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Saturation of rogue wave amplification over steep shoals
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Shoaling surface gravity waves induce rogue wave formation. Though commonly reduced to water waves
passing over a step, nonequilibrium physics allows finite slopes to be considered in this problem. Using
nonhomogeneous spectral analysis of a spatially varying energy density ratio, we describe the dependence of
the amplification as a function of the slope steepness. Increasing the slope increases the amplification of rogue
wave probability until this amplification saturates at steep slopes. In contrast, the increase of the down slope of
a subsequent de-shoal zone leads to a monotonic decrease in the rogue wave probability, thus featuring a strong
asymmetry between shoaling and de-shoaling zones. Due to the saturation of the rogue wave amplification at
steep slopes, our model is applicable beyond its range of validity up to a step, thus elucidating why previous
models based on a step could describe the physics of steep finite slopes. We also explain why the rogue wave
probability increases over a shoal while it is lower in shallower water.
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I. INTRODUCTION

Rogue waves have been observed in a variety of fields
of physics [1], such as astrophysics [2,3], optics [4,5], and
condensed matter physics [6,7]. In the ocean, they present a
threat to ocean vessels and offshore operations [8,9]. In the
latter case, most studies have focused on deep water, where
both Benjamin and Feir [10] instability and quasideterminism
theory [11] apply. The study of wave statistics evolving from
deep toward shallow water regimes have become a recent
trend. On the other hand, no standard distribution reproduces
observations over a wide range of depths and sea states
[12,13]. For sea states in equilibrium (without shoaling), it
may be possible to describe both deep and shallow regimes
with second-order models of enhanced empirical parame-
ter space (steepness, bandwidth, depth) [14,15], albeit such
methods lack first principles of the physical problem. For
seas out of equilibrium, experiments in shallower regimes
have shown that inhomogeneities in the wave field due to
shoaling contribute to rogue wave formation and amplifica-
tion [16–18]. Paradoxically, rogue waves are less likely to
occur in shallow waters as compared to deep waters [19,20].
Furthermore, spatial statistics for seas in both equilibrium
and out-of-equilibrium are not captured by available theories
[21,22].

Recently, successful theories of rogue wave shoaling have
arisen. For an abrupt bathymetry change, Li et al. [23,24]
propose a solution in terms of the transmission coefficients
and the interaction of bound waves influenced by the step.
On the other hand, Majda et al. [25] and Moore et al. [26]
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dealt with a step transition implementing a truncated KdV
model. However, the homogeneity of surface waves is of-
ten assumed [27], whereas the relaxation of this condition
is expected to play a role in rogue wave formation over a
shoal [28]. Indeed, we recently provided a third framework
[29] by taking nonhomogeneity into account. These three
frameworks are complementary, because they rely on different
physical approaches, respectively: Fluid dynamics analysis of
wave harmonics, the statistical mechanics of water waves, and
the lifting of long-held implicit assumptions regarding the
homogeneity of ocean waves. Nonetheless, the generality of
the third framework may have the advantage of being appli-
cable to any out-of-equilibrium water wave problem besides
nonuniform bathymetry, such as opposing currents [30] or
reflection [31].

Although the influence of the slope steepness on rogue
wave enhancement over a shoal has been demonstrated in
numerical simulations [32–34], none of the three approaches
described above consider the effect of the slope steepness
∇h(x) ≡ ∂h(x)/∂x explicitly. Therefore, the current work
addresses analytically the problem of how the slope affects the
amplification of extreme events when irregular waves travel
over a shoal. We show that the slope mainly decreases the
spatial energy density and thus increases the nonhomogeneous
correction � introduced in Mendes et al. [29], increasing
the rogue wave probability. Also, this slope effect saturates
beyond a critical steepness. We thus provide a physical in-
terpretation to the observation of this saturation by Zheng
et al. [33]. Our theory explains why the physics of steep finite
slopes can be well described by the three above theories. Fur-
thermore, the slope effect saturates for mild slopes in shallow
waters, explaining why it is important in intermediate depths,
while dying out not only in deep water but paradoxically also
in shallow waters.
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II. THEORETICAL CONSIDERATIONS

Rather than a deterministic approach based on the hydro-
dynamic description of the rogue wave evolution over a shoal,
the model of Mendes et al. [29] uses a statistical approach
focused on the integral properties of the wave system [35],
namely the energy density. It considers the perturbation in-
duced by the shoal on the surface elevation and thus on the
energy partition, which in turn affects the statistics of wa-
ter waves. This perturbation is spatially inhomogeneous and
thereby redistributes the wave energy density throughout the
bathymetry change. To derive the corresponding correction �

to the distribution capturing the energetic spatial evolution,
we consider the velocity potential �(x, z, t ) and surface ele-
vation ζ (x, t ), written in generalized form of an expansion of
trigonometric functions with coefficients (�m, i, �̃m, i ):

�(x, z, t ) =
∑
m, i

�m, i(kih)

mki
cosh (mϕ) sin (mφ),

ζ (x, t ) =
∑
m, i

�̃m, i(kih) cos (mφ), (1)

with the auxiliary variables ϕ = ki(z + h) and φ = ki(x −
cm, i t + θi ), where cm, i = cm(ki ) is the phase velocity of the
ith spectral component and mth order in wave steepness and
h the water depth. For unidirectional waves of first-order in
steepness we extract �1 = aω/ sinh kh as well as �̃1 = a
from linear theory [36], leading to the energy density [37]:

E = 1

2
ρg

∑
i

a2
i , (2)

where ρ is the density, g is the gravitational acceleration, and
a is the wave amplitude. A spectral energy E is preferred to
match the definition of power in signal processing [38,39],
such that we define E = ρgE . Due to the spatial inhomogene-
ity in E and the ensemble average E[ζ 2], an initially Rayleigh
distribution over a flat bottom becomes Rα,� (H > αHs) =
e−2α2/� , where the nonhomogeneous correction � is [29]

�(x) = E[ζ 2(x, t )](x)

E (x)
≈ 〈ζ 2(x, t )〉t (x)

E (x)
. (3)

Second-order waves have energy density ratio [29]:

Ě (x) ≡ 2E (x)

a2
= 1 + π2ε2(x)S2

32
[χ̃1(x) + χ1(x)], (4)

where ε = Hs/λ the significant steepness of irregular waves
with the significant wave height Hs (the average height of
the 1/3 tallest waves), zero-crossing wavelength λ, and with
coefficients dependent on the peak wave number kp = 2π/λp:

χ̃1 =
[

3 − tanh2 (kph)

tanh3 (kph)

]2

, χ1 = 9 cosh(2kph)

sinh6(kph)
. (5)

Moreover, 1 � S � 2 denotes the slowly varying vertical
asymmetry between crests and wave heights (a = SH/2),
which for rogue waves reads [13,29]:

S(α=2) ≈ 2ηs

1 + ηs

(
1 + ηs

6

)
, ηs =

( 〈Zc〉
〈Zt 〉

)
H>Hs

, (6)

FIG. 1. Probability density due to energy density inhomo-
geneities caused by a shoal as compared to the Rayleigh distribution
(dotted) for wave heights. Shoaling featured steepness ε = 1/20
while broad-banded waves have S(α = 2) = 1.20 and narrow-
banded S(α = 2) = 1.05 instead.

given the mean crest 〈Zc〉 and mean trough 〈Zt 〉. In the limit
ε → 0 we recover Ě = 1 for linear waves. The physics of
second-order waves leads to [40]:

� ≡ �(ε(x), kph(x),S(x)) = 1 + π2ε2S2

16 χ̃1

1 + π2ε2S2

32 (χ̃1 + χ1)
. (7)

From the point of view of the energy density, both a ho-
mogeneous energy density of steep waves (ε ∼ 1/10) over
a flat bottom and a nonhomogeneous energy density of very
small waves (ε � 1/100) over a shoal induce a Rayleigh
distribution for wave heights [41]. Otherwise, the disparity in
the growth of E[ζ 2(x, t )] and E will lead to a redistribution
of the likelihood of wave heights (see Fig. 1), boosting the
chances of encountering waves with α � 0.8 and decreasing
the chances for ordinary sized waves 0 < α < 0.8. Due to the
vertical asymmetry S between wave crests and troughs, the
repartitioning of probability is further enhanced as the wave
spectrum is broadened and waves become more nonlinear and
asymmetric. In practice, the impact of the energy repartition-
ing is negligible on the bulk (0 < α < 0.5) of the exceedance
probability but significant for large and rogue waves (α � 1).

III. ANALYTICAL SLOPE EFFECT

While our previous work focused on steep slopes, we
now investigate the effect of an arbitrary finite slope. In
shallow depths (Hs = h0) [42], a constant slope ∇h implies
an evolution of h(x) and an associated slope-induced set-
down (〈ζ 〉 < 0) or set-up (〈ζ 〉 > 0) effect (see Fig. 2) that
affects the energy (and hence the rogue wave probability) [37]
[43] on top of the effect previously investigated in Mendes
et al. [29]:

Ep + Ek = 1

2λ

∫ λ

0
{[ζ (x, t ) + h(x) + 〈ζ 〉]2 − h2(x)}dx

+ 1

2λg

∫ λ

0

∫ ζ

−h(x)

[(
∂�

∂x

)2

+
(

∂�

∂z

)2]
dz dx ,

(8)
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FIG. 2. Extreme wave amplification due to a shoal and assump-
tions for the solution. Within x ∈ [0, L] the depth evolves as h(x) =
h0 + x∇h with slope ∇h = (hf − h0 )/L. Note that the diagram is not
to scale.

where (Ep,Ek ) are the potential and kinetic energies and
we assume L|∇h|/λ � 1. The slope ∇h affects physical
variables such as ∇λ, and the integrand of Ek will be mod-
ified by (x∇kp/kp)2 due to non-negligible derivatives from
(∂�/∂x)2, and we find in the limit of numerous spectral
components [44]:

Ek ≈
∑

m

�2
m

4
· sinh (2mkh)

2mgk
, ∀ (∇λ)2 � 3 . (9)

On the other hand, the potential energy reads:

Ep ≡ Ep1 + Ep2 = 1

2λ

∫ λ

0
[ζ 2(x, t ) + 2h(x)ζ (x, t )]dx

+ 1

2λ

∫ λ

0
[〈ζ 〉2 + 2〈ζ 〉ζ (x, t ) + 2〈ζ 〉h(x)]dx. (10)

Due to periodicity, integrals of ζ 〈ζ 〉 and ζh vanish [45]. More-
over, Ěp1 + Ěk recovers Eq. (4) while the slope effect on the
energy is restricted to Ěp2:

Ěp2 = 8

S2h2
0

· 1

λ

∫ λ

0
[〈ζ 〉2 + 2〈ζ 〉h(x)]dx, (11)

where we have used a = SH/2 = SHs/2
√

2. Because the
set-down is very small even in shallow water |〈ζ 〉|/h0 < 1/20
[46,47], we find to leading order:

Ěp2 ≈ 16〈ζ 〉
S2h0

∫ λ

0

[
1 + x∇h

h0

]
dx

λ
= 16

S2

( 〈ζ 〉
h0

)
∇h

[1 + ∇̃h],

(12)
where ∇̃h ≡ π∇h/kh0 and f∇h denotes f being a function of
∇h. An increase or decrease of the rogue wave probability is
controlled by the magnitude and sign of 〈ζ 〉 for mild slopes,
which depends on the slope [48]. For steep slopes, the term
in brackets saturates the increase in probability in the case
of a shoal. Following common practice, we linearize the set-
down at the region near but prior to the wave breaking zone

FIG. 3. Computation of Ěp2 from Eqs. (15) (solid) and Eq. (14)
(dashed) for an initial depth kph0 = π and ε = 1/7.

[46,47,49]:

∇〈ζ 〉 ≈ ∇h

5

[
1 + 8h2

3H2
s

]−1

∴
(∇〈ζ 〉

∇h

)
Hs
h �1

≈ 1

5
· 3H2

s

8h2
.

(13)
Since we consider the region prior to wave breaking, the asso-
ciated set-up does not develop. However, the de-shoal induces
another form of set-up of smaller magnitude commonly called
piling up [50,51]. Integrating Eq. (13) over a wavelength and
plugging into Eq. (12), we find for broad-banded waves:

Ěp2 ≈ 96

55S2

π∇h

kph0

[
1 + π∇h

kph0

]
≈ 6

5
∇̃h

(
1 + ∇̃h

)
. (14)

However, the effect of depth change on the energy density
ratio is expected to vanish in deep water, as the exchange of
momentum encoded in the radiation stress becomes negligible
[39]. Therefore, we seek a parametrization that generalizes
the slope effect to intermediate depths, and the energy ra-
tio shall evolve toward intermediate depths in the same way
as Eq. (13). That is, Ěp2(Hs � h0)/Ěp2(Hs = h0) is iden-
tical to (∇〈ζ 〉/∇h)Hs�h/(∇〈ζ 〉/∇h)Hs=h. We multiply both
numerator and denominator of Eq. (13) by k2

p and convert
the numerator peak wavelength to zero-crossing wavelength
kpHs ≈ (π/S

√
2)ε [29] (see Fig. 3):

Ěp2(kph) ≈ π∇h

kph0

[
1 + π∇h

kph0

]
× 6π2

5S4

ε2

(kph)2
. (15)

Plugging Eq. (15) and Ěp1 + Ěk into Eq. (3) leads to a gener-
alized finite-depth slope-dependent �∇h:

�∇h = 〈ζ 2〉t (x)

Ep1(x) + Ep2(x) + Ek (x)
,

= 1 + π2ε2S2χ̃1

16

1 + π2ε2S2(χ̃1+χ1 )
32 + π∇h

kph0

[
1 + π∇h

kph0

]
6π2ε2

5S4(kph)2

. (16)

Note that the effect of the set-down on the numerator is neg-
ligible [52]. Equation (16) indicates that increasing the slope
of a mild shoaling ∇h < 0 will also increase the rogue wave
probability. Furthermore, �∇h will saturate when we reach
∇h(s) = −kph0/2π and cancel out when ∇h(c) = −kph0/π ,
see Fig. 3. On the other hand, at deshoaling zones (∇h >

0) following a shoal, Eq. (16) describes a monotonic de-
crease in rogue wave probability due to the piling up when
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FIG. 4. Exceedance probability evolution over a bar from Eq. (17) versus data (hollow circles) [17]. The probability evolution has been
computed from Eq. (7) as in Mendes et al. [29] (solid red) and the slope-dependent counterpart in Eq. (16) without (cyan) and with (dotted
blue) smoothing of the bar geometry (ϑ = 3) from Eq. (18). Note that the experiments of Trulsen et al. [18] lie within all assumptions leading
to Eq. (16).

the down slope is increased because the term Ěp2 increases
monotonically.

Previous theories disregarding the slope were restricted
to the range |∇h| � 1/20. In contrast, the validity of our
derivation is only limited by the assumption L|∇h|/λ � 1 in
Eq. (10), which is why the energy ratio correction diverges
|Ěp2| → ∞ for π |∇h|/kph0  1. Thus, the shoal case of
our model is valid for 0 < |∇h| � kph0/π . Nonetheless, this
range covers realistic conditions in the ocean, where shoaling
geometries with the highest slope steepness do not exceed
|∇h| ≈ 1 [53,54]. While only <1% of slopes over ocean
cross sections exceed |∇h| ≈ 1, the typical mean slopes are
<1/10 [55].

We compute the slope effect on �∇h for experiments of
Raustøl [17] and Trulsen et al. [18], plotted in Fig. 4. For
this purpose, the evolution of exceedance probability Pα ≡
P (H > αHs) over a shoal is described as [29]:

ln

(
Pα, � ,∇h

Pα

)
= 2α2

(
1 − 1

S2�∇h

)
. (17)

At the peak locations and in the deshoaling zones (Fig. 4), we
improve (cyan curve) the agreement with experimental data as
compared with the model disregarding the slope (red curve),
although the discrepancy in exceedance probability between
models displayed in all panels of Fig. 4 does not exceed 8%
at the location of maximum amplification of the exceedance
probability. This surprisingly good fidelity of the model dis-
regarding slope is due to the saturation evidenced in Eq. (16).
Indeed, the experimental slope ∇h ≈ −0.26 happened to be
close to saturation at (∇h)(s) = −(9/5) · (1/2π ) ≈ −0.29.
Although our model implementing the exact slope effect is
more accurate than the steep slope approximation of Mendes
et al. [29], the experiments demonstrate that as long as the
shoaling slope is near saturation the simpler model of Mendes
et al. [29] is already very accurate. This provides a physi-
cal interpretation for the success of theories based on a step
[24,26,29] in describing steep slope configurations.

However, we also checked the applicability of our model
to real ocean slopes which vary smoothly and continuously,
whereas the bar in the considered experiment features sharp
edges. To that purpose, we numerically smoothed the edges

of the bar employing logistic functions with parameter ϑ :

∇h(x)

|∇h| = 1

1 + e−ϑ (x−L)

[
1 + 1

1 + e−ϑ (x−2L)

]
− 1. (18)

Therefore, we investigated the effect of using the smoothed
slope function on the exceedance probability evolution. We
verified that the amplification of the exceedance probability
displayed in Fig. 4 with smoothed shoal edges (dotted curve)
marginally deviates from the exact ∇h (cyan curve) for ϑ � 3
corresponding to a bell-shaped bar (see Fig. 5) and is indis-
cernible from the sharp edges when ϑ � 10. This insensitivity
to curvature ensures the applicability to real shapes in the
ocean.

Finding the excursion of the slope function in the region
of �∇h(∇h → 0) = 1 would require the analytical evolution
ε(∇h), which is unavailable [56–60]. Therefore, we perform a
parameterization. A residue B(kph,∇h) relevant only for very
mild slopes is introduced:

Ěp2(kph) ≈ π∇h

kph0

[
1 + π∇h

kph0

]
6π2ε2

5S4(kph)2
+ B(kph,∇h),

(19)

FIG. 5. Bathymetry smoothing of the bar in Trulsen et al. [18]
generated from the integral of the slope function ∇h(x) with fi-
nite parameter ϑ as compared to the experimental bathymetry with
ϑ = ∞.

065101-4



SATURATION OF ROGUE WAVE AMPLIFICATION OVER … PHYSICAL REVIEW E 106, 065101 (2022)

FIG. 6. Computation of �∇h from Eqs. (29) (solid), Eq. (14)
(dashed), and Mendes et al. [29] (dotted), for an initial
depth kph0 = π .

noting that lim∇h→0 Ěp2 = lim∇h→0 B and

lim
∇h→0

�∇h = 1 + π2ε2S2

16 χ̃1

1 + π2ε2S2

32 (χ̃1 + χ1) + B(kph,∇h = 0)
= 1.

(20)
Denoting |∇h|− � 1/20 and |∇h|+ > kph0 as the slopes min-
imizing and maximizing the slope effect on the exceedance
probability, Eq. (20) imposes:

B(|∇h|−) = π2ε2S2

32
(χ̃1 − χ1) > 0. (21)

The flat bottom boundary condition also requires [61]:

lim
∇h→|∇h|−

∂�∇h

∂|∇h| > 0 ∴ lim
∇h→|∇h|−

∂B

∂|∇h| < 0, (22)

imposing the form B(kph,∇h) = B0(kph)|∇h|−n [62].
Causality and neglecting reflection effects on � lead to:

lim
kph→kph0

�(ε, |∇h|+) = lim
kph→kph0

�(ε, |∇h|−). (23)

Applying the general form of B(kph,∇h) to Eqs. (19) and (23)
results in:

6π3ε2
0|∇h|+

5S4(kph0)3

[
1 ± π |∇h|+

kph0

]
= ±B(kph0, |∇h|−), (24)

with ± denoting de-shoaling and shoaling, respectively. To
leading order in |∇h|+|∇h|− ∼ 10−2 we obtain:

B(kph0,∇h) ≈ 6π2

25S4

π2ε2
0

2000(kph0)4

|∇h|n−2
−

|∇h|n . (25)

By definition, |∇h|− corresponds to the limit in Eq. (20).
Having 6π2/25S4 ≈ 1 [13,29], we equate Eqs. (21) and (25):

|∇h|− ≈ ε0

ε

1√
90(kph0)4(χ̃1 − χ1)

, (26)

so that |∇h|− ≈ 1/90 for kph ∈ [0.5, 1.5], experimentally ob-
served in Katsardi et al. [63]. At the depth corresponding to
the maximum amplification (kph ≈ 1/2), Eq. (21) results in
B(|∇h|−) ≈ 5π2ε2. Since the slope effect loses importance
for |∇h| > 1/20, the growth becomes (∂B/∂|∇h|)|∇h|− >

−120π2ε2. Then, the derivative of Eq. (25) imposes n ≈
π2/12 ∼ 1:

B(kph,∇h) ≈ π2

25(kph0)2

ε2

(kph)2|∇h| . (27)

The intermediate depth energy ratio reads:

Ěp2 ≈ 5ε2

(kph)2

{
π∇h

kph0

[
1 + π∇h

kph0

]
+ π2

125(kph0)2|∇h|
}
.

(28)
Plugging Eq. (28) into Eq. (16) results in (Fig. 6),

�(kph, ε,∇h) = 1 + π2ε2S2

16 χ̃1

1 + π2ε2S2

32 (χ̃1 + χ1) + 5ε2

(kph)2

{
π∇h
kph0

[
1 + π∇h

kph0

] + π2

125(kph0 )2|∇h|
} . (29)

The canceling effect of B(kph,∇h) on the preshoal flat bot-
tom � clearly appears around ∇h = 0 in Fig. 6. However,
when kph → 0 the trigonometric coefficients (χ1, χ̃1) → ∞
grow much faster than Ěp2, and � no longer depends on
∇h. This slow dependence on the slope in shallow waters
(see the blue dotted curve in Fig. 6) has been observed in
Doeleman [64], which carrying experiments at kph0 ≈ 0.38
found the evolution of the kurtosis for a step (|∇h| = ∞) and
a slope of |∇h| = 0.05 to be identical. Our model explains this
phenomenon with the proximity of the slope to the saturation
point |∇h|(s) = kph0/2π ≈ 0.06.

Experiments with wide ranges of slopes, i.e., with length
L ∼ λ and water depth π/10 � kph � π/2, are not available
to date because mild slopes usually require lengths exceeding
wave tank dimensions or wave frequencies must be too high

for the given dimensions. Hence, in the absence of exper-
iments with broad ranges for slopes, steepness, and water
depth, we assess our theory against the numerical results of
Zheng et al. [33], describing how the probability of the en-
velope [65] is affected by increasing the slope steepness. In
Fig. 13 of Zheng et al. [33] the shoal increased the exceedance
probability for rogue waves as soon as |∇h| = 1/80, with a
saturation of this effect for slopes steeper than |∇h| � 1/10
(the details of physical variables of the performed simulations
C1–C8 are found on Table II in Zheng et al. [33]). We apply
the same conditions to the slope-dependent nonhomogeneous
correction of Eqs. (7), (16), (29), and (17) and compare the
maximum amplification (ε = 1/16) of the exceedance prob-
ability (Fig. 7). Our model reproduces well the exceedance
probability for rogue waves (α > 2) and its saturation for
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FIG. 7. Ratio of exceedance probabilities (relative to the Rayleigh distribution) as a function of (a) slope ∇h and (b) normalized heights
α = H/Hs reported from Zheng et al. [33]. Dots display numerical data at kph = 0.7 while our model of Eq. (7) is shown in dotted line and
Eq. (29) in solid lines.

steep slopes [Fig. 7(a)] or for large waves α � 1.75 with fixed
slope as shown in Fig. 7(b). Furthermore, we recover our
previous model [29] for the steepest slopes [see dotted line
in Fig. 7(b)].

IV. DISCUSSION

The slope effect on the exceedance probability can be
interpreted as a second redistribution of the wave statistics,
on top of that induced by the depth change. In the presence
of a strong departure from a zero-mean water level due to a
set-down/set-up the potential energy density is affected by
a slope-induced correction Ěp2. In the case of a shoal, such
energy disturbance decreases the total potential energy as
compared to linear homogeneous waves, thereby increasing
the effect of the energy redistribution (�∇h > �). Similarly, a
set-up induced by wave-breaking would cause the total poten-
tial energy to increase, and so we would observe the opposite
effect by decreasing the exceedance probability because of
�∇h < �. This means that the depth change has the leading
order in amplifying the exceedance probability over a shoal
when the slope steepness does not vanish (|∇h| → 0), while
the slope modulates the energy redistribution due to this depth
change.

The saturation of the slope effect can be understood as a
combination of the effect of lowering the mean water level as
a function of the slope and of the pace of the depth transition
itself. The secondary term in brackets of Eq. (14) is equivalent
to 〈h(x)/h0〉. A continuous steep slope |∇h| → ∞ implies
〈h(x)/h0〉 → 0 over the wave relaxation region following the
start of the shoal. Indeed, over this region the mean depth con-
verges to the shallower depth. In the meantime, a very steep
slope will quickly increase the set-down. Nevertheless, the
fast increase in the set-down is balanced by the fast decrease
in mean depth, therefore creating the observed saturation of
their product, namely Ěp2. In other words, the response of
the set-down to the steep slope transition past the saturation
point is slower than the depth transition itself and has no
time to develop. Conversely, in the de-shoaling zone the faster
increase of the set-up due to steeper slopes is not balanced
by the depth transition, as the mean depth will increase rather
than decrease.

Our framework poses a clear unifying picture for wave
statistics and energetics transitioning from deep to shallow
waters: (i) Waves in deep water will not have their energy
affected by the slope and tend to follow Gaussian statistics;
(ii) in intermediate water the wave energy density will be
redistributed due to depth effects on the steepness, vertical
asymmetry, and mean water level, ultimately increasing rogue
wave likelihoods; and (iii) in shallow water the effects on
steepness and vertical asymmetry still exist, but the quick di-
vergence of the superharmonics halts the energy redistribution
while the set-up inverts the latter. Therefore, in the absence of
any ocean process besides shoaling, we unify within a single
physical mechanism the seemingly contradictory results of
Longuet-Higgins [41] in deep water, Trulsen et al. [18] in
intermediate water and Glukhovskii [19] in shallow water.

V. CONCLUSIONS

We have for the first time obtained an analytical depen-
dence of the wave height exceedance probability on ∇h. It
widely extends the approach developed for steps and unifies
the theories for wave statistics in deep, intermediate, and
shallow waters within a dynamical evolution. The unified
framework is laid out as bathymetry effects on the energy
partition between waves of different heights, and therefore
the probability distribution, by considering the specific effects
of the slope beyond the sole bathymetry change. Models that
do note take finite slopes into account are nonetheless capa-
ble of reproducing well the wave statistics of steep slopes
[24,26,29]. We explain this equivalency between a step and
steep slopes with the saturation effect as evidenced from
Eq. (16). When slopes become too steep and we reach sat-
uration, the success of these models can be interpreted as
the result of the slope effect being fully encoded in the
change of both steepness and depth. Although our model
does not cover the limiting case of a step per se, both steep
and mild bathymetric profiles in the ocean are well covered
by the model range of validity. Furthermore, our range of
validity is consistent with small reflection effect due to a
nondiverging surf similarity. Qualitatively, our theory points
to three major consequences. First, making a mild slope
steeper increases the probability of large wave heights in
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shoaling zones and decreases it in de-shoaling zones fol-
lowing a shoal. Second, in very shallow water the slope
effect already saturates even for mild slopes, while in in-
termediate waters the saturation point is harder to attain.
Third, we reconcile the transient increase of rogue wave
probability over a shoal with lower probabilities in shallow
water. We have quantitatively validated our model against
the numerical results of Zheng et al. [33] and the experi-
ments of Raustøl [17] for the exceedance probability of wave
heights, obtaining good agreement. Finally, the unification of

rogue wave formation mechanisms within the present frame-
work should be possible, provided future work addresses
the out-of-equilibrium ocean processes driving non-Gaussian
statistics over a flat bottom, such as opposing currents and
crossing seas.
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