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We report on numerical simulation of fluid interface deformations induced by either acoustic or optical
radiation pressure. This is done by solving simultaneously the scalar wave propagation equation and the two-
phase flow equations using the boundary element method. Using dimensional analysis, we show that interface
deformation morphogenesis is universal, i.e., depends on the same dimensionless parameters in acoustics and
electromagnetics. We numerically investigate a few selected phenomena—in particular the shape of large defor-
mations and the slenderness transition and its hysteresis—and compare with existing and novel experimental
observations. Qualitative agreement between the numerical simulations and experiments is found when the
mutual interaction between wave propagation and wave-induced deformations is taken into account. Our results
demonstrate the leading role of the radiation pressure in morphogenesis of fluid interface deformations and the
importance of the propagation-deformation interplay.
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I. INTRODUCTION

In 1939 Hertz and Mende showed that fluid interfaces were
deformed by intense ultrasonic beams [1]. In 1973 Ashkin
and Dziedzic [2] demonstrated the same phenomenon using
focused optical beams. Using extremely soft fluid interfaces,
Casner and Delville [3] observed “large” interface deforma-
tions (i.e., whose height is comparable to or larger than the
beam diameter) using optical beams. Since then, various kinds
of interface deformations have been observed using either
acoustic or optical beams: bell-shaped deformations [3,4],
stepped deformations [4–6], needlelike deformations [4,7,8],
liquid bridges [9–12], and cones [13]. Since Maxwell’s and
Lord Rayleigh’s pioneering works [14,15], it is well estab-
lished that the main mechanical effect of an acoustic (AC)
or electromagnetic (EM) wave on a liquid-liquid interface
is a normal stress called radiation pressure [16,17]. Since
then, several other mechanical effects of acoustic and elec-
tromagnetic waves on liquids and liquid interfaces have been
identified, in particular in the presence of wave absorption
or wave scattering by liquids. Namely, one can mention sit-
uations where interface deformations result from either bulk
flows triggered by bulk forces [8,18–21] or thermocapillary
flows originating from interfacial tension gradients triggered
by temperature gradients [22,23]. Regarding nonscattering
and nonabsorbing liquids, the previously cited studies have
led one to conclude that the observed morphological diversity
of fluid interface deformations originates basically from the
mutual interplay between the shape of the interface deformed
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by the radiation pressure and the wave propagation. Indeed, a
distorted interface acts as a dioptre that modifies the structure
of the wave passing through it, hence the radiation pressure
exerted on it. From now on, we refer to such a feedback
mechanism as the propagation-deformation interplay (PDI),
which is the subject of this work.

In the regime of “small” deformations (i.e., whose height
is smaller than the beam diameter), the disturbances of the
beam by the curved interface are noticeable only far down-
stream of the interface [24]. Consequently, the shape of a static
interface can be quantitatively described by solving the bal-
ance between Laplace pressure, buoyancy, and the radiation
pressure exerted by the incident, nonperturbed, wave [3,4,25].
By contrast, the description of large interface deformations
requires one to account for the perturbation of the wave by the
interface, i.e., PDI. The particular case of axisymmetric liquid
columns can be treated analytically owing to the translational
invariance of the interface shape along its axis of revolution
[10–12]. The predicted equilibrium radius of the column,
which has been calculated within an exact scalar description
of the electromagnetic field in both liquids, is in agreement
with experimental observations [10,11]. The case of stepped
deformations is far more challenging from an analytical point
of view. Still, the beam propagation through axisymmetric
dioptres having the shape of the experimentally observed
steady interfaces can be numerically computed. The radiation
pressure distribution deduced from the computed wave field
was found to satisfactorily balance the Laplace pressure and
buoyancy assessed from the measured shape of the interface
[6]. Although this is an a posteriori verification of the validity
of the PDI hypothesis, a self-consistent determination of the
shapes of the irradiated interfaces resulting from the PDI
is still missing. Furthermore, the mechanism underlying the
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instability leading to the formation of needlelike deforma-
tions, which is likely to involve PDI, is still unknown [7,25].

In this work we aim to determine the interface defor-
mations by solving the PDI problem for any deformation
amplitude. This is done by numerically mimicking an ex-
periment. In other words, we simultaneously solve the
hydrodynamic evolution of an irradiated two-phase fluid sam-
ple and the propagation of the acoustic or electromagnetic
beam through the moving interface, taking a planar and hor-
izontal interface at rest as the initial condition (time t = 0)
and considering a nonzero constant beam power for t > 0.
Such a numerical simulation of the radiation pressure-driven
deformation morphogenesis of fluid interfaces allows us to
address the following questions:

(1) How do the interface deformations depend on the vari-
ous parameters characterizing the wave-matter interaction?

(2) Do the numerical simulations predict the same interface
deformation shapes as those experimentally observed?

(3) Does the instability leading to the formation of
needlelike deformations and the ensuing observed hysteresis
originate from the PDI [7,25]?

The paper is organized as follows. The key ingredients of
the model are presented in Sec. II. The dimensionless formu-
lation of the model and its numerical handling are provided in
Sec. III. Then a dimensional analysis is performed in Sec. IV,
which shows that the deformation height depends on five
independent dimensionless quantities in both acoustics and
electromagnetics. The numerical results and their comparison
with existing and novel experimental observations are pre-
sented in Sec. V, which addresses the three main questions
listed above. Finally, Sec. VI then summarizes the main results
of this work.

II. MODEL

In this section we first present the wave propagation equa-
tions describing the acoustic and electromagnetic fields and
the corresponding radiation stresses exerted on the interface.
Then we present the hydrodynamic equations describing the
evolution of the fluid sample in the creeping-flow regime that
suits well most of the experiments reported so far.

A. Propagation

Considering both fluids 1 and 2 as homogeneous, isotropic
and linear, we also assume inviscid and non-heat-conducting
media when dealing with acoustic waves whereas we assume
nonabsorbing and nondispersive media for electromagnetic
waves. Within the latter framework, the propagation of small-
amplitude acoustic waves and of electromagnetic waves is
described by d’Alembert’s wave equation

∂2qi

∂t2
− c2

i ∇2qi = 0, i = (1, 2), (1)

where q is the fluid pressure perturbation p′ associated with
acoustic waves, whereas it refers to the electric field E or
the magnetic field H for electromagnetic waves, and c is the
wave celerity (also equal to the phase and group velocities). In
addition the subscript i refers to the fluid labeled i, i = (1, 2);
see Fig. 1.

FIG. 1. Sketch of the simulation domain with the definitions of
the used notations. The convention c1 = c+ and c2 = c− with c− <

c+ is used; see Sec. V A for details. The bold vertical arrows refer to
the two possible directions of propagation of the irradiating waves.

1. Acoustic waves

In the case of acoustic waves, ci = (ρiχi )−1/2 where ρi

is the mass density and χi the isentropic compressibility.
The complex harmonic velocity field ui associated with the
acoustic pressure perturbation p′

i satisfies the linearized Eu-
ler’s equation ρi

∂ui
∂t = −∇p′

i. Along the fluid interface, the
pressure and the velocity fields satisfy the condition of stress
continuity

p′
1 = p′

2, (2)

as well as the impermeability condition between the two fluids
u1 · n = u2 · n, (3)

where n is the unit vector normal to the interface oriented
from fluid 1 to fluid 2. Finally, since the acoustic fluid ve-
locity is irrotational in the absence of acoustic attenuation,
ui = −∇φi and consequently p′

i = ρi
∂φi

∂t . Thus, the continuity
of p′ across the interface results in the continuity of ρφ,
hence of ∇‖(ρφ) = ρ∇‖φ, where ∇‖ is the gradient in the
tangent plane to the interface. Since ∇‖φ = −u‖, where u‖ =
u − (u · n)n is the projection of u on the tangent plane to the
interface, we conclude that

ρ1 u‖1 = ρ2 u‖2. (4)

2. Electromagnetic waves

In the case of electromagnetic waves, ci = (εiμi )−1/2

where εi is the dielectric permittivity and μi is the magnetic
permeability (which is usually equal to its value in vacuum,
μ0, in the optical frequency domain), both considered as
real. The harmonic fields Ei and Hi satisfy Maxwell’s equa-
tions ∇ · (εiEi ) = 0, ∇ × Ei = −μi

∂Hi
∂t , ∇ · (μiHi ) = 0 and

∇ × Hi = εi
∂Ei
∂t . Thus, along the fluid interface, Ei and Hi

satisfy

ε1E1 · n = ε2E2 · n, (5)

n × E1 = n × E2, (6)

μ1H1 · n = μ2H2 · n, (7)

n × H1 = n × H2. (8)
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The refractive index is ni = √
(εiμi )/(ε0μ0) = c0/ci, where

ε0 is the dielectric permittivity of vacuum and c0 =
(ε0μ0)−1/2 is the wave celerity in vacuum. Note that in acous-
tics, a refractive index can be also defined as ni = 1/ci.

B. Radiation stress

In this section we define the acoustic and electromag-
netic stresses exerted on the fluid interface, and we derive
their expression assuming incident fields having axisymmetric
incident intensity profiles. The beam propagation direction
defines the z axis, which is normal to the interface at rest. We
thus introduce the cylindrical coordinates (r, ϕ, z) associated
with the direct orthonormal basis (er, eϕ, ez ) and the local
direct orthonormal basis (n, t, eϕ ); see Fig. 1.

1. Acoustic waves

The time-averaged acoustic radiation stress TAC
R exerted

on the fluid interface by the surrounding acoustic field is
expressed as

TAC
R = (

TAC
2 − TAC

1

) · n, (9)

where TAC is the time-averaged acoustic radiation tensor de-
fined in each fluid as [17,26]

TAC
i = −1

2
χi

〈
p′2

i

〉
I + 1

2
ρi

〈
u2

i

〉
I − ρi〈ui ⊗ ui〉, (10)

where I is the identify tensor, ⊗ is the dyadic product, and 〈·〉
refers to the time average over one period T = 2π/ω.

Assuming the incident acoustic pressure and velocity fields
to have axisymmetric amplitude and phase spatial distribution,
the acoustic velocity can be expressed as ui = unin + utit and
one finds for the normal component of the acoustic radiation
stress

TAC
R · n =

[
−1

2
χ2

〈
p′2

2

〉 + 1

2
ρ2

(〈
u2

t2

〉 − 〈
u2

n2

〉)]

−
[
−1

2
χ1

〈
p′2

1

〉 + 1

2
ρ1

(〈
u2

t1

〉 − 〈
u2

n1

〉)]
, (11)

where, according to Eqs. (3) and (4), the normal and tangential
components of the velocity field on both sides of the interface
satisfy

ρ1ut1 = ρ2ut2, (12)

un1 = un2. (13)

Noticeably, the tangential component of the acoustic radiation
stress TAC

R · t is zero, which justifies the improper name of ra-
diation pressure given to the acoustic radiation stress although
it is not isotropic [27]. Since TAC

R · n is axisymmetric, we
expect axisymmetric interface deformations, with the problem
two-dimensional.

Considering an incident plane wave, the acoustic radiation
pressure exerted on the horizontal interface at rest is

TAC
R,0 = 2I

cfrom

Z2
1 + Z2

2 − 2 c1
c2

Z1Z2

(Z1 + Z2)2
n, (14)

where I is the acoustic intensity of the incident plane wave,
cfrom is the wave celerity of the medium from which the
incident wave impinges on the interface, and Zi = ρici is
the acoustic impedance [4,17]. In particular, when ρ1 = ρ2,
Eq. (14) simplifies to

TAC
R,0 = 2I

cfrom

c2 − c1

c1 + c2
n. (15)

2. Electromagnetic waves

The time-averaged electromagnetic radiation stress TEM
R

exerted on the fluid interface by the surrounding electromag-
netic field is expressed as

TEM
R = (

TEM
2 − TEM

1

) · n, (16)

where TEM is the time-averaged electromagnetic radiation
tensor defined in each fluid as [16]:

TEM
i = − 1

2
εi

〈
E2

i

〉
I − 1

2
μi

〈
H2

i

〉
I

+ εi〈Ei ⊗ Ei〉 + μi
〈
Hi ⊗ Hi

〉
. (17)

The electrostriction term is purposely discarded since it does
not contribute to the stress balance at the interface [28].

It is noteworthy that, in contrast to the case of acous-
tic waves, it is not enough to assume axisymmetric phase
spatial distribution for both the electric and magnetic fields
in order to get an axisymmetric radiation stress leading to
a two-dimensional problem. Axisymmetric electromagnetic
radiation stress can be actually obtained by considering either
axisymmetric transverse electric (TE) or axisymmetric trans-
verse magnetic (TM) polarized electromagnetic beams.

On the one hand, for a TE field defined as Ei = Eieϕ and
Hi = Hnin + Htit, the normal component of the electromag-
netic radiation stress is

TEM,TE
R · n =

[
−1

2
ε2

〈
E2

2

〉 + 1

2
μ2

(〈
H2

n2

〉 − 〈
H2

t2

〉)]

−
[
−1

2
ε1

〈
E2

1

〉 + 1

2
μ1

(〈
H2

n1

〉 − 〈
H2

t1

〉)]
, (18)

where, according to Eqs. (5)–(8), the magnitude of the electric
field and the normal and tangential components of the mag-
netic field on both sides of the interface satisfy

E1 = E2, (19)

μ1Hn1 = μ2Hn2, (20)

Ht1 = Ht2. (21)

On the other hand, for a TM field defined as Ei = Enin + Htit
and Hi = Hieϕ , one gets

TEM,TM
R · n =

[
−1

2
μ2

〈
H2

2

〉 + 1

2
ε2

(〈
E2

n2

〉 − 〈
E2

t2

〉)]

−
[
−1

2
μ1

〈
H2

1

〉 + 1

2
ε1

(〈
E2

n1

〉 − 〈
E2

t1

〉)]
, (22)
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where, according to Eqs. (5)–(8), the normal and tangential
components of the electric field and the magnitude of the
magnetic field and on both sides of the interface satisfy

ε1En1 = ε2En2, (23)

Et1 = Et2, (24)

H1 = H2. (25)

Moreover, the tangential component of the electromagnetic
radiation stress TEM

R · t is zero whatever the polarization state.
Considering an incident plane wave, the electromagnetic

radiation pressure exerted on the horizontal interface at rest is
independent of the polarization state and equals

TEM
R,0 = 2I

cfrom

Z2
1 + Z2

2 − 2 c1
c2

Z1Z2

(Z1 + Z2)2
n, (26)

where I is the electromagnetic intensity of the incident
plane wave, cfrom is the wave celerity of the medium
from which the incident wave impinges on the interface,
and Zi = (μi/εi )1/2 = (εici )−1 = μici is the electromagnetic
impedance. In particular, in the optical frequency domain for
which μ1 = μ2, Eq. (26) simplifies to

TEM
R,0 = 2I

cfrom

c2 − c1

c1 + c2
n, (27)

where I is the electromagnetic intensity of the incident plane
wave.

C. Synthesis

Comparisons between Eqs. (2) and (19), between Eqs. (12)
and (20), between Eqs. (13) and (21) and between Eqs. (11)
and (18) show that the electromagnetic TE problem and the
acoustic problem are formally identical with the following
correspondences: p ↔ E , u ↔ eϕ × H, ρ ↔ μ, and χ ↔ ε.
Similarly, comparisons between Eqs. (2) and (25), between
Eqs. (12) and (23), between Eqs. (13) and (24), and between
Eqs. (11) and (22) show that the electromagnetic TM prob-
lem and the acoustic problem are formally identical with the
following correspondences: p ↔ H , u ↔ eϕ × E, ρ ↔ ε and
χ ↔ μ.

These correspondences between the mechanical effects of
acoustic waves and TE or TM electromagnetic waves offer
a common framework that allow treating the wave-matter
interaction in a universal manner.

D. Flow

As a result of the radiation stresses exerted on the interface,
the interface can be deformed and the two-phase fluid sample
can flow. The velocity and pressure fields associated with
this flow driven by radiation pressure are noted Ui and Pi,
respectively.

Since the observed interface velocity is always largely sub-
sonic, we assume both velocity fields Ui as incompressible,
hence satisfying

∇ · Ui = 0, (28)

and both fluid densities ρi remain homogeneous and constant.

Moreover, the observed interface velocity is sufficiently
small to ensure that the associated Reynolds number is small
compared to unity and we model the flows of both fluids
as creeping flows. Defining the piezometric pressure P̂i as
P̂i = Pi + ρigz, where g = −gez is the gravity acceleration,
the Stokes equation is therefore satisfied in both fluids [28],
namely,

−∇P̂i + ηi ∇2Ui = 0, (29)

where ηi is dynamic viscosity of fluid i. In addition, at the
interface between the two immiscible fluids, we assume the
continuity of the flow velocity

U1 = U2. (30)

The hydrodynamic stress TH0 exerted by the flows on the
interface is

TH0 = (
TH0

2 − TH0
1

) · n, (31)

where TH0
i is the hydrodynamic stress tensor

TH0
i = −Pi I + ηi

2

[∇Ui + (∇Ui )
T ]

, (32)

(·)T referring to the transpose.
Along the moving interface, the sum of the hydrodynamic

and radiation pressures stresses is balanced by the Laplace
pressure:

TH0 + TR + σκ n = 0, (33)

where σ is the interfacial tension, h(r, t ) is the height of the
axisymmetric interface deformation at radius r and time t , and

κ = ∂h

∂s

(
1

r
+ ∂2h

∂s2

)
− ∂2r

∂s2
(34)

is the associated curvature, s being the curvilinear abscissa
defined along the deformation h(r, t ); see Fig. 1.

In order to separate the effect of gravity from the effect
of flows on the interface shape, it is useful to define the
pseudostress tensor as

TH
i = −P̂i I + ηi

2
[∇Ui + (∇Ui )

T] (35)

and the hydrodynamic pseudostress as

TH = (
TH

2 − TH
1

) · n. (36)

Equation (33) can be rewritten as

TH + TR + σκ n + (ρ1 − ρ2)gh n = 0, (37)

where TH solely encompasses all the effect of flows on the
interface shape.

III. NUMERICAL RESOLUTION

A. Dimensionless formulation

The axisymmetry of the problem results in a two-
dimensional formulation. As depicted in Fig. 1, the compu-
tation domain is included in the meridional plane (r, z) and is
defined as 0 � r � rmax, 0 � z � zmax (we chose rmax = 4ω0

and zmax = 8ω0). Accordingly, fluids 1 and 2 are associated
with identical areas equal to rmaxzmax and whose closed-path
contour is made of a fixed contour Ci, i = (1, 2), and a mobile
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contour Cint which defines the fluid interface, as sketched in
Fig. 1. The interface coincides with the plane z = 0 at rest and
its contact line is pinned at (r = ±rmax, z = 0) with variable
contact angle.

The goal of the numerical simulation is to evaluate U and
P at any point x(r, z) = r er + z ez of the computation domain
and at any time t � 0 in order to compute the stresses exerted
on the interface at its location, and then its motion, which is
computed using a Lagrangian approach according to

dx
dt

= U(x), x ∈ Cint, (38)

starting from rest at t = 0.
The incident acoustic or electromagnetic beam is chosen

to be focused at the fluid interface at rest, as is usually done
in experiments. More precisely, based on an experimental ar-
gument, we choose Gaussian incident beams whose intensity
profiles at z = 0 in the absence of interface is

I (r) = 2P
πw2

0

exp
( − 2r2/w2

0

)
, (39)

where P is the total beam power. Indeed, in the electromag-
netic case, a continuous-wave laser sources in the TEM00

mode is usually used; see, for instance, [3,25]. In the case of
acoustics, spherically focused single-element transducers are
usually used [4,6]. Still, it has been shown in [29] that Eq. (39)
accurately fits the acoustic intensity distribution in the focal
plane of these transducers. To conclude, Eq. (39) is adapted to
the description of electromagnetic and acoustic beams at their
focus.

Using w0 as the characteristic spatial scale we can define
the characteristic fluid velocity in the creeping flow regime as
U0 = σ/η2 (note: choosing η1 instead of η2 would be equally
relevant), the characteristic interface evolution timescale as
τ = w0/U0, and the characteristic pseudopressure variation
in each fluid as P̂i0 = ηiU0/w0. These characteristic param-
eters allow one to formulate the problem in a dimensionless
manner, namely, we introduce the dimensionless position
vector x̃ = x/w0, time t̃ = t/τ , velocity Ũi = Ui/U0, pseu-
dopressure P̃i = P̂i/P̂i0, and deformation height h̃ = h/w0.
Accordingly, Eqs. (28)–(30) and (37) are rewritten in a di-
mensionless form as

∇̃ · Ũi = 0, (40)

−∇̃P̃i + ∇̃2
Ũi = 0, (41)

Ũ1 = Ũ2, x ∈ Cint, (42)(
T̃H

2 − αT̃H
1

) · n + T̃R + κ̃n + Bo h̃n = 0, x ∈ Cint, (43)

where α = η1/η2, Bo = (ρ1 − ρ2)gw2
0/σ is the Bond number,

T̃i = Ti/P̂i0 is the dimensionless hydrodynamic stress tensor,
and T̃R = TR w0/σ is the dimensionless radiation stress. Fi-
nally, the boundary condition along C1 and C2 is

Ũi = 0, x ∈ Ci. (44)

B. Boundary integral formulation

The solution of Eqs. (40) and (41) can be obtained by
determining the solution of the Stokes equation corresponding
to a Dirac excitation [30,31]. It consists in exerting a unit
point force on the fluid at a given point and determining
the induced velocity field Ũ and hydrodynamic stress tensor
T̃H everywhere else. Taking advantage of axisymmetry of
the problem, the solution can be eventually expressed as a
function of one-dimensional integrals along the contours C1,
C2, and Cint; see Ref. [32] for details. One finds

1 + α

2
Ũ(x̃)

= −
∫

Cint

[κ̃ (ỹ) + T̃R(ỹ) + Bo h̃(ỹ)]Ũ∗(x̃ − ỹ) · n(ỹ) dC(ỹ)

+ (1 − α)
∫

Cint

[K̃∗(x̃ − ỹ) · Ũ(ỹ)] · n(ỹ) dC(ỹ)

− α

∫
C1

Ũ∗(x̃ − ỹ) · [
T̃H

1 (ỹ) · n(ỹ)
]

dC(ỹ)

+
∫

C2

Ũ∗(x̃ − ỹ) · [
T̃H

2 (ỹ) · n(ỹ)
]

dC(ỹ), x̃ ∈ Cint, (45)

where dC(ỹ) refers to the elementary contour piece at point ỹ,
and

Ũ∗(d̃) = 1

8π

(
1

d̃
I + d̃ ⊗ d̃

d̃3

)
, (46)

K̃∗(d̃) = − 3

4π

(
d̃ ⊗ d̃ ⊗ d̃

d̃5

)
(47)

are the velocity and stress associated with the Green kernel,
respectively, with d̃ = x̃ − ỹ.

The numerical resolution is based on the Boundary Ele-
ment Method. This method has been chosen because it allows
for a precise monitoring of the interface position, which is cru-
cial here since both capillary stresses and radiation pressure
depend on the interface shape (i.e., slope and curvature).

C. Numerical procedure

1. Propagation

The acoustic or electromagnetic beam is considered as
harmonic with angular frequency ω. As a consequence, the
propagating field qi = p′

i, Ei, or Hi can be described as the
real part of the complex field Qi exp(− jωt ), which satisfies
Helmholtz’s equation

∇2Qi + k2
i Qi = 0, (48)

where ki = ω/ci is the wave number in fluid i. Thus, the open
source numerical code developed for computing the acoustic
propagation in the harmonic regime [33] can be used indis-
tinctly for simulating optical or acoustic fields. Equation (48)
is solved using opensource FORTRAN routines [33] described
in Ref. [34] and adapted to our specific problem.

2. Flow

The influence of the viscosity ratio η1/η2 on the interface
dynamics has been studied in [32]. The conclusion of the latter
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work is that the viscosity ratio has no qualitative influence on
it, hence we chose η1 = η2 = η for our numerical investiga-
tions.

First, the acoustic or electromagnetic field along the ini-
tially flat interface is computed. Then the radiation pressure
exerted along the interface is computed and injected into the
first term of the right-hand side of Eq. (45). This gives a
system of N integral equations, N being the number of points
used to discretize the interface. Its numerical solution allows
the determination of the velocity field along the interface,
whose position is then advected through a simple Euler for-
ward scheme x(t + �t ) = x(t ) + U(t )�t . This procedure is
then repeated until a stationary state is reached.

IV. PRELIMINARY ANALYSIS

A. Universal dimensionless characteristic quantities

In this section we introduce two dimensionless quantities
enabling us, on the one hand, to evaluate the strength of
the mechanical perturbation applied on the interface and, on
the other hand, to appreciate the influence of the deformed
interface acting as a diopter on the wave propagation. These
two parameters are the dimensionless characteristic radiation
pressure �0 and the characteristic waveguiding parameter V ,
respectively. Both are universal in the sense that they are
independent of the acoustic or electromagnetic nature of the
irradiating wave.

Constructing �0 starts by noting that a dimensionless radi-
ation pressure � can be defined at each point of the interface
as the ratio between the radiation pressure and the character-
istic value of the Laplace overpressure σ/w0,

� = w0

σ
TR · n, (49)

where TR = TAC
R or TEM

R . A characteristic value of the dimen-
sionless radiation pressure is thus obtained by considering a
flat horizontal interface and evaluating it at the beam focus
[see Eqs. (14) and (26)]

�0 = 2P

πcfromσw0

Z2
1 + Z2

2 − 2 c1
c2

Z1Z2

(Z1 + Z2)2
. (50)

As shown in [3,4,6,25,29], in the Bo � 1 limit, which applies
to the present work as discussed in Sec. V, the height h0 of the
steady humps formed at an interface irradiated by a Gaussian
beam satisfies h0/w0 ∼ �0.

The parameter V is that arising from standard waveguide
theory. Its introduction in the context of the present work
is rooted in the fact that the existence and the diameter of
liquid bridges [10–12] and needlelike interface deformations
[8] sustained by either acoustic or electromagnetic waves
can be explained by the waveguiding properties of the wave-
induced deformation that behaves as a step-index liquid-core
liquid-cladding cylindrical waveguide. Considering the text-
book case of a step-index optical fiber with radius R, inner
refractive index nin and outer index nout < nin, the number of
guided propagating modes is determined by the value of the

dimensionless parameter V = k0R
√

n2
out − n2

in, where k0 is the
wave number in vacuum of the harmonic field injected into
the waveguide [35]. By analogy, here we define a universal

characteristic waveguiding parameter V associated with an
interface deformation as

V = ωw0

√√√√∣∣∣∣∣
(

1

cfrom

)2

−
(

1

cto

)2
∣∣∣∣∣, (51)

where cto is the wave celerity of the medium to which the
incident wave goes after passing through the interface. In-
troducing the wave number of the incident beam, kfrom =
ω/cfrom, Eq. (51) can be reformulated as

V = kfromw0

√√√√∣∣∣∣∣1 −
(

cfrom

cto

)2
∣∣∣∣∣. (52)

As shown in [6], V is a prime choice parameter for describing
and understanding the shape of observed interface deforma-
tions whatever the nature of the wave.

It is noteworthy that �0 and V are the two key universal
ingredients when addressing the PDI problem. Indeed, �0

informs to what extent the incident wave can deform the
interface, whereas V informs to what extent the deformed
interface can distort the incident wave.

B. Dimensional analysis

In this section we aim at identifying a minimal set of di-
mensionless parameters determining the axisymmetric shape
of the deformed interface at steady state h∞(r) = h(r, t � τ ).

1. General remarks

At first we notice that, for electromagnetic waves, the
hypothesis of axisymmetric deformations requires us to dis-
card the role of the polarization state, which is valid in the
limit of small refractive index contrast, as suggested by the
expressions of the Fresnel coefficients of reflexion and trans-
mission at the interface between two homogeneous media.
Since all the reported electromagnetic experiments involve
weak refractive index contrasts (typically on the order of a
few percent), the role of the polarization state is discarded
from now on. Moreover, the dimensions of the fluid sample
rmax and zmax are assumed to be large enough that h∞ does not
depend on them.

At steady state there is no more flow: Ui = 0 and P̂i = 0,
and consequently TH = 0. As shown by Eq. (37), the defor-
mation thus results from the combined effects of interfacial
tension σ , buoyancy g(ρ1 − ρ2), and radiation pressure TR.
As shown by Eqs. (10) and (17), radiation pressure involves
the propagating fields and physical properties of both fluids.
The propagating fields are defined by the beam power P , its
waist w0, its wave number kfrom = ω/cfrom, and its direction
of propagation, which is accounted by introducing a Boolean
variable ξ whose value depends on whether cfrom > cto or
cfrom < cto. The fluids’ physical properties determining the
radiation pressure are c1, c2 plus (1) μ1 and μ2 for electro-
magnetic waves or (2) ρ1 and ρ2 for acoustic waves. In what
follows we consider separately the acoustic and electromag-
netic cases.
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2. Acoustic waves

From the previous analysis it follows that for acoustic
waves, h∞ is function of 11 independent quantities:

h∞ = f (r, g(ρ1 − ρ2), σ,P,w0, kfrom, ξ , ρ1, ρ2, c1, c2).
(53)

Since the quantities appearing in Eq. (53) can be expressed
using the dimensions of mass, length, and time, according to
Buckingham’s theorem [36], Eq. (53) can be rewritten as a
relationship between nine independent dimensionless quanti-
ties. We choose

h∞
w0

= F

(
r

w0
, Bo,�0,V, ξ ,

Z1

Z2
,

c1

c2
, A(ρ̄ )

)
, (54)

where ρ̄ = (ρ1 + ρ2)/2 and A(ρ̄ ) is a dimensionless quantity
involving ρ̄. Noticing that ρ̄ accounts for fluid inertia, which
is involved only in unsteady phenomena, A(ρ̄ ) is discarded,
recalling that we deal here with static steady states. Finally, an
important additional simplification occurs when considering
ρ1 = ρ2, which leads to Bo = 0 and Z1/Z2 = c1/c2, hence to

h∞
w0

= F

(
r

w0
,

c1

c2
,�0,V, ξ

)
. (55)

3. Electromagnetic waves

In the case of electromagnetic waves, h∞ is a function of
11 independent quantities:

h∞ = f (r, g(ρ1 − ρ2), σ,P,w0, kfrom, ξ , μ1, μ2, c1, c2).
(56)

The quantities appearing in Eq. (56) can be expressed using
the dimensions of mass, length, time, and electric current.
According to Buckingham’s theorem, Eq. (56) can be rewrit-
ten as a relationship between eight independent dimensionless
quantities, which we choose as

h∞
w0

= F

(
r

w0
, Bo,�0,V, ξ ,

Z1

Z2
,

c1

c2

)
. (57)

Taking into account that μ1 = μ2 = μ0 at optical frequencies
and that Zi = μici, and assuming ρ1 = ρ2, one gets

h∞
w0

= F

(
r

w0
,

c1

c2
,�0,V, ξ

)
. (58)

4. Synthesis

This analysis shows that whenever the role of the polar-
ization state of electromagnetic waves can be discarded, the
steady dimensionless shape of the interface can be described
in a universal manner, indistinctly for acoustic and electro-
magnetic waves. Moreover, in the ρ1 = ρ2 approximation, this
universal description entails four dimensionless parameters,
namely, c1

c2
, �0, V , and ξ .

In the unsteady regime, h also depends on time t , fluid
viscosities η1 and η2, as well as ρ1 and ρ2. According to
[32], in the creeping flow regime, neither fluid inertia nor the
viscosity ratio have a significant influence on the interfacial
dynamics, whose characteristic timescale is τ = w0η2/σ as
already introduced in Sec. III A.

V. RESULTS

A. Disclaimer

With the aim at demonstrating that the PDI based on the
sole action of radiation pressure presented in Sec. II repro-
duces the main features of experimental observations, we do
not report here on the systematic exploration of the four-
dimensional parameter space. Instead, we set �0 to a rather
large value (typically, �0 � 5–10) in order to put the system
in regimes where the consequences of PDI are strikingly ap-
parent. Moreover, we focus on the influence of the celerity
contrast and of the beam direction of propagation. For this
aim, we choose two values that are representative of low and
large values of the ratio c−/c+, namely, c−/c+ = 0.5, which
can be achieved in acoustic experiments, and c−/c+ = 0.95,
which is typical of optical experiments.

Moreover, the restrictions of our numerical study call for
a few comments regarding a possible comparison with ex-
perimental results. Indeed, in our numerical study gravity
effects are discarded owing to the assumption ρ1 = ρ2 while
in practice ρ1 �= ρ2. In the optical domain previous works
showed that gravity does not have a qualitative influence on
the observed deformations [3,25], whereas in acoustics ρ1 �=
ρ2 results in a possible effect of gravity and in an additional
dimensionless parameter, the ratio Z1/Z2, as discussed in
Sec. IV B. Therefore one can anticipate discrepancies between
simulations and experiments in acoustics.

B. Morphogenesis of interface deformations: The role
of propagation-deformation interplay

In order to appreciate the role of PDI, we compare the de-
formation evolution of an initially flat interface experiencing
constant irradiation from time t = 0 with and without PDI.
The case “with PDI” refers to the treatment presented so far,
whereas the case “without PDI” is carried out by computing
the radiation pressure as that exerted by the incident Gaussian
field whatever the deformation of the interface.

In order to appreciate the role of the direction of prop-
agation, the comparison is conducted in two configurations,
namely, cfrom > cto and cfrom < cto. In the following, we adopt
the following convention: the bottom fluid indexed by the sub-
script 1 is taken as that having the largest celerity (c1 = c+),
whereas the top fluid indexed by the subscript 2 has the small-
est celerity (c2 = c− with c− < c+). Thus, the configuration
cfrom > cto corresponds to a beam propagating upward from
fluid 1 to fluid 2. Conversely, the configuration cfrom < cto

corresponds to a beam propagating downward from fluid 2
to fluid 1.

1. Large celerity contrast with cfrom > cto

The evolution of the interface shape and of the radiation
pressure distribution along the interface for c−/c+ = 0.5 and
cfrom > cto, at �0 = 10, is shown without PDI in Figs. 2(a)
and 2(b) and with PDI in Figs. 2(e) and 2(f). An insight
into the wave field if provided in the right part of the fig-
ure with the spatial distribution of the phase � and of the
dimensionless energy density E/E0 of the wave field, where
E0 refers to the maximum of the energy density of the inci-
dent beam in the absence of interface (i.e., considering that
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FIG. 2. Computed morphogenesis of large interface deformations for celerity contrast c−/c+ = 0.5, waveguiding parameter V = 5.4 with
Propagation-Deformation Interplay (PDI) (a,b, i, j) and without PDI (e)–(h) and (m–q). (a)–(h) cfrom > cto, �0 = 10; (i)–(q) cfrom < cto,
�0 = 5. The deformation profiles shown in panel (b) [respectively, (f), (j), and (n)] correspond to the instants indicated by the symbols
with corresponding color in panel (a) [respectively, (e), (i), and (m)]. The curves in panels (b), (f), (j), and (n) are shifted vertically one with
respect to the other for clarity purposes. In panels (c), (g), (k), and (p), � is the phase of the wave field. In panels (d), (h), (l), and (q), E is the
wave energy density and E0 is the energy density maximum of the incident beam in the absence of interface.
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the fluid “from” fills all space). The phase and energy den-
sity at time t = 0 (at which the interface is flat) are shown
in Figs. 2(c) and 2(d), respectively. Note the expected fac-
tor 2 between the wavelengths in the two fluids [Fig. 2(c)]
and the axial energy modulation in fluid “from” [Fig. 2(d)],
which results from the interference between the incident beam
and the backward wave due to its partial reflection off the
interface.

In the absence of PDI, the magnitude of the di-
mensionless hump height h̃0 = h0/w0 smoothly increases
with time and is associated with a bell-shaped dimen-
sionless hump profile h̃(r̃, t̃ ) at all stages of the evolu-
tion [see Fig. 2(a)] in agreement with previous studies
[28,32]. Correspondingly, the dimensionless radiation pres-
sure distribution along the deformed interface, �(r̃, t̃ ),
is also smooth and bell-shaped close to the axis at all
times.

By contrast, in the presence of PDI, we observe a stepped
evolution of the hump height and a transition from bell-shaped
to step-shaped hump profiles; see Fig. 2(e). This transition is
associated with the appearance of radial modulations of the
radiation pressure exerted along the interface, whose phys-
ical origin lies in the appearance of guided modes within
the increasingly slender deformation due to the PDI [6]. The
comparison between numerical simulations with or without
PDI confirms its paramount influence on both the shape and
evolution of the irradiated interface. Noticeably, the steady
shape of the irradiated interface shape shown in Fig. 2(h)
qualitatively reproduces well the experimental observations
on fluids such that c−/c+ � 0.5, as shown in Fig. 4(a) below.
Also we note in Fig. 2(h) the axial energy density modulation
along the beam axis in fluid “to.” It might be understood as
the result of interferences between distinct guided modes (i.e.,
associated with distinct wave numbers) propagating through
the deformed interface acting as a multimodal waveguide.
Such energy density modulation is also visible in Figs. 3(b)
and 4(b) of Ref. [6], while the underlying multimodal prop-
agation is demonstrated in Figs. 6(a), 6(b) 7(a), and 7(b) of
Ref. [6].

2. Large celerity contrast with cfrom < cto

The evolution of the interface shape for c−/c+ = 0.5 and
cfrom < cto, at �0 = 5, is reported in the bottom-half part of
Fig. 2 in a similar manner as for the previously discussed case
cfrom > cto.

In the absence of PDI, the only qualitative difference be-
tween the case cfrom < cto and the case cfrom > cto lies in the
emergence of a peak in the radiation pressure distribution
along the deformed interface, as shown in Fig. 2(j). This peak
corresponds to the coincidence of the local inclination of the
interface with respect to the horizontal with the so-called total
internal reflection (TIR) angle θTIR = arcsin(c−/c+) [5].

As shown in Figs. 2(m) and 2(n), when PDI is at work,
a nonsmooth evolution of the hump height is found as for
the case cfrom > cto and the interface deformation evolves
toward a steady, slender, and corrugated shape, also shown
in Fig. 2(p). This steady shape compares well with experi-
mental observations on fluids such that c−/c+ � 0.5 shown in
Fig. 4(b) below.

3. Small celerity contrast with cfrom > cto

The morphogenesis of interface deformation for c−/c+ =
0.95 and cfrom > cto, at �0 = 6, is reported in the top-half part
of Fig. 3 in a similar manner as for Fig. 2.

As expected, since the celerity contrast is small, the axial
energy density modulations in fluid “from” are much less
pronounced than in the case of large celerity contrast, as
illustrated by the comparison between Fig. 3(d) and Fig. 2(d).
Although the interface shape evolution with and without PDI
is qualitatively similar, the interface deformation is more
cylindrical with PDI than without PDI, for which a bell-
shaped deformation is observed. This is attributed to the
waveguiding effect of the deformation [6]. The comparison
between the steady shape visible in Fig. 3(h) and experimen-
tal observations on fluids such that c−/c+ � 0.9 shown in
Fig. 4(c) provides us with a satisfying qualitative agreement.

4. Small celerity contrast with cfrom < cto

The evolution of the interface shape for c−/c+ = 0.95 and
cfrom < cto, at �0 = 6, is reported in the bottom-half part of
Fig. 3 in a similar manner as for the previously discussed case
cfrom > cto.

Although the hump height evolutions are qualitatively sim-
ilar with and without PDI, the asymptotic regime is reached
twice more rapidly with PDI than without and the asymptotic
height is twice smaller with PDI than without, which sub-
stantially differs from the large contrast situation. Moreover,
the steady deformation shapes noticeably differ depending on
whether PDI is taken into account or not. Without PDI, the
deformation tends to a cone, as shown in Fig. 3(j), whereas
a bell-shaped deformation is found with PDI, as shown in
Figs. 3(n) and 3(p). These results demonstrate how strongly
the PDI matters even when the celerity contrast is rather small.
Also, a qualitative agreement is found between Fig. 3(p) and
experimental observations on fluids such that c−/c+ � 0.9
shown in Fig. 4(d).

C. Slenderness transition

1. Background

Two decades ago it was observed that an abrupt transition
from moderately to strongly slender deformation occurs in the
electromagnetic case only when cfrom < cto [7]. This so-called
“slenderness transition” between two distinct regimes of de-
formation was observed when a focused laser beam deforms
an interface between the coexisting phases of a two-phase
microemulsion close to its critical miscibility. A ray-optics-
based interpretation involving total internal reflection was
suggested. Namely, it was proposed that the transition occurs
when the inclination angle θi of the deformed interface with
respect to the horizontal [see inset of Fig. 6(b)] exceeds the
angle of total internal reflection [7], which is specific to the
situation cfrom < cto.

Further investigations dedicated to the measurement of the
maximal value for the steady-state incidence angle at the
onset of the transition, θ∞

i,max, showed that θ∞
i,max is unambigu-

ously smaller than θTIR [25], thus questioning the ray-optics
approach. However, since the near-critical microemulsions
involved in the first experimental observations were turbid [7],
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FIG. 3. Computed morphogenesis of large interface deformation dynamics for celerity contrast c−/c+ = 0.95 and waveguiding parameter
V = 2.0 with PDI (a,b, i, j) and without PDI (e)–(h) and (m–q). (a)–(h) cfrom > cto, �0 = 6; (i)–(q) cfrom < cto, �0 = 6. Graphical representa-
tion is identical to that of Fig. 2.

both radiation pressure and bulk radiation forces may con-
tribute to the slenderness transition. Since then, bulk radiation
forces associated with turbidity have been shown to induce a
jet transition (i.e., the sudden occurrence of droplet emission
at the tip of a needlelike deformation [8]), which shares sev-

eral common features with the slenderness transition [19,20].
The question of whether the slenderness transition can be
triggered solely by radiation pressure is still open.

Here we provide insight into the slenderness transition
mechanism by combining experiments and numerical inves-
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FIG. 4. Experimentally observed morphologies at steady state
under acoustic irradiation at 2.25 MHz frequency. (a) 20 cSt silicone
oil–FC72 oil interface corresponding to c−/c+ = 0.51 and V = 4.5.
(b) 5 cSt Silicone oil–65 wt% glycerol-water mixture interface corre-
sponding to c−/c+ = 0.54 and V = 4.5. (c) Water-kerosene interface
corresponding to c−/c+ = 0.88 and V = 2.6. (d) Water-kerosene
interface corresponding to c−/c+ = 0.88 and V = 2.6.

tigation in the absence of bulk radiation forces, within a
framework encompassing for both acoustic and electromag-
netic waves.

2. Experimental observations

Two experimental observations of slenderness transition
respectively driven by acoustic and optical beams are reported
in Fig. 5 at the onset of the transition threshold, which cor-
responds to �0 = �th

0 , and slightly above the threshold with
�0 = �th

0 (1 + ε), where ε is a small parameter. In both cases
the celerity contrast is small and almost identical, namely,
c−/c+ = 0.94 in acoustics and c−/c+ = 0.96 in optics, hence
providing a playground for a generic comparison between
experiments and numerics, which calls for two remarks. First,
in acoustics, the thermoviscous dissipation prevents us from
achieving an experiment virtually free of bulk radiation forces
(i.e., free of acoustic streaming) and, in our experiments, the
waveguiding parameter V can be tuned only by changing the
fluids. Second, in optics it is possible to deal with fluids virtu-
ally free from bulk forces [13], and in our experiments V can
be readily tuned by changing the beam waist w0. Therefore,
because we aim to test the impact of PDI only on the slen-

FIG. 5. Experimental observation of the slenderness transition in
acoustics at 2.25 MHz frequency and in optics at 532 nm wavelength.
(a, b) Acoustic irradiation of a mineral oil–32 wt% glycerol-water
mixture interface corresponding to c−/c+ = 0.94 and V = 1.9. (c,
d) Optical irradiation of the interface between water-rich and oil-
rich phases of a three-phase equilibrium (called a Winsor phase) of
a brine–AOT surfactant-n-heptane mixture [13,37] corresponding to
c−/c+ = 0.96 and V = 34. Pictures of the interface deformations are
shown at the onset of the transition threshold at �0 = �th

0 (a, c) and
slightly above it at �0 = �th

0 (1 + ε) with ε = 0.02 in panel (b) and
ε = 0.01 in panel (d). In all panels the incident wave propagates from
top to bottom (cfrom < cto).

derness transition, hereafter we focus on the electromagnetic
case, and we present an experimental parametric study that is
compared to numerical simulations.

The optical experiment is carried out using visible ra-
diation on a two-phase fluid composed a water-rich phase
coexisting with an oil-rich phase of a three-phase equilibrium
of a brine–dioctyl sodium sulfosuccinate (AOT) surfactant-
n-heptane mixture [37] called a Winsor phase. Such a fluid
interface is characterized by (1) a small interfacial tension,
allowing the slenderness transition to be triggered using a
focused beam emitted by a tabletop continuous-wave laser,
and (2) an optical transparency of both phases in contact,
which ensures that bulk forces can be safely discarded.

The experiments consist of irradiating the fluid using a
Gaussian laser beam focused on the fluid interface at rest and
observing the steady deformed interface. The threshold power
value Pth at which the slenderness transition occurs is then
determined by dichotomy with a 1 % accuracy in a wide range
of values of w0 at fixed celerity contrast c−/c+ = 0.96 with
cfrom < cto. The angle θ∞

imax is then evaluated at the inflection
point of the steady interface deformation by image processing.
The variation of θ∞

imax vs V is displayed in Fig. 6(a). We find
that θ∞

i,max is nearly independent of V and that 〈θ∞
i,max〉 = 55.3◦

(with 3.3◦ standard deviation) is smaller than θTIR = 73.8◦
by more than 18◦. This demonstrates experimentally that the
slenderness transition is not driven by the total internal reflec-
tion phenomenon and does not require bulk radiation forces.
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FIG. 6. (a) Measured maximum value θ∞
i,max of the incidence angle θi of the rays on the steady deformed interface of a Winsor phase

irradiated by a downward laser beam with cfrom < cto at the threshold of the slenderness transition as function of the waveguiding parameter
V at a constant value of the celerity contrast c−/c+ = 0.96. Orange circles: experimental values; black lozenges: computed values; θTIR: total
internal reflection angle. (b) Computed time evolution of the dimensionless hump height for several values of �0 at and above the threshold
of slenderness transition �th

0 = 5.54, for V = 8.4. Inset: Sketch of the deformed interface illustrating the incidence angle θi of the rays on the
deformed interface. (c, e) Deformation profiles at the threshold (�0 = �th

0 ) and just above (�0 = 1.002 �th
0 ) at t/τ = (0.5, 1, 2, 4, 8.7, 39)

and t/τ = (5, 10, 15, 20, 25, 32), respectively. (d, f) Corresponding evolution of θi,max. The colored markers refer to the instants at which the
interface deformation profiles are shown in panels (c) and (e)

3. Numerical investigation

The numerical investigation of the slenderness transition,
which is observed only with PDI and with cfrom < cto, is
conducted by mimicking the experiments presented in the
previous section. Accordingly, we determine the threshold
dimensionless power value �th

0 at which the slenderness
transition takes place. A typical numerical experiment is il-
lustrated in Fig. 6(b) where the evolution of the on-axis height
of the deformed interface is shown for different values of �0

at c−/c+ = 0.96 and V = 8.4. The sudden occurrence of a
diverging behavior of the deformation height as �0 increases
from 5.54 to 5.55 illustrates the abrupt nature of the slen-
derness transition with respect to the control parameter �0

and justifies the 0.2 % accuracy of the determination of �th
0 .

A detailed picture of the interface evolution at the threshold
and slightly above is shown in Figs. 6(c)–(f). The dimen-
sionless deformation profiles h(r)/w0 vs r/w0 are displayed
in Figs. 6(c) and 6(e) at several dimensionless instants. Also
the corresponding evolution of the interface inclination angle
θi,max at the inflexion point is shown in Figs. 6(d) and 6(f). For
�0 = �th

0 , θi,max increases, and then saturates at a value θ∞
i,max

significantly smaller than θTIR, while for �0 = 1.002 �th
0 , the

increase of θi,max slows down when approaching θ∞
i,max, then

revives up to θTIR. Finally, a thin tip grows at the deformation
end, as shown in Fig. 6(e), leading to θi,max � 90◦, as shown
in Fig. 6(f).

Since V is varied by varying kw0 at fixed c−/c+, in-
creasing V requires one to increase the spatial resolution
of the simulations. Given the associated computational cost,
our investigations are restricted to the typical range 2 < V <

18. The numerically computed dependence of θ∞
i,max vs V is

displayed in Fig. 6(a), which quantitatively agrees with the
experimental measurements. This confirms that the slender-
ness transition does not require bulk radiation forces, cannot
be explained by the sole ray-optics approach, and is actually
driven by PDI. In addition, Figs. 5(a) and 5(b) also support
the preceding conclusions in the acoustic domain. Indeed, for
this pair of fluids, θTIR � 70◦ whereas the transition occurs at
θ∞

i,max � 30◦ < θTIR.

D. Hysteresis of the slenderness transition

Beyond the slenderness transition, by cycling the beam
power up and down in the typical range 0 < �0/�

th
0 < 2,

we evidenced a hysteretic behavior of the deformation height
versus �0, as shown in Fig. 7(a). Experiments correspond to
V = 13.7, and the hysteresis phenomenon is also observed
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FIG. 7. (a) Experimentally observed hysteretic behavior of the
deformation height h̃ vs �0 of the interface of a Winsor phase such
that c−/c+ = 0.96, V = 13.7. (b) Computed hysteretic behavior for
c−/c+ = 0.93, V = 6.9.

for larger values of V . The relative width of the hysteresis
cycle is ∼50 %, and its lower and upper branches are char-

acterized by a height ratio ∼10. Noticing that a hysteresis is a
generic manifestation of the feedback action of a system on its
driving parameter, these experimental results tend to further
highlight the role of PDI that can be also explored numer-
ically. For this purpose, we simulate the interface response
to a cycling of the dimensionless power in a configuration
as close as possible to the experimental conditions. Recalling
that the computational limitations prevent us from assessing
deformation heights as large as those observed experimentally
(h0/w0 = 10–100), we chose material parameters enabling
the demonstration of the existence of a hysteretic behavior,
namely, c−/c+ = 0.93 and V = 6.9. The results are shown in
Fig. 7(b). A hysteresis cycle is numerically obtained, which
demonstrates that PDI is required for describing a hysteresic
behavior.

VI. CONCLUDING REMARKS

As illustrated by Eqs. (55) and (58), the interface de-
formations induced by the radiation pressure of an acoustic
or an electromagnetic beam can be described in a universal
manner using four parameters (in the limit of small den-
sity contrast regarding acoustic fields), which makes their
thorough numerical investigation rather challenging. For this
reason, in this work we have numerically investigated a few
phenomena such as the deformation morphologies and the
slenderness transition and its hysteresis, using parameter val-
ues as close as possible to those encountered in experiment.
Overall, we found qualitative agreement between numerical
simulations and experiments only when the propagation-
deformation interplay is taken into account, hence pinpointing
its crucial role in the interface deformation morphogene-
sis in situations where streaming flows induced by bulk
forces—which can occur both in acoustics and optics—can
be neglected. Therefore, the numerical model presented here
constitutes a valuable tool for further investigations of these
phenomena.
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