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Fluctuation-based fracture mechanics of heterogeneous materials
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We present results of a hybrid analytical-simulation investigation of the fracture resistance of heterogeneous
materials. We show that bond-energy fluctuations sampled by Monte Carlo simulations in the semigrand canon-
ical ensemble provide a means to rationalize the complexity of heterogeneous fracture processes, encompassing
probability and percolation theories of fracture. For a number of random and textured model materials, we
derive upper and lower bounds of fracture resistance and link bond fracture fluctuations to statistical descriptors
of heterogeneity, such as two-point correlation functions, to identify the origin of toughening mechanisms.
This includes a shift from short- to long-range interactions of bond fracture processes in random systems to
the transition from critical to subcritical bond fracture percolation in textured materials and the activation of
toughness reserves at compliant interfaces. Induced by elastic mismatch, they connect to a number of disparate
experimental observations, including toughening of brittle solids by deformable polymers or organics in, e.g., gas
shale, nacre; stress-induced transformational toughening in ceramics; and toughening of sparse elastic networks
in hydrogels, to name a few.
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I. INTRODUCTION

Fracture of heterogeneous materials remains an important
topic amid the backdrop of an ever-increasing demand for new
materials specifically designed to overcome intrinsic trade-
offs between competing material properties within composites
[1–3], porous media [4,5], additively manufactured materials
[6–8], and biological or bioinspired tissues [9–12]. However,
this ever-expanding roster of heterogeneous materials has yet
to find a consolidating theory of fracture mechanics, which
bridges between two apparently disparate lines of advanced
theories. On the one hand, early approaches based on Grif-
fith’s energy release rate [13,14] and Irwin’s stress intensity
factor [15,16] provide useful insights into benchmark phe-
nomena in fracture of textured matrix-inclusion composites,
such as crack trapping or bridging by arrays of obstacles (e.g.,
particles) [17–20], crack deflection, shielding or penetration
at interfaces of dissimilar solids [21–23], and so on. These
principles continue to reverberate in the contemporary com-
putational fracture mechanics of multiscale composites (see,
for instance, [24–26]) and composite material design [27–30].
On the other hand, statistical models of fracture in disor-
dered materials have been derived from extreme value theory
[31–33] and applied to random fiber-bundle [34] and lattice
models [35–37], including their electric analogs, random fuse
networks [38]. Moreover, these statistical models are capable
of modeling heterogeneity by presenting an initial disorder
in or random field of fracture strength or fracture strain
threshold. Motivated by the intimate interplay of disorder
and long-range correlations in fracture [39], such statistical
physics approaches point to a number of intriguing features of

fracture of heterogeneous materials, ranging from universality
and scale invariance of the crack morphology or roughness
[40–44], to power-law percolation behavior due to disorder in
heterogeneous materials [45–48] and dynamical order param-
eters associated with crack front propagation [49–52].

Many models for effective fracture toughness can be found
in the literature of statistical physics and thermodynamics that
focus on (1) collective versus independent pinning in function
of material disorder [53], (2) long- versus short-range inter-
actions [54], (3) heterogeneity characterization by two-point
correlation functions [55–57], (4) extracting fracture resis-
tance information from fracture surfaces [58], and (5) various
homogenization schemes for effective fracture toughness of
heterogeneous media [25,59]. An ideal framework to tackle
the problem of fracture toughness of heterogeneous media
must at least combine all these different observations in agree-
ment with literature. Next, we propose such a method.

Herein we approach fracture of heterogeneous materials
through a combination of two schools of thought. On the one
side, we preserve the classical equilibrium-based Griffith-type
fracture approach in form of an energy release criterion of
bond fracture. On the other, we follow the statistical physics
approach by considering the overriding strength of bond-
energy fluctuations in the very definition of Griffith’s energy
release rate and fracture energy dissipation. Specifically, the
fluctuations of interest will be that of bond number and bond
energy, measured as covariances. Herein we discuss the ap-
plication and analysis of this method to brittle fracture. By
applying this synergistic approach to a suite of two- and three-
dimensional (2D, 3D) multiphase sample materials, which
range from textured to random heterogeneous model materials
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FIG. 1. Geometrically ordered and disordered two-phase mate-
rials: (a) layered material with inclined uniaxial stretch direction;
(b1, b2) 2D and 3D checkerboard; and (c1, c2) 2D and 3D random
material (visualized at fB = 50%).

(Fig. 1), we show that fluctuation-based fracture mechanics
provides a means to derive the effective fracture resistance of
heterogeneous materials, including upper and lower bounds
and percolation thresholds.

For this investigation we carry out bond-centric Monte
Carlo simulations in the semigrand canonical ensemble. More
specifically, we impose a bond potential �μ, volume V , and
temperature T , and perform bond-swapping trial moves in a
�μV T ensemble and canonical displacement moves using
molecular dynamics (MD) time integration in an NV T ensem-
ble.

In the semigrand canonical Monte Carlo (SGCMC) ap-
proach, bonds N are switched “on” (N → N + 1) or “off”
(N → N − 1), where N is the number of “on” (or unbroken)
bonds, according to the following acceptance criterion:

acc(o∗ → n∗) = min(1, po∗→n∗ ), (1)

with

pN→N+1 = exp

[
1

kBT
(+�μ − �UN→N+1)

]
, (2)

pN→N−1 = exp

[
1

kBT
(−�μ − �UN→N−1)

]
, (3)

with Uo∗→n∗ = Un∗ − Uo∗ the difference in energy, U = U 0 +
U λ (= ground-state + stretch energy, respectively), of mi-
crostates, M(o∗, n∗). The Monte Carlo (MC) simulations are
considered converged if the probability of bond insertion and
bond deletion are equal over a sufficiently large number of
MC steps (i.e., the variances of N and of U converge to
constant values). Moreover, probing bonds in this way in the
MC simulations precludes the need for an a priori crack or
notch in the system. In light of previous literature, if each bond
is considered as an inclusion, the MC simulation starts out by
probing individual bonds, and as accepted moves accrue, a
collective behavior is manifested as a crack [54]. Otherwise

stated, trial moves are attempted globally but are collectively
accepted locally to give rise to a crack from a series of bond
breaking events [53].

A. Heat of bond rupture

A key concept from the statistical physics of adsorp-
tion combined with knowledge of classical Griffith fracture
mechanics paves the way for the introduction of a fluctuation-
based fracture mechanics framework. At its core is the
analogy between two derivatives and their immediate impli-
cation. We begin with the energy release rate [15,16,60]:

G = −∂Epot

∂�
, (4)

where Epot is the potential energy and � is the fracture surface,
readily understood over the past few decades as the change
in energy (release) associated with change in fracture surface
area [13,14,60]. Yet the crack or the fracture surface area are
not in play for most of the fracture process, and if they are,
they are static (in the case of stable crack propagation); they
are more the aftermath of fracture. In contrast, for example,
the bonds in a system holding the material together exist
before fracture, and when a sufficient number of bonds break
a crack or fracture, surface area is created. We thus move
our frame of reference from the fracture surface area to it its
precursor, the bonds in a bonded system. Keeping with the
formulation of the energy release rate, we seek a derivative
that describes the change in energy U with respect to change
in bond number N . This derivative is the heat of bond rupture
[61], adapted from the isosteric heats in the statistical physics
of adsorption [62,63]:

q = −d〈U 〉
d〈N〉 . (5)

This is the starting point for defining a fracture resistance
in our fluctuation-based fracture mechanics approach [61],
which we will explore further in the context of fracture
of heterogeneous materials under quasistatic displacement-
controlled loading.

II. PARTICIPANT VOLUME FRACTION

We probe all bonds in the system in the �μV T ensemble
by sampling from an ensemble of equilibrated states. In the
�μV T ensemble, we evaluate Griffith’s energy release crite-
rion for bond fracture from fluctuations of the bond energy of
unbroken bonds, N = N0 − Nbr (= total − broken number of
bonds, respectively), by means of the heat of bond rupture,
q = q0 + qλ, at the fracture phase transition [61,64,65]:

Cov(U λ, N )

Cov(N, N )
= −qλ ≡ q0 = −Cov(U 0, N )

Cov(N, N )
. (6)

Herein, −qλ stands for the bond-energy release rate due to
bond stretching, U λ. The link between Griffith’s energy re-
lease criterion and the heats of bond rupture comes from the
link between crack area and bond number. When a crack
forms in a bonded system, bonds must necessarily break.
As the energy release rate is a rate in terms of crack area
change, the heats of bond rupture provide rates in terms of
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bond number change. True to Griffith’s fracture theory, this
strain energy release rate equals the heat of bond rupture q0 at
fracture: it is the energy dissipated into heat by bond fracture
and release of ground-state energy, U 0 = −E0 · N, associated
with bond numbers N = (NA, NB, . . . , Nn)T :

q0 = E0 · Cov(N, N)

Cov(N, N )
· 1n,1 = E0 · S, (7)

with E0 = (ε0
A, ε0

B, . . . , ε0
n ) the vector of ground-state energies

and 1n,1 the vector of ones (noting that N = 11,n · N). Here
we define a new quantity S = Cov(N,N)

Cov(N,N ) · 1n,1, termed the par-
ticipant volume fraction and coined as such because it is a
measure of the amount of each phase that participates in frac-
ture (i.e., breaks); otherwise stated, S is the vector of “broken”
bond fractions as opposed to the vector of “intact” bond frac-
tions f . In effect, Eq. (7) defines a homogenization scheme for
fracture properties distinct from previous literature [25,59],
where the focus in our SGCMC approach is shifted to the bond
fractions of broken material. In terms of Griffith’s coining,
q0 can be viewed as the bond fracture energy of the n-phase
heterogeneous material. In return, enabled by the semigrand
canonical sampling, the bond fraction of each phase partici-
pating in the fracture process, S = (Sα, Sβ, . . . Sn)T , permits
a dual definition from both fluctuation and probability theo-
ries. [In labeling intact and broken bonds in different phases,
uppercase English letters (A, B, . . .) are reserved for intact
bonds, and lowercase Greek letters (α, β, . . .) are reserved
for broken bonds.] Viewing Sβ as the probability of a phase
B bond breaking at fracture (which is the intersection of two
events: being a phase B bond and being broken),

0 � Sβ =
n∑

i=1

Cov(Ni, NB)

Cov(N, N )
≡

n∑
i=1

P(β ∩ fi ) � 1 (8)

for all Si ∈ S = {Si | ∑
(n) Si = 1} ⊆ F = { fi | ∑

(n) fi = 1}.
Herein, β = NB

br/〈Nbr〉 stands for the random vector of
bonds in phase-B breaking at a probability Sβ = P(β ). This
probability, P(β ) = E[β], is the sum of the joint probabil-
ities P(β ∩ fi ) = P( fi )P(β | fi ), with fi = P( fi ) ∼ Ni,0/N0

the volume fraction of each phase, and P(β | fi ) the condi-
tional probability. The synergy of the dual definition from
Eq. (8) is recognized in the determination of bounds of the
“effective” fracture resistance among all uncorrelated [i.e.,
Cov(Ni �=B, NB) = 0] and independent [i.e., P(β ∩ fi �=B) =
P(β )P( fi �=B)] fracture events in the n phases. In the limit case
of no correlation, Slim

β = (σNB/σN )2 ≡ P(β ∩ fB), the bond
fractions Si ∈ S are the eigenvalues of the (diagonal) bond
covariance matrix. Moreover, the lower and upper bounds
[LB and UB, respectively, in Figs. 2(a) and 4(a,b)] are de-
fined by the min-max values of a conditional probability,
0 � P(β | fβ ) � 1. Combining Eqs. (7) and (8), the bounds
can be expressed as

inf
Si∈S,S·S=1

(E0 · S) � q0 � sup
Si∈S,S·f=‖S‖2

(E0 · S), (9)

where f = ( fA, fB, . . . , fn)T is the vector of volume fractions
of the phases. These bounds include the case of equiproba-
ble fracture events in the n phases [P(β | fB) = 1/n], which
entails the arithmetic mean as effective fracture resistance,
q0,Hill = E0 · f/n, reminiscent of the Hill bound.

FIG. 2. Fracture of two-phase layered material under uniaxial
stretching for different loading orientation angles: fraction of broken
bonds that are phase B bonds, Sβ ( fB, θ ), as measured by Eq. (20) as
function of (a) phase B bond fraction fB, (direction of increasing θ

is clockwise) and (b) loading angle θ (direction of increasing fB is
clockwise), with critical state line (inset); and bond fracture patterns:
(c) upper bound (θ = 0), (d) lower bound (θ = π/2), (e) Hill bound
at (θ = π/4). For clarity only (a) 0◦, 45◦, and 90◦ loading angles and
(b) representative volume fractions are labeled. Intermediate lines in
(a) span 5◦ increments from 0◦ to 45◦ (inclusive), whereas all loading
angles greater than 45◦ collapse to the lower bound (x axis: horizontal
thin black line). Due to the resolution of the mesh, the increments in
volume fraction in (b) are not equal; the labeled lines serve as guide
markers.

The critical bond-energy release is the energy released by
the removal of one (more) bond in a specific phase, when
q0 = −qλ. In the SGC ensemble, this state is uniquely defined
for a given volume, bond potential, and temperature along a
critical line in the phase diagram of brittle fracture [61] and
does not depend on the path to how this state is reached. We
can thus define an expected value of q0 from the sampled
“space” average (ergodic theorem):

E[q0] = 1

〈Nbr〉
∫

q0dNbr =
∑
(n)

ε0
i

〈Ni,br〉
〈Nbr〉 , (10)

where 〈Ni,br〉 and 〈Nbr〉 stand for the ensemble average of
broken bonds of phase i = A, B, . . . , n and all bonds, respec-
tively. We can thus define the bond fraction participating in
the fracture purely based on the bond fraction,

Sβ = E[β] = P(β ) β = NB,br

〈Nbr〉 . (11)

Otherwise said, from a probability theory point of view,
Sβ represents the expected value of the bond fraction β of
phase B participating in the fracture process. In return, this
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probabilistic definition provides a dual definition based on the
law of total probability:

P(β ) =
n∑

i=1

P(β ∩ fi ) =
n∑

i=1

P(β | fi )P( fi ). (12)

Equations (8) and (11) are two independent definitions
of the participating bond fraction, Sβ . In fact, the bond-
fluctuation-based definition, Eq. (8), defines correlatedness
between random variables NA, NB, . . . , Nn and obeys sym-
metry due to the symmetry of the covariance matrix,
i.e., Cov(Ni, Nj ) = Cov(Nj, Ni ). In contrast, the probability-
based definition (12) defines dependence or independence
of fracture events between these random variables, exhibit-
ing no symmetry a priori, P(α ∩ fβ ) �= P(β ∩ fα ). The two
attributes, correlatedness and dependence, need to be inde-
pendently evaluated for each specific situation.

III. METHODS

The backbone of our analysis is fracture mechanics in the
semigrand canonical ensemble, �μV T ensemble. Recently
proposed for bond fracture simulations and related phase
change phenomena in the brittle fracture of homogeneous
materials [61,65], fracture mechanics in the �μV T ensemble
consists of probing all bonds in the system by sampling from
an ensemble of equilibrated states at fixed bond rupture po-
tential �μ, volume V = V0(1 + λ), and temperature T , with
V0 the initial volume and λ a dilation factor. A Nosé-Hoover
thermostat is employed to maintain an average temperature
of T ∗ = kBT/ min(n) ε

0
i = 0.1 in reduced Lennard-Jones (LJ)

units. The time step for the MD runs is set to 0.005τ in
LJ reduced units (with unit LJ parameters). Simulations are
performed using LAMMPS [66] and simulation images are
created with OVITO [67].

The bond rupture potential, �μ, is an auxiliary field which,
akin to a radiation source, can switch bonds on or off. More-
over, the bond rupture potential only acts on the bonds in the
system and not the mass points (i.e., mass points are not being
switched on and off). Practically, the semigrand canonical
ensemble enables us to toggle the state of a bond between ON
and OFF. This directly gives us a way to probe a large number
(ensemble) of states with different broken bond configura-
tions. Over the course of the simulation, a convergent behavior
is manifested in the form of a crack that traverses the system
(more details in [61,65]). Applied to heterogeneous, n-phase,
material systems, each phase J = A, B, . . . , n is defined by a
fixed number of mass points with interactions defined by bond
potentials.

A. Bond potentials

The interactions between mass points are determined
by ground-state energies, E0 = (ε0

A, ε0
B, . . . , ε0

n ), and elastic
energies, Eλ = (ελ

A, ελ
B, . . . , ελ

n ). Restricting ourselves to two-
point interactions, bond potentials (of mean force) are of the
form

uJ (ri j ) = −ε0
J + ελ

J ui j
J (ri j ), (13)

with ui j
J (ri j ) a dimensionless expression of the two-point

stretch potential in function of bond length, ri j . In this work

we consider harmonic and nonharmonic potentials, which
only differ in the expression of the stretch potential expres-
sion. That is, for a harmonic potential,

ui j
J (ri j ) = 1

2
λ2

i j ; λi j = ri j

r0
− 1, (14)

and for a Morse potential,

ui j
J (ri j ) = 1

2k2
[1 − exp(−kλi j )]

2; k =
√

ελ

2ε0
, (15)

where r0 is the distance at equilibrium, for which ui j
J (r0) = 0.

The chosen parameters of the Morse potential are such that the
Morse potential degenerates into the same harmonic potential,
given in Eq. (14), around the equilibrium position, ri j → r0.

For given prescribed values of �μ, V , and T , we evaluate
the total energy from the sum over all intact bonds N = N0 −
Nbr , where N0 is the initial number of bonds, and Nbr is the
number of broken bonds:

U =
N∑

k=1

uk; U 0 = −
N∑

k=1

ε0
k ; U λ =

N∑
k=1

(ελui j (ri j ))k,

(16)
where the energy, U = U 0 + U λ, is the sum of ground-state
U 0 and stretching U λ energies over all intact bonds. Broken
bonds have zero energy.

B. Application to fracture simulations of heterogeneous
model materials

For the investigation of a number of model heterogeneous
materials, we carry out bond fracture in SGCMC simulations
recently proposed for bond fracture simulations and related
phase change phenomena in the brittle fracture of homoge-
neous materials (for details, see [61,65]).

For SGCMC simulations of the 2D and 3D model materi-
als, we consider the following:

(1) A 2D triangular lattice of dimensions 72 × 42 squared
lattice units, with 6048 mass points and 18,144 bonds;

(2) A 3D 10 × 10 × 10 fcc lattice, with 4000 mass points
and 24,000 bonds, for the random geometry;

(3) A 3D 12 × 12 × 12 fcc lattice, with 6192 mass points
and 41,472 bonds, for the checkerboard geometry.

Each bond is assigned a ground-state and an elastic energy,
the distribution of which is defined by (i) the investigated
texture (see Fig. 1) and the volume fraction (∼ bond fraction)
of each phase.

While the SGCMC approach permits investigating the en-
tire phase diagram of brittle fracture [61], we are interested in
this investigation only in the “effective” fracture resistance in
uniaxial tension. Hence, in our simulations we set �μ = 0
and increase the volume V = V0(1 + λ) until we reach the
critical “Griffith” state defined by Eq. (6), for which (i) λ =
λcrit ↔ q0 ≡ −qλ, and for which (ii) we observe a first-order
phase transition (for a discussion, see [61,65]).

To simulate a uniaxial deformation at an angle θ inclined
to the simulation box coordinates X , Y , Z , we make use of
standard tensor projections:

λ = �n · ε · �n; ε = εi j �ei ⊗ �e j, (17)

065003-4



FLUCTUATION-BASED FRACTURE MECHANICS OF … PHYSICAL REVIEW E 106, 065003 (2022)

where �n is the direction of stretch application, whereas ε is the
strain tensor in the X , Y , Z components of εi j . For instance, a
uniaxial tensile dilation in the (X , Y ) plane in the θ = π/4 di-
rection (see Fig. 2) corresponds to a combined biaxial tension
and shear loading, with εxx = εyy = εxy = λ/2.

IV. RESULTS

We proceed by exploring bond fracture correlations and
dependence for a number of geometrically ordered and disor-
dered two-phase, n = 2 model composites (Fig. 1), defined by
different ground-state and stretch energies, ε0

J and ελ
J , respec-

tively, for phases J = A, B. With a focus on the “effective”
ground-state energy of the two-phase composite, we evaluate
the right-hand side of the fluctuation-based fracture criterion
Eq. (6), considering U 0 = U 0

A + U 0
B and N = NA + NB with

U 0
J = −ε0

J NJ :

q0 = ε0
A

σ 2
NA

σ 2
N

+ ε0
B

σ 2
NB

σ 2
N

+ (
ε0

A + ε0
B

)Cov(NA, NB)

σ 2
N

. (18)

Recognizing σ 2
N = σ 2

NA
+ σ 2

NB
+ 2Cov(NA, NB), we obtain the

effective ground-state energy release of the composite as

q0 = ε0
A + (

ε0
B − ε0

A

)
Sβ, (19)

with Sβ the bond fraction (of B phase bonds) participating in
bond fracture:

Sβ = Cov(NB, N )

σ 2
N

= 1

2

(
1 − σ 2

NA
− σ 2

NB

σ 2
N

)
. (20)

That is, Eqs. (19) and (20) define a fluctuation-based ho-
mogenization criterion of the “effective” ground-state energy
from the sole knowledge of the bond variances of the in-
volved phases, σ 2

NA
= Cov(NA, NA) and σ 2

NB
= Cov(NB, NB),

and the total bonds, σ 2
N = Cov(N, N ). These bond variances

are assessed by means of SGCMC simulations recently pro-
posed for bond fracture simulations and related phase change
phenomena in the brittle fracture of homogeneous materials
[61,65].

We choose a set of 2D triangular and 3D fcc lattices
on which to perform SGCMC simulations. From converged
Monte Carlo simulations, we extract the random variables,
NA, NB. We determine bond number fluctuations of the two
phases, σ 2

NA
and σ 2

NB
, and the total bond number fluctuation,

σ 2
N , and obtain from Eq. (8) the participating bond fractions,

Sβ = 1 − Sα .

A. Layered material and the equiprobable Hill bound

The first case we consider is a two-phase layered mate-
rial uniaxially strained in the θ -direction [Fig. 1(a)]. Akin
to the Voigt-Reuss bounds in elasticity, the layered system
stretched parallel (θ = 0) and orthogonal (θ = π/2) to the
layer direction are the simplest geometric representations
of uncorrelatedness and independence, which define the up-
per and lower bounds, respectively. The results shown in
Figs. 2(a) and 2(b), as a function of fB and θ , confirm the
relevance of the upper and lower bounds in Eq. (9) and show
a convergence of Sβ (θ ) to the Hill bound for 0 < θ → π/4.
At θ = π/4, the bond fraction follows the Hill bound up

to fB = 1/2, beyond which Sβ = 0 [Fig. 2(a)]. The conver-
gence to the Hill bound is marked by the absence of any
data points between the Hill bound and the lower bound.
Results shown in Fig. 2 are obtained with harmonic potentials
of constant ground-state energy, κ0 = ε0

B/ε0
A = 2, and elastic

energy, κλ = ελ
B/ελ

A = 2, ratios. Keeping the energy potential
formulation constant, the change in effective fracture resis-
tance is exclusively in function of volume fraction fB and
loading orientation angle θ .

Analysis of the probability definition of Sβ from Eq. (12)
provides further insights for the range of the participant vol-
ume fraction between the upper and lower bounds. Given fB

and θ , the conditional probability P(β | fB, θ ) of a bond in the
B phase to be activated by the load direction is

P(β | fB, θ ) = �e f · �n = cos θ, (21)

where �e f is the layer orientation, and �n the stretch direc-
tion. In return, since the volume fraction fB and the angle
of load application θ are independent, the joint probability
is P( fB ∩ θ ) = P( fB)P(θ ) = fB cos θ . Moreover, considering
the Radon–Nikodym theorem, the joint probability of β and
( fB, θ ) is obtained when noting

P(β | fB, θ ) = dP(β ∩ fB, θ )

dP( fB, θ )
, (22)

that is,

P(β ∩ fB, θ ) =
∫

( fB,θ )
P(β | fB, θ )dP( fB, θ ). (23)

Further denoting that dP( fB, θ ) = cos(θ )dfB − fB sin(θ )dθ ,
we obtain, after integration,

P(β ∩ fB, θ ) = fB

2
(3 cos2 θ − 1) � 0. (24)

Finally, considering the fracture processes in the two phases
as independent (P(β ∩ fA, θ ) = 0), the bond fraction is ob-
tained:

Sβ = P(β ) = P(β ∩ fB, θ ) � 0. (25)

An evaluation of the joint probability provides Sβ ( fB, θ ) =
( fB/2)(3 cos2 θ − 1) and defines a range of loading angles
θ ∈ [0, arctan(

√
2) ≈ 54.74◦], in which the reinforcing phase

contributes to the “effective” fracture resistance of the com-
posite [Fig. 2(b)]. Moreover, when constrained to the Hill
bound [i.e., Sβ ( fB, θ ) � SHill

β = fB/2], a critical state line,
f crit
B − θ crit [inset of Fig. 2(b)], is obtained:

0 � f crit
B = 3 cos2 θ crit − 1 � 1, (26)

which separates—in uniaxial tension—cooperative interac-
tions [Fig. 2(c)] from exclusive interactions [Fig. 2(d)]
between the two phases. Exclusive interactions are defined by
the lower bound, once the equiprobability of bond fracture is
exhausted [Fig. 2(e)].

From SGCMC simulations we find (i) that the fracture
processes in the two phases are almost uncorrelated [i.e.,
Cov(NA, NB) = 0], and (ii) that Sβ = 0 as soon as the layered
system has exhausted the equiprobable Hill bound for all fB

and θ .
More insight can be gained about Sβ → 0 in Fig. 2(b) by

plotting it in a different set of axes, namely,
√

fB − Sβ vs
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FIG. 3. Geometric representation of the range of loading angles
for layered materials for which Sβ > 0. The red dashed line repre-
sents the maximum value of the

√
fB − Sβ axis (= 1). The radius of

the blue quarter circle is the maximum of the
√

Sβ + fB
2 axis (=

√
3
2 ).

All lines with Sβ = 0 collapse on to the line of slope tan θ∗ = √
2.

Direction of increasing θ is counterclockwise.

√
Sβ + fβ

2 . This set of axes follows directly from the triangle
whose cosine satisfies Eq. (24). In Fig. 3 the slopes of the
lines are defined by tan θ∗, where θ∗ is the effective load-
ing angle as opposed to the actual loading angle θ . The red
dashed line sets the maximum allowable slope as it is the
plot of max

√
fB − Sβ = 1, where Sβ = 0 and Sα = 1 reaches

its maximum value,1 whereas the minimum allowed slope is
the x axis corresponding to the plot of min

√
fB − Sβ = 0.

The min-max values of 0 �
√

fB − Sβ � 1 correspond to the
upper and lower bounds of fracture resistance, respectively.

It is worth noting that the angle θm ≈ 54.74◦, where Sβ →
0, is also associated with zero strain lines and necking in
ductility of sheet metal [68–70] and zero force in assemblies
of magnets, and is even termed magic-angle spinning in NMR
spectroscopy [71,72]. This broad scope of null behavior sug-
gests a geometric interpretation for θm. Consider a loading

vector of magnitude
√

Sβ + fB

2 , as a function of the fracture
resistance and volume fraction, and a fiber orientation vector

for a layered material with magnitude
√

fB + fB

2 , solely as
a function of the volume fraction. Define the angle between
them as θ∗. Then the difference between the loading and fiber
orientation vectors is a vector with magnitude

√
fB − Sβ , and

we retrieve the same triangle defined by Eq. (24) and axes
plotted in Fig. 3.

B. Random material: Elasticity-mediated activation
of long-range, collective interactions

The second case considered is a two-phase material with
randomly assigned binary ground-state and elastic bond en-
ergies, (ε0

A, ελ
A ) or (ε0

B, ελ
B ) [Fig. 1(c)], which is most likely

1max
√

fB−Sβ = max
√

1 − Sβ = max
√

Sα = max Sα = 1, where
Sα + Sβ = 1 for a two-phase material.

FIG. 4. Elastic toughening in fracture of two-phase (a, c) random
and (b, d, e) textured model composites subject to uniaxial stretching
in the semigrand canonical ensemble: (a, b) bond fraction, Sβ ( fB ) ∼
f γ

B , contributing to “effective” bond fracture energy, q0 = ε0
A + (ε0

B −
ε0

A)Sβ . Inset (a): exponent γ vs elastic energy mismatch, κλ = ελ
B/ελ

A.
Inset (b): percolation correlation factor k vs κλ. Fracture images
shown for fB = 50% (c) 2D and (d, e) 3D geometries. [SGCMC
results obtained with harmonic and Morse potentials (M) of ground-
state energy ratio κ0 = ε0

B/ε0
A = 2.] Markers are simulation results

and solid lines are one-parameter fits using (a) γ [Eq. (28)] and (b) k
[Eq. (B4)].

the simplest, i.e., analytically tractable, system among ran-
dom lattice models [35–37]. In fact, SGCMC simulations
show that the bond fraction scales as S3/d

β = f γ

B , where the
dimension correction 3/d accounts for the difference in sam-
pling volume between 2D and 3D. The exponent γ ∈ [1, 2]
is mediated only by the elasticity mismatch between the two
phases, κλ = ελ

B/ελ
A. This is shown in the inset of Fig. 4(a),

from which we conclude that the exponent approaches the
lower bound, γ = 1, for low values of the elastic mismatch
ratio, κλ = ελ

B/ελ
A < 1, and approaches asymptotically γ = 2

for high values of κλ.
Our starting point for the analysis of the random geometry

is a probability estimate of bond fracture. Akin to weighted
coin flipping, the conditional probability of a binary system is

P(β | fB) = fB, (27)

where the joint and total probability according to Eqs. (8) and
(12) are

Sβ = P(β ) = P(β | fB)P( fB) = f 2
B , (28)

that is, γ = 2. This probability estimate ignores bond in-
teractions. Insight into these interactions is provided by the
two-point correlation function (see Sec. A 2), applied to the
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broken bonds of the two phases (i.e., J = α, β) for different
volume fractions and elastic mismatch ratios.

Two-point correlation functions have been widely demon-
strated in the literature to be effective descriptors of material
heterogeneity, relating the geometric distribution of materials
to their properties [56,57,73,74]. Typical examples of two-
point correlation functions for the two phases [Sα

2 (r), Sβ

2 (r)],
together with the cross correlation (S(α,β )

2 ), are shown in
Fig. 5(a). Moreover, we verify that the value of Sβ

2 (r) respects
the asymptotes of two-point correlation functions [73], that is,

∀ fB; Sβ

2 (r = 0) = Sβ ; Sβ

2 (r → ∞) = S2
β. (29)

This is shown in Fig. 5(b), where we plot Sβ

2 (r = 0) vs Sβ =
Cov(NB, N )/σ 2

N [from Eq. (20)].
A second important piece of information provided by the

two-point correlation function is the mean chord length of
broken bonds �β

c , expressed in a dimensionless form [74]:

dSβ

2

d (r/rc)

∣∣∣∣∣
r→0

= − Sβ

2 (0)

(�β
c /rc)

, (30)

where rB
c is the potential cut-off radius [see Eqs. (13) and

(14)]:

rB
c = r0

⎛⎝1 +
√

2
ε0

B

ελ
B

⎞⎠ = r0

[
1 +

(
1 − rA

c

r0

)√
κ0

κλ

]
. (31)

Figure 5(c) displays the normalized mean chord length �β
c /rB

c
as a function of the volume fraction fB. It is remarkable to note
that the normalized mean chord length �c/rB

c collapses onto a
single master curve S ′

0 for all fB and all mismatch ratios κλ,
that is,

∀ fB,∀κλ,
�β

c

rB
c

= S ′
0( fB), (32)

where S ′
0( fβ ) [displayed in Fig. 5(c)] has asymptotes S ′

0( fβ =
0) = 0 and S ′

0( fβ = 1) → ∞.
At large values of κλ � 1, the conditional probability can

be estimated to be P(β | fB) = fB, for which reason Sβ =
P(β | fB)P( fB) = f 2

B , recovering Eqs. (27) and (28). For small
elastic mismatch, κλ < 1, insight is provided by the mean
chord length �i

c, measured from slope of the two-point correla-
tion function over the fracture surfaces at r → 0 [see Eq. (30)
and inset of Fig. 5(a)].

We find that the mean chord length scales linearly with the
cut-off radius, rJ

c , �B
c /r0 ∝ rB

c /r0 = 1 + (1 − rA
c /r0)

√
κ0/κλ,

for all volume fractions and mismatch ratios κ0 = ε0
B/ε0

A
and κλ = ελ

B/ελ
A and r0, the equilibrium bond length. The

mean chord length of the broken bonds thus holds the
key to understanding the elastic toughening mechanism
of random bimaterials: for large values of κλ, for which
limκλ�1(�B

c /r0) = 1, the bond fracture is dominated by short-
range interactions defined by the lattice size r0, and hence
γ = 2 [inset of Fig. 4(a)]. In return, as the elastic mismatch

FIG. 5. Two-point correlation function Sβ

2 of broken bonds for
random binary two-phase material: (a) example of 2-pt correlation
function Sα

2 (r), Sβ

2 (r), S(α,β )
2 (r) for fB = 0.75. Inset displays broken

bonds of the two phases projected on fracture plane orthogonal to
load direction. (b) Cross-plot of Sβ

2 (r = 0) obtained from single
realizations vs Sβ obtained from bond fluctuations of the (entire)
equilibrated semigrand canonical ensemble at different elastic mis-
match ratio, κλ = ελ

B/ελ
A. (c) Normalized mean chord length of

broken bonds �β
c /rB

c vs volume fraction fB (rB
c = rcutoff is the potential

cut-off radius).

is inversed, so that the tougher phase (B) is more compliant
than the weaker phase (A), the mean chord length of fracture
bonds increases, �β

c /r0 ∝ κ
−1/2
λ , reminiscent of long-range,

collective interactions, approaching the upper bound γ = 1.
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C. Textured material: Elasticity-induced
softening of percolation

Moreover, this soft-tough paradigm is not restricted to
random materials but manifests itself for highly textured ma-
terials as well. For illustration, consider the prototype of a
two-phase textured material: a 2D checkerboard [Fig. 1(b1)]
and a 3D “checkercube” constructed in a simple cubic (sc)
fashion by adjacent cubes of different ground-state and elastic
bond energy [Fig. 1(b2)]. In contrast to layered and random
materials, textured materials may exhibit a percolation thresh-
old pc for the activation of the reinforcing phase, i.e., a critical
probability of phase B to be part of an infinite cluster (i.e., the
macrocrack).

We start from probability considerations, assuming that
bond fracture exhibits a similar hard site percolation. This is
captured by a step-function conditional probability,

P(β | fB) = H ( fB − pc)∫ 1
0 H ( fB − pc)dfB

, (33)

where H (x) is the Heaviside function. After integrating
Eq. (33), we obtain an estimate of the probability of bond
fracture for hard site percolation, for κλ � 1:

Sβ =
∫

P(β | fB)dP( fB) = | fβ − pc|
1 − pc

. (34)

A comparison with SGCMC results readily shows that site
percolation dominates the composite response for large κλ

values but fails to capture the bond fraction at small elastic
mismatch values, κλ < 1 [see Fig. 4(b)].

Proceeding as before, an insight is provided by the two-
point correlation of the broken bonds of each phase [inset of
Fig. 6(a)]. In fact, as shown in Fig. 7, the chord lengths for
different volume fractions exhibit Dirac-delta -type behavior
at the site percolation threshold pc. We herein address how
this site percolation affects the bond fracture of the textured
system.

We verify that the two-point correlation function for each
phase at r = 0 provides an estimate of the participating bond
fraction, Sα

2 (r = 0) = Sα and Sβ

2 (r = 0) = Sβ [see Fig. 6(a)].
This allows us to inspect the mean chord length of the broken
bonds for both phases following Eq. (30). The results are
displayed in Figs. 6(b) and 6(c). The following observations
deserve attention: (i) For large values of elastic mismatch,
κλ = ελ

B/ελ
A > 1, the mean chord length of the weaker phase,

�α
c (broken A bonds) diverges at the geometric site percola-

tion threshold fβ = pc, at which point the weaker phase (A)
becomes part of a continuous (i.e., infinite) cluster of broken A
bonds (α), as one expects from a site percolation phenomenon
[Fig. 7(a)]. (ii) As the elastic mismatch is reduced and in-
verted (κλ < 1), the divergence disappears—a hallmark of a
smooth phase transition. In other words, a more compliant
B phase deactivates bond fracture in phase A (α), in favor
of bond fracture in phase B (β). (iii) The mean chord length
of broken B bonds �β

c remains (almost) continuous, shifting
from a constant value below the percolation threshold to a
monotonically increasing value above, determined by texture.
More specifically, below percolation, fB < pc, the mean chord
length scales with the cut-off radius, �β

c ∼ rB
c [see Eq. (31)]

until it reaches the mean chord length, which characterizes the

FIG. 6. Two-point correlation function and mean chord length of
broken bonds for two-phase checkercube composite: (a) Cross-plot
of Sβ

2 (r = 0) obtained from single realizations vs Sβ obtained from
bond fluctuations of the (entire) equilibrated semigrand canonical
ensemble at different elastic mismatch ratio, κλ = ελ

B/ελ
A. Inset dis-

plays broken bonds of the two phases projected on fracture plane
orthogonal to load direction for fB = 0.787. (b, c) Normalized mean
chord length of broken bonds: (b) �α

c /rA
c and (c) �β

c /rB
c vs volume

fraction fB (rA
c and rB

c are potential cut-off radius of phase A and B).

texture, defined by �β
c ∼ f 2

B (1 − fB)(1/d )−1, considering the
specific surface, s ∼ fB/�c, of the B phase beyond percolation
in the checkerboard (d = 2) or checkercube (d = 3).

065003-8



FLUCTUATION-BASED FRACTURE MECHANICS OF … PHYSICAL REVIEW E 106, 065003 (2022)

FIG. 7. Mean chord length of 3D checkercube vs volume fraction
for (a) phase A, �A

c /r0 vs fA, and (b) phase B, �B
c /r0 vs fB, obtained

from the two-point correlation function, SJ
2 (r) (J = A, B), of intact

lattice bonds (r0 is lattice distance).

It is thus not surprising that we find the site percolation
threshold reproduced in the fracture bond activation for large
values of elasticity contrast κλ � 1, namely, the square-lattice
percolation threshold pc = 1/2 for the 2D checkerboard, and
the simple cubic percolation threshold pc = 0.31 for the
checkercube [Fig. 4(b)]. Table I provides a summary high-
lighting key parameters of the cases considered in this study
so far.

TABLE I. List of parameters and probability formulations for the
layered, random, and checkerboard geometries with the correspond-
ing equations in which they appear.

Geometry P[β| fB, ·] Eq.

Layered θ cos θ (21)
Random γ f γ−1

B (27), (28)
Checkerboard pc

H ( fB−pc )∫ 1
0 H ( fB−pc )dfB

(33)

FIG. 8. Elastic toughening due to interfaces of two-phase layered
material: (a) bond fraction of reinforcing phase Sβ ( fB ) contributing
to “effective” bond fracture energy q0 = ε0

A + (ε0
B − ε0

A)Sβ + (ε0
int −

ε0
A)Sint , with upper, lower, and Hill bound of two-phase material;

(b) bond fracture pattern in uniaxial stretching with (c) interface
bonds as a separate phase. SGCMC results obtained with harmonic
potentials.

D. Role of interfaces

A last point of inquiry we address here is the role of
interfaces on the probability of bond fracture. All results so
far obtained consider two-phase equiprobable interface con-
ditions, i.e., alternating interface properties, which exclude
weak or strong bonding at interfaces, that have been suggested
as cause of fiber pull-out and delamination of inclusions in,
e.g., ceramic matrix composites [75,76]. An explicit account
of interface behavior requires consideration of a three-phase
material to estimate from Eq. (8) the bond volume fractions
of bulk and interface phases [S = (Sα, Sβ, Sint )T for Sα +
Sβ + Sint = 1] with interface properties (ε0

int, ε
λ
int) that differ

from the bulk phase properties [Fig. 8(c)]. For illustration,
we investigate for the layered system the impact of inter-
face conditions (Fig. 8). While tough interfaces (ε0

int > ε0
A)

increase the “effective” bond fracture energy according to
Eq. (8) within the equiprobable Hill bound of the two-phase
material and the upper bound of the three-phase material,
fβ/2 � Sβ � fβ + fint, we find yet another example of the
soft-tough paradigm in composite materials when the tough
interface bonds are simultaneously compliant [Fig. 8(a)].

V. CONCLUSION

In summary, we have shown that SGCMC simulations
provide a means to rationalize the complexity of fracture
of heterogeneous materials, from random to highly textured
materials, encompassing probability and percolation theories
of fracture within a unified framework of fluctuation-based
fracture mechanics. In the semigrand canonical ensemble,
bond-energy fluctuations permit identifying theoretical upper
and lower bounds of fracture resistance, which are critical to
ascertain the toughening mechanism in composite materials,
such as the soft-tough paradigm induced by elastic mismatch
between phases. At low elastic contrast, toughening can re-
sult from a shift from short- to long-range interactions of
bond fracture processes in random systems, the softening of
sharp site percolation thresholds in textured materials, or the
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activation of toughness reserves at compliant interfaces.
While counterintuitive at first sight, this soft-tough paradigm
can be connected to a number of experimental observa-
tions, ranging from toughening of brittle solids by highly
deformable polymers or organics, such as gas shale (brit-
tle clay minerals reinforced by soft kerogen) [77] or nacre
(brittle bricks of aragonite glued together by thin biofilms
at interfaces) [78], to stress-induced transformational tough-
ening mechanisms in ceramics [79,80], and toughening of
sparse elastic networks relevant for, e.g., hydrogels [81]. For
such specific applications, the model composites considered
in this work merit refinements to account for realistic texture
and interactions beyond the two-point harmonic and Morse
potentials considered here, including the three- and four-
point bending interactions required for the application of the
SGCMC methodology to fracture more complex molecular,
mesoscale, and beam- and plate-type engineering structures
[82–84]. Finally, given the link between SGCMC simulations
and statistical descriptors of heterogeneity such as two-point
correlation functions, an important step beyond this work con-
sists in extending the SGCMC approach of bond fracture sam-
pling to experimental sampling of fracture morphology and
roughness [40–44] to measure the effective fracture toughness
of heterogeneous materials. While this paper is theoretical and
simulation-based, independent verification of the results and
ideas of this paper exist in the literature [58] [compare with
insets of Figs. 4(d), 5(a), and 6(a)], leaving open avenues for
future experimental work that will be based on the fluctuation-
based fracture mechanics approach presented here. Further-
more, experimental methods in the literature have shown suc-
cess in describing fracture of heterogeneous material by creat-
ing boundary conditions that allow for following the crack tip,
as we follow the bonds in our simulations [25,29,85]. Future
work will also be able to explicitly define the ground-state
energy of materials as a material property proportional to
the fracture energy. Exciting extensions of this work would
expand the binary choice of MC moves (ON to OFF and OFF
to ON) to be able to model progressive damage before ulti-
mate bond failure; future work will also focus on nonbonded
interactions to envelope a larger domain of failure models.
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APPENDIX A: EQUIVALENT MEASURES OF BOND
FRACTION Sβ IN THE SEMIGRAND CANONICAL

ENSEMBLE

The determination of the bond fraction Sβ from SGCMC
simulations is based on the outcome of converged SGCMC
simulations; that is, a large number of—say MC—realizations
for which the probability of bond insertion is equal to
the probability of bond deletion (i.e., Eqs. (2) and (3), re-
spectively). Restricting ourselves to two-phase materials, we

denote by N j
A , N j

B , and N j , for j = 1, . . . , MC, the cor-
responding bond numbers in these realizations and their
broken complements, N j

A,br = N j
A,0 − N j

A = N j
α , N j

B,br = N j
β ,

and N j
br = N0 − N j , respectively.

The reference measure is the fluctuation-based definition
[Eq. (20)]. It can be viewed as a linear regression of (N j

B, Nj):

N̂B
j = NB + Sβ (N j − N ) (A1)

with

Sβ = ∂N̂B
j

∂ (N j − N )
= Cov(NB, N )

σ 2
N

(A2)

where NB and N respectively stand for the mean of N j
B and

N j . By definition, the same holds for the broken bonds when
letting N̂β

j = NB,0 − N̂B
j
:

N̂β
j = Nβ + Sβ

(
N j

br − Nbr
)
, (A3)

with

Sβ = ∂N̂β
j

∂ (N j
br − Nbr )

= Cov(Nβ, Nbr )

σ 2
Nbr

. (A4)

Then let e j = N j
β − N̂β

j
be the residuals between the real-

ization N j
β and the linear regression N̂β

j
of zero mean (e = 0).

Furthermore, let N j
β = S j

βN j
br and Nβ = S j

βN j
br , and hence

N̂β
j = SβN j

br + (
S j

β − Sβ

)
N j

br . (A5)

If we remind ourselves of the dual definition Eq. (11), which
implies Nβ = SβNbr , the second term in Eq. (A5) is zero,
while e j/N j

br = S j
β − Sβ . A single realization j out of an

equilibrated semigrand canonical ensemble thus provides a
first-order estimate of the bond fraction:

∀ j; S j
β = Sβ + e j

N j
br

. (A6)

A cross-plot of S j
β = N j

β/N j
br vs Sβ = Cov(NB, N )/σ 2

N allows
one to ascertain relevance of the first-order approximation
Sβ ≈ S j

β , shown in Fig. 9.

1. Bond fraction of broken bonds

Equation (7) suggests yet another definition of Sβ from
the second mixed derivative of the ground-state energy. To
this end, we express the effective heat of bond rupture due
to ground-state energy in terms of covariances; that is, for the
two-phase material,

q0 = −d〈U 0〉
d〈N〉 = −Cov(U 0, N )

σ 2
N

= ε0
ASα + ε0

BSβ. (A7)

It is thus recognized that

Sβ ( fB) = − d2〈U 0〉
dε0

Bd〈N〉
∣∣∣∣

fB

= d〈NB〉
d〈N〉

∣∣∣∣
fB

= constant. (A8)

After integration with the initial condition NB(N = N0) =
NB,0 = fBN0, we obtain

NB = NB,0 − Sβ (N0 − N ), (A9)
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FIG. 9. Cross-plot of S j
β = N j

β/N j
br vs Sβ = Cov(NB, N )/σ 2

N . The

dashed line is the line S j
β = Sβ , showing S j

β is a good first-order
approximation of Sβ .

which finally leads to

Sβ ( fB) = NB,0 − NB

N0 − N
= Nβ

Nbr
, (A10)

where Nbr = N0 − N and Nβ = NB,0 − NB are the broken
number of bonds in the system and broken bonds of phase B,
respectively. Sβ is thus defined as the volume (bond) fraction
of broken bonds, in agreement with Eq. (11) and all simulation
results (see Fig. 9).

This view of the participant volume fractions readily ex-
tends to multiphase materials:

NJ = NJ,0 − dNJ

dN

∣∣∣∣
fJ

(N0 − N ). (A11)

Equation (A11) is a Taylor expansion of NJ around N0 (up to
the first derivative), reinforcing the fact that fracture requires
a small amount (<10%) of broken bonds to generate a macro-
crack across the entire system.

2. Link with two-point correlation function of broken bonds

In this work we show that S j
β can also be determined

from the two-point correlation function of broken bonds of a
realization j, thus proposing a direct link between theory and
practice:

S j
β = Sβ

2 (r = 0) =
√

Sβ

2 (r → ∞). (A12)

As a reminder, the two-point correlation function for a phase
J is defined by [56,57]

SJ
2 (r = ||�r2 − �r1||) = 〈IJ (�r1)IJ (�r2)〉, (A13)

where IJ (�ri ) is the indicator function of phase J:

IJ (�ri ) =
⎧⎨⎩1 if i ∈ J

0 if i /∈ J
. (A14)

The second important information provided by the two-point
correlation function is the mean chord length, �c:

dSJ
2

dr

∣∣∣∣
r→0

= −SJ
2 (0)

�c
. (A15)

The mean chord length is close to a multiplying function equal
to the specific surface [73]. Therefore, for a homogeneous
material ( fJ = 1), for which S2(r) = 1, the slope is zero and
hence �c → ∞; in the dilute limit of fJ � 1, the slope is
infinite and hence �c → 0.

APPENDIX B: CRITICALITY OF PERCOLATION
THRESHOLD IN CHECKERBOARD GEOMETRY

IN 2D AND 3D

We confirm the criticality of percolation in the form of
the divergence of the mean chord length of broken bonds
in the weaker phase, �α

c (broken A bonds) at the geometric
site percolation threshold fB = pc. The chosen textured model
materials have known geometric site percolation thresholds at
pc = 0.5 for the 2D square lattice and pc = 0.31 for the 3D
simple cubic lattice [see Figs. 1(b1) and 1(b2)]. The site per-
colation thresholds are readily obtained from the mean chord
length derived from the two-point correlation functions of the
lattice bonds of the two phases of volume fraction SA

2 (0) = fA

and SB
2 (0) = fB:

dSA
2

dr

∣∣∣∣
r→0

= − fA

�A
c

;
dSB

2

dr

∣∣∣∣
r→0

= − fB

�B
c

. (B1)

When the elastic mismatch is reduced and inversed (κλ <

1), the divergence disappears—a hallmark of a smooth phase
transition associated with a change from critical to subcritical
percolation behavior. To capture this transition, we introduce
a smoothed step function, H∗ = (1 + exp[−k( fB − pc)])−1,
with k ∼ �c the only adjustable parameter to fit the simula-
tion results. As shown in Fig. 4(b), the elastic toughening
mechanism in textured materials results from a transition from
a hard step-function (critical) percolation probability at high
κλ values where k � 1 to a subcritical percolation at low κλ

values where k = O(1) [inset Fig. 4(b)], while Sβ approaches
the upper bound [Fig. 4(b)].

In summary, the comparative analysis of the mean chord
length of intact and broken bonds shows that the elastic
toughening of the considered textured materials is due to the
smoothing of the hard percolation of the weaker phase (A)
at the geometric percolation threshold of the tougher phase
(B). To capture this transition in terms of the participating
bond fraction, we consider a smooth approximation of the
Heaviside function:

H∗( fB − pc) = 1

1 + exp[−k( fB − pc)]
, (B2)

where the regularization factor k permits transitioning from
the step function (k → ∞) to a smooth transition, in terms of
the conditional probability:

P(β | fB) = H∗( fB − pc)∫ 1
0 H∗( fB − pc)dfB

. (B3)

065003-11
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We thus obtain

Sβ ( fB) = ln(1 + e−k( fB−pc ) ) − ln(1 + ekpc ) + k fB

ln(1 + e−k(1−pc ) ) − ln(1 + ekpc ) + k
. (B4)

Using Eq. (B4) to fit the simulation results, we obtain k in
function of the elastic mismatch ratio [inset of Fig. 4(b)],
showing that the regularization factor k diverges for large
values of κλ, which mimics the mean chord length of the
weaker phase.
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