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Growth rate of the turbulent magnetic Rayleigh-Taylor instability
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The Rayleigh-Taylor instability is strongly modified in the presence of a vertical mean magnetic field.
Perturbations are first stretched in the vertical direction with no mixing due to the inhibition of small-scale
shear instabilities. Then smooth elongated fingers eventually break after transition to turbulence, and a strong
anisotropy persists. For increasing Alfvèn velocities, the growth rate of the mixing zone in the fully turbulent
regime is decreased due to the conversion of potential energy into turbulent magnetic energy. A new theoretical
prediction for the growth rate based on turbulent quantities is proposed and assessed with high-resolution
direct numerical simulations of the Boussinesq-Navier-Stokes equations under the magnetohydrodynamics
approximation.
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I. INTRODUCTION

A perturbed interface between two fluids which is ac-
celerated against the mean density gradient may become
unstable due to baroclinic production of vorticity: This is
the Rayleigh-Taylor instability (RTI) [1–5]. As the amplitude
of the perturbations increases, nonlinear interactions turn the
flow into a turbulent mixing zone, which grows at a rate whose
determination is of primary importance [6]. Furthermore, if
the fluids have magnetic properties, like a turbulent plasma,
then the magnetohydrodynamics (MHD) equations have to be
used to describe the full dynamics [7].

The magnetic Rayleigh-Taylor instability (MRTI) can play
an important role in several industrial and physical applica-
tions, in particular inertial confinement fusion (ICF), where
hydrodynamic instabilities may cool down the capsule hot-
spot [8]: In such devices, strong magnetic fluxes might be
generated through the Biermann battery effect and hence
should be accounted for when designing capsules [9]. In
several astrophysical systems, the MRTI is thought to be
at the origin of elongated structures, such as in expanding
young supernova remnants [10] like the Crab nebula [11],
in magnetic fluxes emerging from the Sun interior [12] and
in quiescent solar prominences [13]. In particular, the MRTI
framework may be used to infer the intensity of the ambient
magnetic field from the measure of the exponential growth
rate σ = [Agk⊥ − (k⊥ · B0)2]1/2, with k⊥ the horizontal wave
vector of modulus k⊥; A = (ρ1 − ρ2)/(ρ1 + ρ2) the Atwood
number with ρ1 and ρ2 the densities of the heavy and light
fluids, respectively; B0 = |B0| the mean magnetic field inten-
sity scaled as the Alfvèn velocity; and g the magnitude of the
local acceleration [13,14]. However, this method based on the
inviscid linear stability analysis [15] may not be adequate for
fully turbulent astrophysical objects.

Early simulations, with either a mean magnetic field per-
pendicular or parallel to the interface, revealed the appearance
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of elongated structures at onset, and then the dominance of
vertical magnetic energy [16]. For three-dimensional simula-
tions of the MRTI with a tangential mean magnetic field, an
increase of the growth rate was observed, with large blobs
rising due to the reduction of small-scale mixing [17,18].
A different conclusion was obtained in Ref. [19], where a
damping of the growth rate was observed when increasing B0.

This brief survey illustrates that the fate of the MRTI in the
fully developed turbulent regime remains unclear. Hence, in
this paper, we aim at analyzing the late time dynamics of the
MRTI through high-resolution direct numerical simulations
(DNS). The main outcome of this study is the derivation of an
analytical relation between the growth rate of the mixing zone,
the ambient magnetic field intensity, mixing, and anisotropy.
This provides a new prediction for the growth rate given the
turbulent properties of the flow, which is successfully com-
pared with numerical results.

The magnetic field fluctuations are created by imposing a
uniform mean field B0 oriented perpendicular to the interface,
a configuration which preserves statistical axisymmetry, so
that models dedicated to the classical RTI can be extended.
This particular setup is representative of the interactive out-
flows of a close-in planet and its host star [20] or of the inner
shell of young supernova remnants [10].

II. EQUATIONS AND NUMERICAL SETUP

To assess the effect of a mean magnetic field on the
Rayleigh-Taylor instability, we conduct our analysis within
the Boussinesq approximation framework, as suggested in
Ref. [16]. Then the motion of the two incompressible fluids,
initially at rest in an unstable configuration and separated by
a perturbed flat interface, is given by the following equations:

(∂t + u · ∇ − ν∇2)u = −∇(p/ρ0) − 2AgCn3

+ (∇ × B) × B, (1a)

(∂t + u · ∇ − η∇2)B = (B · ∇)u, (1b)

(∂t + u · ∇ − κ∇2)C = 0, (1c)

∇ · u = ∇ · B = 0, (1d)
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TABLE I. Parameters of the DNS: number of points, N ; Atwood number times acceleration, Ag; mean vertical magnetic field intensity, B0

(scaled as a Alfvèn velocity); diffusion coefficients ν = κ = η; and final turbulent Reynolds number, Ret .

N Ag B0 ν 10−3 × Ret

10242 × 2048 0.5 [0; 0.02; 0.05; 0.10; 0.15; 0.20; 0.25; 0.30] 2 × 10−4 [2.1; 2.8; 3.1; 2.5; 2.1; 1.6; 1.5; 1.4]
10242 × 2048 1.0 [0; 0.10; 0.20] 2 × 10−4 [3.3; 4.2; 3.0]
40963 0.5 [0; 0.20] 1 × 10−4 [3.7; 2.5]
40963 0.5 [0; 0.20] 5 × 10−5 [7.7; 5.1]

where u is the velocity field; B = b + B0n3 the total magnetic
field scaled as a velocity, with b the fluctuation and B0 the
mean part along n3 the upward vertical unit vector; p/ρ0 the
reduced pressure with ρ0 = (ρ1 + ρ2)/2 the mean density;
C the concentration of the heavy fluid related to the density
through ρ/ρ0 = 1 + 2A(C − 1/2); and ν, η, and κ the con-
stant kinematic viscosity, magnetic diffusivity, and molecular
diffusivity, respectively, with here ν = κ = η.

Here the pseudospectral code STRATOSPEC [21] is em-
ployed to solve Eqs. (1a)–(1d). The domain is either of
size (2π )3 for the finest resolutions with 40963 points and
the smallest diffusion coefficients, or vertically elongated
(2π )2 × 4π for the simulations with 10242 × 2048 points. A
classical penalization method is used to ensure periodicity in
the vertical inhomogeneous direction, see Ref. [22] for details.
A summary of the simulations is provided in Table I, with the
values of B0 indicated in a list for each configuration. The
turbulent Reynolds number based on kinetic energy and its
dissipation rate is indicated as well at the final time of the
simulation: Simulations are stopped when the mixing zone
reaches 60% of the domain height. This corresponds to t = 12
for the most critical case with B0 = 0.3 in the elongated do-
main. Larger values of B0 are not presented since the late-time

fully turbulent state is not reached before vertical confinement
effects are felt.

The concentration field is set initially with a sharp interface
perturbed by small-scale fluctuations of peak wave number
40 � kp � 50, while the velocity and magnetic fields are zero.
Scalar perturbations induce velocity fluctuations through the
buoyancy term 2AgC in (1a), which in turn produces magnetic
fluctuations through the stretching term B0∂zu in (1b).

III. TRANSITION TO TURBULENCE

When adding a vertical mean magnetic field to the classi-
cal RTI configuration, the onset of the instability is slightly
delayed compared to the nonmagnetic case in Fig. 1. Still
in the early phase from t = 2 to t = 5, the initial perturba-
tions get more stretched: This was already observed in 2D
simulations [16]. The reason is that Kelvin-Helmholtz (KH)
shear instabilities at small scales are inhibited by the vertical
mean magnetic field. Therefore, mixing is strongly reduced
in the early phase, which causes the mixing layer to grow
faster. Later at t = 8, transition to turbulence has occurred
for B0 = 0.3 and mixing between structures has started. At
this point, the mixing layer is significantly wider for B0 = 0.3

t = 2 t = 5 t = 8 t = 11

FIG. 1. Time evolution of the concentration field C (pure fluids are transparent) at t = 2, 5, 8, and 11 for B0 = 0 (top row) and B0 = 0.3
(bottom row) and for Ag = 0.5 in the vertically elongated domain.
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FIG. 2. Mixing zone size L normalized by the domain height
(blue) and ratio of kinetic to potential energy ρ0u2/(2ep) (black) for
B0 = 0.3 (solid line) and B0 = 0 (dash-dotted line) with Ag = 0.5 in
the vertically elongated domain.

than B0 = 0. Then, up to t = 11, a strong imprint of the mean
magnetic field remains, with structures significantly vertically
elongated.

This overall dynamics can be quantified using the mixing
zone size, defined as [6,23,24]

L(t ) = 6
∫

〈C〉(1 − 〈C〉)dz, (2)

where 〈	〉 is the horizontal average. This definition is widely
used since it provides the exact size for a linear 〈C〉 profile,
which is what is observed in the fully turbulent regime. In
Fig. 2, the time evolution of L(t ) is presented for the two
cases B0 = 0 and B0 = 0.3: One recovers the delayed onset
in the presence of the magnetic field, followed by a rapid
increase.

The ratio of kinetic to potential energy ρ0u2/(2ep) is shown
as well, with 	 = (1/L)

∫ 〈	〉dz referring to the volume aver-
age and where the potential energy is defined with respect to
its initial value ep = gz[ρ(0) − ρ], like in Ref. [25]. It is clear
that the asymptotic proportion of kinetic energy is strongly
reduced for B0 = 0.3 since part of the available potential en-
ergy is converted into magnetic energy: This will be discussed
further later.

Mixing and anisotropy can be quantified in axisymmetric
turbulence using the mixing parameter 
 [3], which tends
toward unity for perfectly mixed fluids, and the scalar direc-
tional anisotropy parameter sin2 γ [26], which increases from
2/3 (isotropic value) up to 1 when structures are vertically
elongated. Both are defined as


 = 1 − 6

L

∫
〈c2〉dz, sin2 γ =

∫
Ecc(k) sin2 θd3V∫

Ecc(k)d3V
, (3)

with Ecc the spectral concentration variance density, θ the an-
gle between k and n3, d3V the integration volume in spherical
coordinates, and c = C − 〈C〉 the fluctuation.

The time evolution of 
 and sin2 γ is shown in Fig. 3
for B0 = 0.3 compared with the reference case B0 = 0. The
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FIG. 3. Mixing parameter 
 (blue), anisotropy of the concen-
tration field sin2 γ (black), anisotropy of the velocity field u2

⊥/u2
z

(red), and growth rate α (green) for B0 = 0.3 (solid line) and B0 = 0
(dash-dotted line); the vertical dashed line indicates the time at which
Vz > B0.

directionality parameter sin2 γ first increases, reflecting the
stretching in the vertical direction, and then reaches a max-
imum, much larger for B0 = 0.3, and afterwards decreases
with turbulent mixing. One readily observes that the transition
to turbulence is strongly delayed in the presence of a mean
magnetic field. It is well indicated by the inviscid stability
criterion Vz > B0 for KH, which consistently corresponds to
the decrease of sin2 γ : Here Vz = (u2

z )1/2 is the typical vertical
turbulent velocity.

At the same time, the mixing parameter 
 diminishes
because structures are initially stretched without mixing and
then increases after transition to turbulence. An unexpected
outcome is that the final value of 
 is slightly larger for
B0 = 0.3 than B0 = 0, showing somehow that mixing could
be more efficient with a mean magnetic field: This is due to
the much larger surface available for mixing at the transition
to turbulence in the MRTI since structures are vertically elon-
gated.

Finally, the ratio of horizontal to vertical kinetic energy
u2

⊥/u2
z also shows the strong anisotropy of the velocity field,

since it is three times lower for B0 = 0.3 than for the nonmag-
netic case: Hence, even in the fully turbulent regime, there
remains a strong imprint of the magnetic field that maintains
the flow around field lines.

IV. GROWTH RATE

It is clear from the observations in Fig. 3 that an asymptotic
state is eventually reached for the MRTI. In the self-similar
regime of the RTI, the mixing zone size evolves as [3]

L(t ) = 2αAgt2, α = L̇2

8AgL
. (4)

The time evolution of the turbulent mixing zone growth rate α

is shown in Fig. 3 for B0 = 0 and B0 = 0.3: It decreases after
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transition to turbulence to a final value which is lower in the
presence of a mean vertical magnetic field. For this particular
case (B0 = 0.3, ν = 2 × 10−4), we obtain a 33% reduction of
the growth rate.

In Ref. [26], based on the rapid acceleration (RA) model, a
relation was derived between the growth rate and the mixing
and anisotropy parameters,

αhyd = sin4 γ (1 − 
)2

1 + sin2 γ (1 − 
)
. (5)

This result has proven to be accurate in nonmagnetic con-
figurations [24] and was later extended to second-order
correlations in Ref. [27]. In the MRTI, for strong-enough
mean magnetic fields, the growth rate is permanently re-
duced so that the prediction αhyd over-estimates the measured
growth rate (see Fig. 5). Moreover, for a given Alfvèn ve-
locity, α is even more reduced when turbulence intensity is
increased: This is confirmed by the high-resolution DNS for
which the diffusion coefficients are decreased from 2 × 10−4

to 5 × 10−5.
What is the missing ingredient to more accurately predict

the growth rate in the MRTI? Within the RA approach for the
classical RTI, a simplified system of equations describing the
large-scale dynamics is obtained, which yields a buoyancy-
drag equation [28,29]

L̈ = −Cd
L̇2

L
+ CbAg, (6)

where the buoyancy coefficient is Cb = 4(1 − 
) sin2 γ and
Cd = 1/2. Moreover, it can be shown that turbulent dissipa-
tion does not modify Cb and only acts as a supplementary drag,
which takes the form Cd = 1/2 + D, where D needs to be
modelled [30]. Further using the closure Cd = 2/Cb demon-
strated in Ref. [31] in the nonmagnetic case, one recovers (5)
in the RA approach, with α = Cb/(4 + 8Cd ) coming from (4)
and (6). Thus, our previous question amounts to determine
how to modify Cb and Cd to account for the presence of a
vertical mean magnetic field.

In the MHD framework, new couplings and correlations
come into play so that the RA approach must be adapted.
We first define the various spectral densities as Eβγ (k)δ(k −
p) = β̂(−p)γ̂ (k), where 	̂ is the Fourier transform, and with
namely the vertical kinetic energy Euu, the vertical magnetic
energy Ebb, the vertical flux Euc, the scalar variance Ecc, the
cross-helicity Eub, and the mixed flux Ebc. When considering
the large scales of these quantities, nonlinear and dissipative
terms can be discarded, so that the evolution equations read

∂Euu

∂t
= −4Ag sin2 θRe[Euc] − 2k cos θB0Im[Eub], (7a)

∂Ebb

∂t
= 2k cos θB0Im[Eub], (7b)

∂Ecc

∂t
= − 2

L
Re[Euc], (7c)

∂Euc

∂t
= −2Ag sin2 θEcc − 1

L
Euu − ik cos θB0Ebc. (7d)
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FIG. 4. Magnetic to kinetic energy ratio b2/u2 as function of time
for various Alfvèn velocities B0 and diffusion coefficients ν.

Interestingly, Eqs. (7a)–(7d) describing the large-scales dy-
namics of the MRTI reduce for θ = π/2 to the hydrodynamics
RA equations for θ = π/2, with no explicit magnetic con-
tributions. However, fluctuations are the most amplified and
contribute dominantly to the overall dynamics for this partic-
ular angle [26,27]: This means that magnetic effects play a
role through nonlinear interactions between different angles
and scales, which are now taken into account by spherically
averaging the system (7). Further summing (7a)–(7b) cancels
out the redistribution term associated to Eub, yielding

∂

∂t
(Euu + Ebb) = −4Ag

∫
Euc sin2 θ d2Sk, (8a)

∂Euc

∂t
= −2Ag

∫
Ecc sin2 θ d2Sk − Euu

L

− iB0

∫
kEbc cos θ d2Sk, (8b)

∂Ecc

∂t
= − 2

L
Euc, (8c)

where the spherically averaged spectrum is Eβγ (k) =∫
Eβγ (k)d2Sk , with d2Sk = k2 sin θdθdφ the surface integra-

tion at constant k.
To close the system (8), we finally make two assumptions.

(i) We consider only the leading θ contributions, namely
θ → π/2, which amounts to discard the Ebc term (this is
further assessed by numerical results which indicate that bzc is
orders of magnitude smaller than u2

z and c2). (ii) We assume a
constant ratio R = Ebb/Euu at large scales in the self-similar
regime. By doing so, we consider that most of the energy
is contained in the largest scales; but R also reflects how
the nonlinear interactions at smaller scales impact the largest
ones. This assumption is justified in Fig. 4 by the fact that
the magnetic-to-kinetic energy ratio b2/u2 � b2

z/u2
z eventually

tends to a constant, which increases with B0 and the turbulent
intensity. Here one relates spectra and energies through Lu2

z =
Lz

∫
Euu dk and Lb2

z = Lz
∫

Ebb dk, where Lz is the domain
height.
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Hence, the final simplified system describing the large-
scale dynamics of the MRTI is

(1 + R)
∂Euu

∂t
= −4AgEuc, (9a)

∂Euc

∂t
= −2AgEcc − Euu

L
, (9b)

∂Ecc

∂t
= − 2

L
Euc. (9c)

Coming back to the system (8), it is possible to derive a new
buoyancy-drag equation in the context of the MRTI. Using
the approximation Ebb = REuu, and performing an expansion
of the spectra in Legendre polynomials like in Ref. [26], one
eventually gets

L̈ = −
(

1

2
+ R

2R + 3

)
︸ ︷︷ ︸

Cd

L̇2

L
+ 4 sin2 γ (1 − 
)︸ ︷︷ ︸

Cb

Ag, (10)

where Cd = (1/2) + R/(2R + 3) is the new drag coefficient
in the presence of a normal mean magnetic field (for R = 0,
one recovers the result of the classical RTI). Since R > 0 in
the MRTI, this analysis shows that only the drag coefficient is
increased in the presence of turbulent magnetic energy, thus
reducing the growth rate, while the buoyancy coefficient is
left unchanged. Still, this expression for Cd is not predic-
tive since turbulent dissipation has to be taken into account:
Hence, a new closure for the drag coefficient needs to be
derived.

To do so, we finally assume self-similarity of the large
scales, like in Ref. [31]: The various spectra read Eβγ =
E0

βγ kstnβγ , with the amplitudes E0
βγ and the exponents nβγ

and s independent of space and time: Note that due to the
production terms in the system (9), all three spectra have the
same infrared slope s. Further using the previous outcome that
only the drag coefficient Cd is increased by R, this gives the
following closure for the drag coefficient in the MRTI, Cd =
2(1 + R)/Cb + R/2, which consistently reduces to Cd = 2/Cb

in the hydrodynamic case [31]. This yields a new relation
between the growth rate of the mixing zone in the magnetic
Rayleigh-Taylor instability and the turbulent quantities

αMHD = sin4 γ (1 − 
)2

(1 + R)[1 + sin2 γ (1 − 
)]
= αhyd

1 + R
. (11)

Hence, the presence of magnetic energy reduces the growth
rate, and R can be as large as 55% in Fig. 4.

This new prediction is confronted to all the simulations
of Table I in Fig. 5. The α evaluated from the DNS (black
squares) are averaged over the two last times. It is clear
that the results in the hydrodynamic case (blue circles) given
by (5) always overestimate the true value of α when the mean
magnetic field B0 increases. On the contrary, the present rela-
tion (11) accounting for the magnetic energy (red crosses) is
much closer to the DNS results, with excellent agreement for
the largest B0. One may argue that for the lowest Alfvèn ve-
locities, namely B0 � 0.1, the magnetic energy spectra are not
developed enough so that the assumptions of self-similarity
and constant ratio R are questionable; still, it provides better
results than the nonmagnetic prediction.

0 0.1 0.2 0.3
0.01

0.015

0.02

0.025

0.03

FIG. 5. Growth rates of the mixing zone for the DNS of Table I
as function of B0. [� (black)] numerical result averaged over the
two last times with ±5% error bar; [◦ (blue)] hydrodynamic predic-
tion (5); [× (red)] MHD prediction (11).

V. APPLICATIONS AND CONCLUSIONS

To interpret observational data, the relation (11) can be
used to estimate the ambient magnetic field intensity b0 =√

b2 through b0 = u0
√

αhyd/α − 1. One also needs an esti-

mation for u0 =
√

u2 from direct measurements. Then αhyd

depends only on the mixing and anisotropy parameters, as
given by (5): Typical values can be chosen, such as 
 � 0.8
and 0.8 � sin2 γ � 0.9. Finally, the actual growth rate α of
the mixing zone is required: Unfortunately, this is rarely pro-
vided, since the exponential growth rate coming from the
linear stability analysis is often used [14,32]. Still, α could
be evaluated using the self-similar expression (4) from visual-
izations at two different instants if the heights of the structures
were systematically reported.

In Ref. [14], solar limb prominences are analyzed, but the
data reported are not sufficient to evaluate α. Nevertheless, we
can comment on the observations regarding the occurrence of
November 2006 in Fig. 11 of Ref. [14]. Elongated structures
are clearly visible: However, the typical transverse length
scale between two structures significantly increases between
two instants, which is the signature of strong nonlinear mech-
anisms, which thus possibly discards analysis relying solely
on the linear stability.

As a conclusion, the overall dynamics of the Rayleigh-
Taylor instability is significantly impacted by the presence of
magnetic energy, created here through a vertical mean field.
First, the transient regime exhibits strong anisotropy with a
rapid stretching of the structures, which then break at transi-
tion to turbulence, yielding an enhanced mixing. Hence, the
fully turbulent state is significantly altered, with a reduced
growth rate of the mixing zone, since part of the potential
energy is converted into magnetic energy rather than kinetic
energy. This reduction is remarkably captured by an adapta-
tion of the rapid acceleration model to the MHD framework.
The new prediction derived here for the mixing zone growth
rate can be used to adapt turbulent models for ICF and to
infer local magnetic field intensities in turbulent astrophysical
configurations.
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