obtain a physically correct shear viscosity, i.e.. one
which is independent of shear rate, it is necessary to permute
the momentum as rarely as possible. For the considered pa-
rameters, the optimal value of the frequency of momentum
exchange is found to be once every 10ω−1

d time period. If
one increases the frequency of the momentum exchange, then
shear viscosity can become a function of shear rate. In Fig. 5,
the shear viscosity at different values of the momentum per-
mutation period is presented for �D = 1 and �D = 30. From
Fig. 5, we clearly see that at �D = 1 (independent of screening
parameter), the shear viscosity is approximately independent
of the momentum exchange period at τωd � 10. In contrast,
at �D = 1 and τωd < 10, we observe that the shear viscosity
decreases as the momentum permutation period decreases.

Figure 6 shows the dependence of the viscosity on the shear
rate at �D = 1 and �D = 30. From Fig. 6, one can observe
that the viscosity value approaches an equilibrium value with
the decrease in the shear rate. For �D = 30, the change in the
momentum permutation period in the range 10−1 � τωd �
20 does not lead to a large enough change in the shear rate. As
a result, we do not observe a strong impact of the shear rate
variation on the viscosity value at �D = 30.

The decrease in the momentum permutation period is
equivalent to the increase in the shear rate, as demonstrated
in Figs. 2 and 3. The effect of the reduction of the shear
viscosity with the increase in the shear rate is called the shear
thinning effect. Thus, we are able to observe from Figs. 5 and
6 the effect of shear thinning in a two-dimensional system
of particles interacting through the repulsive dipole potential

FIG. 3. Velocity profiles perpendicular to the direction of flows at �D = 30 for (a) κ = 0, (b) κ = 1, and (c) κ = 2. The results are presented
for different values of the period of momenta exchange between flows.
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FIG. 4. The dependence of the shear rate on time for different
parameters: (a) �D = 1; κ = 0, 1, 2; ωdτ = 10. (b) �D = 30; κ = 0,
1, 2; ωdτ = 10. (c) The dependence of the shear rate on the period of
momentum exchange in the slabs.

in the weakly correlated regime (e.g., at �D = 1). One can
expect to observe the shear thinning effect at �D = 30 in
the case τωd 
 10−1, but it seems to be a rather unrealistic
limit in which the particles dynamics is strongly disturbed at
the length scale of the mean interparticle distance. Therefore,
next, we focus on physically meaningful results for the shear
viscosity values in the limit of low shear rates.

B. Shear viscosity

Let us consider shear viscosity in the limit of low shear
rates in more detail. For the screening parameters considered
in this work, the phase transition point lies in the intervals
�m = 67 ± 4 at κ = 0 and �m = 86 ± 6 at κ = 1 and in

FIG. 5. Shear viscosity as a function of the momentum exchange
frequency for selected values of the coupling parameter �D.

the range �m = 163 ± 13 at κ = 2. We varied the coupling
parameter of the system from �D = 1 to approximately �D =
�m.

From Fig. 7 we see that the shear viscosity has a nonmono-
tonic dependence on the coupling parameter with a minimum
at a moderate coupling value. More specifically, the minimum
of the shear viscosity occurs at �min ≈ 10 for the system with
κ = 0, at 10 � �min < 20 for the system with κ = 1, and at
�min ≈ 30 for the screened dipole system with κ = 2. The
change in the coupling parameter to lower or larger values
results in the increase in the shear viscosity. This behavior is
similar to that observed for Yukawa systems and explained
to be the result of the competition between the kinetic and
correlation parts of the pressure tensor [44].

Additionally, from Fig. 7 we can observe that the minimum
value of the shear viscosity decreases with the increase in
the screening parameter. Furthermore, shear viscosity values
at κ = 0, κ = 1, and κ = 2 are approximately the same at
�D = 5. At �D < 5, screening leads to an increase in shear

FIG. 6. Shear viscosity as a function of the shear rate for selected
values of the coupling parameter �D.
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FIG. 7. Shear viscosity in the limit of low shear rates from the
NEMD and EMD simulations.

viscosity. In contrast, at �D > 5, screening leads to a decrease
in shear viscosity.

As a sanity test of the NEMD results for 2D dipole systems,
we performed calculations using equilibrium MD data and
the Green-Kubo relation (6). In Figs. 8(a)–8(c), we present
results for the SACF at κ = 0, κ = 1, and κ = 2, respectively,
for �D = 1, �D = 10, and �D ≈ �m. �m is the coupling pa-
rameter corresponding to the melting (crystallization) point
from Ref. [17]. The general behavior of the SACF is a decay
with the increase in time. However, at t > 10ω−1

d , the SACF
becomes strongly affected by noise due to the finite number of
particles in the main cell. Here we used N = 104 particles and
averaged over 20 independent simulations. For an accurate
analysis of the behavior of the SACF at long times, we need
many more particles in the main cell [39]. We do not explore
this aspect of the SACF here, but we use the computed SACF
results to see whether the NEMD data are adequate.

From Fig. 7, we see that the EMD results computed using
the SACF are in good agreement with the NEMD data with
a disagreement of about 4% at �D = 1 for κ = 0 and κ = 1.
The largest disagreement of 8% is observed for �D = 10 and
κ = 1. In the other considered cases, the discrepancy between
the NEMD and EMD data does not exceed a few percent.
These deviations are expected since the utility of the Green-
Kubo relation for the viscosity calculations of 2D systems is
problematic, as discussed in Sec. III B. Nevertheless, from
Fig. 8, we see that the EMD data behave similarly to the
NEMD data with respect to the dependence on the coupling
and screening parameters.

The values of the shear viscosity computed using the
NEMD method are given in Table I. Additionally, for com-
parison, the shear viscosity results calculated from the EMD
method are shown in Table II.

C. Universal scaling law

It is known that one can express the viscosity dependence
on temperature via some universal scaling law [45]. For ex-
ample, in the case of 2D Yukawa systems, one can find such
an expression by expressing the viscosity value in units of
ηE = mnωE a2 and as a function of the reduced temperature
T ∗ = T/Tm, where ωE is the Einstein frequency and Tm is a
melting temperature.

FIG. 8. The SACF results for �D = 1, �D = 10, and �D ≈ �m at
(a) κ = 0, (b) κ = 1, and (c) κ = 2.

We have performed an analysis of the computed viscosity
data using ηE . For that, the Einstein frequency values at dif-
ferent parameters were calculated as [46]

ω2
E = 1

3m

∑
i �= j

�V (ri − rj). (8)

The η/ηE dependence on T/Tm is presented in Fig. 9 for
κ = 0, κ = 1, and κ = 2. From Fig. 9, one can clearly see
that there is some universality in the dependence of η/ηE on
T/Tm, which is not sensitive to the screening parameter.

In the case of 2D Yukawa systems, the universal scaling
law for η/ηE (T/Tm) reads [32]

η/ηE = a1T ∗ + b1T ∗−1 + c1, (9)

where a1, b1, and c1 are fitting parameters and T ∗ = T/Tm is
the reduced temperature.
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TABLE I. The shear viscosity values in the limit of low shear
rates for dipole systems with κ = 0, κ = 1, and κ = 2, obtained with
the NEMD method as described in Sec. III A.

�D κ = 0 κ = 1 κ = 2

1 0.61 0.64 0.71
2 0.39 0.41 0.44
5 0.27 0.27 0.28
10 0.26 0.24 0.22
20 0.31 0.26 0.20
30 0.39 0.31 0.20
40 0.50 0.36 0.21
50 0.62 0.45 0.23
60 0.85 0.54 0.24
70 0.67 0.26
80 0.86 0.28
90 0.30
100 0.33
120 0.41
140 0.51
160 0.71

First, we checked whether Eq. (9) can describe 2D dipole
systems. The best fit obtained using Eq. (9) and the method
of least squares is shown in Fig. 9 by the dashed line, where
a1 = 0.00187897, b1 = 0.9, and c1 = 0.19964258. Clearly,
Eq. (9) is not able to provide an adequate universal scaling
law. Instead, we found that a much better description is pro-
vided by replacing the T ∗−1 term with T ∗−2, i.e., by using

η/ηE = a2T ∗ + b2T ∗−2 + c2, (10)

where a2, b2, and c2 are fitting parameters.
The best fit based on Eq. (10) is shown in Fig. 9 by the solid

line, where a2 = 0.00124, b2 = 1.16076, and c2 = 0.27754.
From Fig. 9, we observe that Eq. (10) provides an adequate
universal scaling law for 2D repulsive dipole systems.

V. CONCLUSION

The shear viscosity of two-dimensional dipole and
screened dipole systems was investigated using the NEMD.
The optimal values of the momentum exchange frequency and
equilibration time were analyzed to compute the shear vis-
cosity values for different coupling and screening parameters.
The dependence of the shear viscosity on the coupling param-
eter � in the limit of low shear rates for different screening
parameters was presented. It was found that screening leads

TABLE II. The shear viscosity values for dipole systems with
κ = 0, κ = 1, and κ = 2, obtained with the EMD method as de-
scribed in Sec. III B.

�D κ = 0 κ = 1 κ = 2

1 0.58 0.61 0.70
10 0.26 0.22 0.21
60 0.82
80 0.87
160 0.70

FIG. 9. The dependence of the shear viscosity on the reduced
temperature T/Tm, where the shear viscosity is presented in units of
ηE . The dashed line is the best fit obtained using Eq. (9); the solid
line is the best fit based on Eq. (10). The data were fitted using the
method of least squares.

to an increase in the shear viscosity at �D < 5. In contrast, at
�D > 5 the shear viscosity of 2D dipole systems decreases
with an increasing screening parameter. As expected, the
shear viscosity of 2D dipole systems has a minimum at in-
termediate coupling parameters. The value of the coupling
parameter corresponding to the minimum of the shear viscos-
ity shifts to larger values with an increase in the screening
degree. Furthermore, a shear thinning effect was revealed for
2D dipole systems for low values of the coupling parameter.

Our extensive NEMD simulations have allowed us to cal-
culate the shear viscosity of classical 2D repulsive dipole
systems. Furthermore, we found a simple fitting curve which
provides a single universal scaling law valid for both the
bare dipole-dipole pair interaction potential and the screened
dipole-dipole pair interaction potential. Taking into account
the relevance of dipole systems for various fields of physics
and the general interest from the point of view of statistical
physics, we believe that the present study is a valuable addi-
tion to the physics of strongly correlated 2D systems.

FIG. 10. Shear viscosity in the limit of low shear rates for the
2D Yukawa system. A comparison with the data from Ref. [32] is
presented.
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APPENDIX: THE SHEAR VISCOSITY OF CLASSICAL 2D
YUKAWA SYSTEMS

In order to verify the correctness of our implementation of
the NEMD method, we computed the shear viscosity of 2D
Yukawa systems in the limit of low shear rates and validated
our results by a comparison with previously published data by
Donkó et al. [32].

In the case of the Yukawa system, the pair interac-
tion potential is defined as U = Q2 exp(−r/λD)/4πε0r. The
Yukawa system is characterized by the following dimen-
sionless parameters: � = Q2/2πε0akBT , κ = a/λD, and a =
(1/πn)1/2, where a is the Wigner-Seitz radius, λD is the De-
bye screening length, n is the number density of particles,
ωp = (Q2/2πε0ma3)1/2, ωp is the 2D analog of the plasma
frequency, and η∗ = η/mnωpa2.

The comparison of our results with the data from Ref. [32]
is presented in Fig. 10 for κ = 1. As can be seen from Fig. 10,
our results have a fairly accurate agreement with the data from
Ref. [32].
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