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Scaling theory for the statistics of slip at frictional interfaces
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Slip at a frictional interface occurs via intermittent events. Understanding how these events are nucleated, can
propagate, or stop spontaneously remains a challenge, central to earthquake science and tribology. In the absence
of disorder, rate-and-state approaches predict a diverging nucleation length at some stress σ ∗, beyond which
cracks can propagate. Here we argue for a flat interface that disorder is a relevant perturbation to this description.
We justify why the distribution of slip contains two parts: a power law corresponding to “avalanches” and a
“narrow” distribution of system-spanning “fracture” events. We derive novel scaling relations for avalanches,
including a relation between the stress drop and the spatial extension of a slip event. We compute the cut-off
length beyond which avalanches cannot be stopped by disorder, leading to a system-spanning fracture, and
successfully test these predictions in a minimal model of frictional interfaces.
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I. INTRODUCTION

When a frictional interface is driven quasistatically, periods
of loading are punctuated by sudden macroscopic slip events.
Field observations on earthquakes [1,2] and laboratory studies
support that slip nucleates at weak regions of the interface and
then propagates ballistically as a fracture [3–11]. Understand-
ing under which conditions large slip events are triggered and
can propagate is central to tribology, for example, to explain
the observed variability of friction coefficients [12–14]. It is
also key for earthquake science [15]. Earthquakes are power-
law distributed when averaged over many faults [16]. When
fault specific data are considered, observations are debated.
Some studies find a bimodal distribution, consisting of a
power-law behavior at small magnitude on several decades,
an absence of events at intermediate magnitude, and a few top
outliers for which the magnitude is large [17]. Other studies
suggest instead a continuous power law [18]. This debate is
complicated by the fact that an individual fault consists of
many segments, whose length distribution is itself self-similar
[19]. Here we propose an explanation for the bimodal distri-
bution of slip events when slip occurs at a single interface,
which we consider to be disordered but essentially flat.

These questions are complicated by the fact that frictional
forces can decrease with sliding velocity. Various mech-
anisms can lead to such a velocity weakening, including
thermal creep [20–25] or the mere effect of inertia [26–29].
Rate-and-state models [2,30–32] describe the dynamics of
frictional interfaces via differential equations that capture ve-
locity weakening. The latter is characterized by a length scale
Lc below which its effect is small in comparison to elastic
forces [33–38]. Importantly, in the case where the stress as
a function sliding velocity displays a minimum σmin, this
approach predicts [8,39,40] a characteristic stress σ ∗ very
close to σmin, beyond which a slip pulse of spatial extension
larger than L∗ will invade the system. In Ref. [40], it is found

that L∗/Lc ∼ (σ − σ ∗)−1. Yet these results apply when the
interface is homogeneous: Their validity in the presence of
disorder nor their connection to the observed broad distribu-
tion of earthquakes is clear.

Another approach describes how an elastic manifold driven
through a disordered medium can be pinned by disorder
[41,42] and was specifically applied to frictional interfaces
[26,27,41,42]. In simple settings that exclude the existence
of velocity weakening, the stress of a quasistatically driven
interface converges to some critical value, where slip events
are power-law distributed. Unfortunately, these results do
not apply in presence of velocity-weakening effects where
even the presence of large avalanches1 was debated [26,43–
45], yet experimentally observed in Ref. [46]. Very recently
[47], we introduced a minimal model of frictional interfaces
that contains long-range elastic interactions, disorder, and
inertia. Criticality was observed, with power-law avalanches
whose size can span four decades as the stress reaches some
critical value σc. Yet inertia introduces novel phenomena.
For example, in a finite system the distribution of events
is bimodal: Power-law-distributed avalanches coexist with
system-spanning events. Which mechanism causes such large
avalanches, and how their duration, length scale, and stress
drop are related to each other remain unknown, as is the rela-
tionship between σc governing avalanches and rate-and-state
approaches.

In this article, we argue theoretically that σc = σ ∗, imply-
ing that rate-and-state approaches capture the critical stress
affecting the slip statistics. Yet, we find that disorder is a
relevant perturbation: Consequently, previous results for the
diverging nucleation length scale near σc neither based on

1In this article we define avalanches as a cascade of slip events that
does not involve the entire system.
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(a) (b)

FIG. 1. (a) Sketch of distribution of avalanche sizes in a finite
system: On the left there is a power-law distribution cut-off beyond
some characteristic value Sc, and on the right there are system-
spanning events. (b) Sketch of a flow curve (stress σ vs slip rate u̇)
with a minimum at σ = σmin (with corresponding slip rate u̇min).

a homogeneous system [40] nor on Griffith’s argument [47]
apply. Our current analysis justifies the presence of large
power-law avalanches and leads to scaling relations between
their length, stress drop, and duration, which are found to
be related to a fractal property of the slip geometry at the
interface. We successfully test all predictions numerically in
the minimal model proposed in Ref. [47].

II. SCALING THEORY FOR SLIP EVENTS
WITH VELOCITY WEAKENING

A. Observables describing slip events

We characterize slip events by their linear spatial exten-
sion (or “width” in one dimension) A, the total slip (the
increment of slip, or increment of displacement discontinuity,
integrated across the event’s “width”) S, and their duration
T . As sketched in Fig. 1(a) and as reported in some systems
displaying stick-slip [17,28,47], the distribution P(S) consists
of two parts. First, there is a power-law distribution cut-off
beyond some characteristic value Sc, i.e., Pa(S) = S−τ f (S/Sc)
where f is a rapidly decreasing function of its argument. We
call the associated events (S < Sc) “avalanches” and denote by
Ac their cut-off spatial extension along the interface. Second,
there are system-spanning slip events of extension A ≈ L,
where L is the system size, resulting in the “bump” at large
S in Fig. 1(a). Empirical observations [48,49] support the
existence of scaling behaviors for avalanches:

P(S) ∼ S−τ , (1)

S ∼ Ad f , (2)

T ∼ Az. (3)

A fourth scaling relation was instead observed in the simple
model of a frictional interface of Ref. [47]:

Ac ∼ (σ − σc)−ν . (4)

B. Observables describing the static interface

We consider an interface that is overall flat and homoge-
neously loaded. Disorder can be exogenous, stemming for
example from asperities on the surfaces of the two bodies,
or instead be endogenous and result from the history from

previous slip events that lead to irregular stresses along the
interface. On loading, the interface will acquire some slip u(r)
at location r. Due to the disorder, u(r) will fluctuate spatially.
These fluctuations can be characterized by introducing the
roughness exponent ζ of the interface [42]:

||u(r) − u(r′)|| ∼ ||r − r′||ζ (5)

with || . . . || the root-mean-square.
We have so far introduced five exponents: τ , ζ , ν, z, and

d f . Our central goal is to propose three new scaling relations
relating ζ , ν, z, and d f together, allowing for a stringent
empirical test of our views.

C. Effect of disorder on the rate-and-state description

Previous attempts to describe the joint effects of disorder
and velocity weakening sought to treat the latter as a pertur-
bation [26,43]. We take the opposite approach, and seek to
characterize how disorder affects the dynamics of a homoge-
neous interface subjected to velocity weakening, as captured
by the rate-and-state description [8,40]. The relationship σ (u̇)
between the far-field stress σ and the slip rate u̇, at any lo-
cation, is key in this approach. If it does display a minimum
σmin for some slip rate u̇min as illustrated in Fig. 1(b), then
it was shown that beyond some stress σ ∗ just above σmin,
slip events of length L∗ ∼ (σ − σ ∗)−1 can nucleate system-
spanning events [40].

However, where it makes sense for a homogeneous system
to consider σ ∗ as a quantity that does not vary in space, in a
disordered system its structure is locally random. A patch of
material of linear extension A can still be described by some
effective threshold σ ∗(A), but this quantity must vary in space.
σ ∗(A) thus display fluctuations, whose magnitude we denote
δσ ∗(A). They can only disappear in the thermodynamic limit
A → ∞ where randomness self-averages and homogenization
is achieved. In general one expects:

δσ ∗ ∼ A−χ . (6)

Classical arguments based on disorder imply χ � (d + ζ )/2
[42,50].2 Here d is the dimension of the interface (separating
objects of dimensions d + 1). Below we will provide data
supporting that this bound is not saturated.

If χ � 1 (as we shall confirm empirically for d = 1), we
now argue that due to these fluctuations, rate-and-state results
on nucleation in homogeneous systems cannot apply to disor-
dered ones. Indeed, consider σ − σ ∗ to be small but positive,
and a slip event occurring on a length scale L∗ ∼ (σ − σ ∗)−1.
On that length scale, the fluctuations of σ ∗ are stronger than
the distance to threshold σ − σ ∗ when the latter is small:
δσ ∗(L∗) ∼ (L∗)−χ ∼ (σ − σ ∗)χ � (σ − σ ∗). Thus this the-
ory neglecting the fluctuations of σ ∗ cannot self-consistently
hold near threshold.

2When a portion of linear length A of the interface moves, it will
explore a new realization of the disorder. If the disorder is assumed
to have no spatial correlations, then that motion will be affected by
Nr = O(S) random numbers, where S is the integrated slip. We shall
see below that S follows S ∼ Ad+ζ . From the central limit theorem,
any threshold characterizing motion cannot be defined with a preci-
sion finer than 1/

√
Nr , leading to the bound stated in the main text.
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D. Roughness of the interface

As discussed above, the strength σ ∗(A) of a patch of
size A varies in space. The interface must adjust to these
variations: The slip u(r) will be larger at locations r where
σ ∗(A) is small. Fluctuations of elastic stresses follow fluc-
tuations of strain, which between two points r and r′ are of
order ||u(r) − u(r′)||/||r − r′||. If ||r − r′|| ∼ A, then, using
Eq. (5), these fluctuations are of order Aζ−1. As is more
generally the case for an elastic manifold in disordered en-
vironments [42], we expect such adjustments of the interface
slip to stop when these fluctuations of elastic stresses are of
order of the fluctuations of σ ∗(A) on that scale [of order A−χ ,
see Eq. (6)], leading to:

χ = 1 − ζ . (7)

E. Justifying power-law avalanches

We now argue that Eq. (6) gives a natural explanation
for the presence of power-law slip events or ‘avalanches’.
Consider a system at σ = σ ∗ where a slip starts to occur at
the origin, whose extension grows in time as A(t ). During
this process, the system encounters new realizations of the
disorder and also explores larger regions of space. Thus, the
effective threshold σ ∗[A(t )] for slip propagation felt on that
scale will vary in time. The dynamics will stop if it becomes
larger than the applied stress, i.e., σ ∗[A(t )] > σ ∗ = σ .

Following the depinning literature, simple arguments then
constrain the statistics of stopping events [42]. σ ∗[A(t )] can
be thought as a random variable that evolves continuously
around its mean σ ∗. σ ∗[A(t )] will lose memory of its current
value when the patch size A(t ) increases significantly, i.e.,
σ ∗[A(t1)] at time t1 > t0 decorrelates from σ ∗[A(t0)] when
A(t1) − A(t0) � A(t0). As a result, every time A doubles in
size, there is a finite probability p2 that σ ∗[A(t )] − σ ∗ has
changed sign, and that slip has stopped. Such a property
implies a power-law distribution P(A) ∼ A−τA with τA = 1 −
ln(1 − p2)/ ln(2).3 Thus we predict that the stress σc at which
avalanches are power law, follows:

σc = σ ∗. (8)

F. Maximal avalanche extension Ac

Consider the same argument applied to the case σ > σ ∗.
As long as the scale of fluctuations δσ ∗(A) 	 σ − σ ∗, the
difference σ − σ ∗ is insignificant (as sketched in Fig. 2), and
one recovers a power-law distribution of slip events as argued
above. However, in the other limit where δσ ∗(A) 
 σ − σ ∗,
one always has σ ∗(A) < σ . In that regime, disorder cannot
stop a propagating “crack”: disorder is irrelevant, and the
interface can be safely approximated to be homogeneous.
Rupture is then predicted to be correctly described by homo-
geneous rate-and-state laws.

The crossover between these two regimes occurs for a slip
extension Ac satisfying δσ ∗(Ac) ∼ σ − σ ∗. Using Eqs. (6) and

3Such a property reads [φ(A) − φ(2A)]/φ(A) = p2, where φ(A) is
the cumulative distribution characterizing the probability that slip is
larger than A, φ(A) = ∫

y>A dy[P(y)] ∼ A1−τA .

FIG. 2. (Sketch) A patch of size A has a strength σ ∗(A), which,
due to disorder, is distributed around its thermodynamic value σ ∗.
Denoting δσ ∗(A) the width of this distribution for a given size A, δσ ∗

will decrease as A increases—a large patch has a better estimate of
the true, thermodynamic, σ ∗. Consequently, if an event is nucleated
at σ > σ ∗, then disorder can still stop the event if its width A is suffi-
ciently small [δσ ∗ is large for small A, so there is a finite probability
that for that region in space σ ∗(A) > σ ]. However, an event of size
A > Ac cannot be stopped by disorder, as the probability that that
region in space has a strength σ ∗(A) > σ vanishes.

(5) one obtains Ac ∼ (σ − σc)−ν [Eq. (4)] with:

ν = 1

χ
= 1

1 − ζ
, (9)

which corrects a Griffith argument proposing ν = 2 [47],
which neglected the (dominant) effect of disorder.

G. Geometry of avalanches

When slip occurs on a length scale A, the disorder char-
acterizing this region evolves. Locally, the interface strength
can decrease by some increment δσ ∗(A) ∼ A−χ . Slip will stop
when the local stress, proportional to u/A, decreases by a
similar magnitude. It corresponds to a slip of order u satisfying
u/A ∼ A−χ . Using that by definition S ∼ Ad u then leads to
S ∼ Ad f [Eq. (2)] with:

d f = d + 1 − χ = d + ζ . (10)

Note that Eqs. (7), (9), and (10) are well known to
hold in the absence of inertia and velocity weakening [42].
The proposition that they describe the pinning of velocity-
weakening elastic materials, where avalanches coexist with
system-spanning events and where the flow curve has a min-
imum at finite slip rate, is to the best of our knowledge new.
Indeed, most previous theoretical works argued that power-
law avalanches would be absent in that case [26,43]. Yet the
values of the exponents will differ in the absence or presence
of large inertia, as we document below. We now turn to a
scaling relation that is specific to the presence of velocity
weakening.

H. Duration of avalanches

For stresses in the vicinity of σ ∗, according to the flow
curve sketched in Fig. 1(b), slip is possible only if the slip rate
lies in the vicinity of u̇min. We make the hypothesis that within
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(a)

(b)

FIG. 3. (a) The frictional interface is modelled using L “blocks”
(finite elements in orange). The interface is embedded between two
elastic bodies (also discretized using finite elements in blue) such
that the entire system is approximately square. The potential energy
of blocks along the interface and in the bulk are sketched as indicated.
(b) Macroscopic stress σ vs strain ε response to a quasistatic drive in
which the top boundary is displaced “infinitely” slowly. After each
vanishingly small step, energy is minimized by following the inertial
dynamics. The position of the top boundary and the reaction force
yield ε and σ (see details about units in the Appendix). “Events”,
during which at least one block yields, are indicated with a marker,
in blue when they are system spanning.

an avalanche, a sizable fraction of the interface is slipping
at any given point in time. The characteristic slip rate of an
avalanche, u̇, thus satisfies u̇ ≡ S/(Ad T ) ∼ u̇min that behaves
as a constant as σ → σ ∗, which implies T ∼ Az [Eq. (3)]
with:

z = d f − d = ζ . (11)

III. TESTING THE THEORY

A. A Rosetta stone model for frictional interfaces

We consider the minimal model of frictional interface
containing disorder, long-range elasticity, and inertia intro-
duced in Ref. [47]. Its details, as well as the dimensionless
units we choose, are reviewed in the Appendix. As illustrated
in Fig. 3(a), the frictional interface is discretized in L (or-
ange) “blocks” of unit size. Such a mesoscopic description
is standard in Burridge-Knopoff-type models [51] or in the
depinning literature [26]. In the absence of inertia, it can
successfully describe interfaces beyond the “Larkin length”
[52], below which asperities always collectively rearrange
and the details of the disorder matters. In the presence of
velocity weakening, such a description can describe the in-
terface beyond another length scale Lc, below which elastic
forces dominate those stemming from velocity weakening
[33–38,53]. Below we estimate Lc to be about 20 blocks in
our model.

(a)

(b)

FIG. 4. Event maps for two representative system-spanning
events (a) and two large avalanches nucleated at σc (b). A point is
placed in time t and space r for each yield event (black if the block
yields in the positive direction and blue if it yields in the negative
direction).

The interface is embedded within two homogeneous linear
elastic bodies, of total height ≈ L, modelled by finite elements
(blue).4 The system is driven at the top and fixed at the bottom
and presents periodic boundaries on the horizontal axis. Each
block responds linear elastically up to a randomly chosen
yield stress, whereupon it slips. This corresponds to a potential
energy that, as a function of local slip, comprises a sequence
of parabolic wells of random width, as illustrated in Fig. 3(a).
Disorder stems from randomly choosing the yield stresses,
which are proportional to the width of the wells. In the ab-
sence of inertia, such models are used to study the depinning
transition [55], where they allow for fast simulations and a
simple definition of avalanches, whose size S is simply the
number of times blocks rearranged within an event.

We consider standard inertial dynamics, with a small
damping term chosen to ensure that elastic waves become
damped after propagating on a length scale of order ∼L,
modeling the leakage of heat at the system boundary. As we
show below, the presence of (weakly damped) inertia leads to
a velocity weakening, well fitted by rate-and-state description.
Thus, this model is ideally suited to build a dictionary between
the rate-and-state description (that focuses on velocity weak-
ening) and the depinning viewpoint (that focuses on disorder).

B. Calibrating and testing rate-and-state

1. Stationary velocity weakening

Velocity weakening is already apparent under a quasistati-
cally imposed shear, where it leads to stick slip. As illustrated
in Fig. 3(b), system-spanning events drop the stress to some
value indicated in blue, are punctuated by “avalanches” in

4Note that in our model, frictionlike properties emerge from the
presence of disorder and inertia. These properties are not prescribed
form the start as in block-spring models [54].

065001-4



SCALING THEORY FOR THE STATISTICS OF SLIP AT … PHYSICAL REVIEW E 106, 065001 (2022)

FIG. 5. Ensemble average stress σ f (r, t ) (color) along the weak
layer r (horizontal axis) as a function of time since the beginning of
the event (vertical axis). The average is taken with respect to the (in
general time-dependent) center of the event (details in Appendix).
Identically, the average number of times a block yielded, s(r, t ), is
recorded, whose s(r, t ) = 1 contour is shown to delimit the front of
the event.

which a fraction of the blocks yield (small markers). Fig-
ure 4(a) shows a spatiotemporal map of two system-spanning
events spontaneously occurring on loading (i.e., at large
stress), whereas Figure 4(b) illustrates two large avalanches
(that we triggered directly after system spanning events, i.e.,
at low stress). For events nucleated at high stress, we show
the average stress along the interface as a function of time in
Fig. 5.5 We use a blue contour to delimit the (average) event,
using which we see that the stress drops significantly inside
the event. Note that, in this work, we do not focus on the
properties of the front (that travels at a velocity higher than
the shear wave speed).

To describe the observed velocity weakening, we con-
sider the rate-and-state description6 relating the interfacial
stress σ f as a function of slip rate u̇ and time t as
σ f = σs + a ln(u̇) + b ln[θ (u̇, t )]. Here the time dependence
enters implicitly through a “state” parameter θ . Furthermore,
σs is some offset and a and b are parameters. Usually, the state
parameter is assumed to follow a simple linear ageing law
θ̇ = 1 − θ u̇/Dc. This equation captures that memory is lost
once slip becomes larger than a distance Dc, beyond which the
steady state (θ̇ = 0) is reached, which implies the stationary
behavior:

σ f = σs + (a − b) ln(u̇). (12)

5For completeness, we average on 40 system spanning events,
triggered in the highest bin of Figs. 8(e)–8(g). These results are
representative of system spanning that nucleate spontaneously.

6We emphasize that we include only elasticity, local yielding, and
inertia in our numerical model. We do not impose the rate-and-state
model. Rather it describes the emerging properties of the interface
well.

FIG. 6. In blue (solid markers): Constitutive behavior of the in-
terfacial stress σ f vs slip rate u̇. The “rate-and-state” law, Eq. (12),
is fitted on the solid blue markers that are measured in the steady
state of a “flow experiment” in which the system is subjected to
a constant shear rate. The fit is confirmed through a measurement
of (σ f , u̇) during system-spanning events, as they stop (u̇ decreases
toward zero), as shown using light-blue points, truncated at low
u̇ when there are no more plastic events. In red (open markers):
Effective flow curve relating the far-field stress σ to the local slip rate
σ = σ f (u̇) + u̇. The solid red curve corresponds to the fit obtained
from the solid blue curve, while gray points are obtained from
light-blue points. The cross-markers and open markers indicate
respectively the measurements of (σ f , u̇) and (σ, u̇) obtained by
measuring the slip rate u̇ and interfacial stress σ f within a rupture
occurring at an imposed stress σ . The minimum of the effective flow
curve σmin is indicated using a dash-dotted line.

Note that in frictional experiments, the “state” parameter is
often associated to the real contact area. This is not the case in
our model, where the contact area is fixed. Instead, we think
of the state parameter as characterizing the mechanical noise
stemming from inertia, that must take a finite time to reach a
stationary equilibrium.

To calibrate Eq. (12), we measure the steady-state interfa-
cial stress σ f for different imposed slip rates u̇, averaged in
both space and time. Measurements corresponds to the solid
blue markers in Fig. 6. The solid blue line fits them according
to Eq. (12) and leads to a − b � −0.03 (and σs � 0.041).

The dynamics are intermittent at imposed u̇ < u̇min [de-
fined in Fig. 1(b)],7 and stick slip occurs. The response σ f (u̇)
at small strain rate can be estimated by measuring evolution
of the spatial average stress σ f and the slip rate u̇ along the
weak layer in system-spanning events. After these events span
the system, the average slip rate u̇ slowly relaxes toward zero.
These measurements corresponds to the light-blue points in
Fig. 6 that also are well fitted by Eq. (12) with the same
parameters.

As mentioned in the Introduction, in rate-and-state descrip-
tions there is a characteristic length scale Lc beyond which
velocity-weakening effects are important. As recalled in the
Appendix, we can now estimate Lc using the value of a − b
and a natural estimate for the slip Dc where stationarity is
reached. We assume that Dc corresponds to the characteristic
slip length for which plasticity occurs in a given block, i.e.,
the typical slip for which one exits the parabolic potential
in Fig. 3(a). With this, we obtain Lc ≈ 20 blocks. In what

7Above, but close to u̇min intermittency still obstructs a truly steady-
state measurement. We thus measure the instantaneous stress and slip
rate along the interface leading to the error bars at low u̇.
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follows, we focus on the quantification of slip events that are
larger than Lc.

2. Radiation damping leads to a nonmonotonic effective flow curve

The blue curve in Fig. 6 describes a stationary situation.
However, when a slip event occurs and has not yet spanned the
entire system, it must accelerate the elastic material around it.
This phenomenon must obviously occur here as well, since we
realistically describe the elastic material around the interface.
Zheng and Rice [8] show that it is captured by a “radiation
damping” term, describing the difference between the stress
in the far field σ and that of the interface σ f during an event
that is growing in space. In our dimensionless units (see the
Appendix), it simply reads:

σ = σ f (u̇) + u̇. (13)

We show the far-field stress σ in red in Fig. 6. A key
observation is that this curve is nonmonotonic and presents
a minimum σmin ≈ 0.17. Following previous works [8,40],
nucleation of a system-spanning, cracklike, event in homo-
geneous systems is possible beyond some stress σ ∗ ≈ σmin.
Below we will support empirically our prediction that σ ∗
is also the stress σc where avalanches display a diverging
cut-off.

Another prediction of rate-and-state (less relevant to our
present purpose but useful to further support the predictive
power of rate-and-state in our model) is that when a system-
spanning event starts to invade the material, away from the
rupture front the local stress and slip rate can be readily
extracted from Eq. (13), see Barras et al. [56]. This result
is illustrated using the arrows in Fig. 6, showing that for a
given imposed stress σ (horizontal arrow), u̇ and σ f within
system-spanning events can be read from this curve (vertical
arrow). We confirm this construction in Fig. 6: The open
markers indicate the applied stress σ and the observed slip rate
u̇. The cross-markers instead indicate the interfacial stress σ f

inside the event and u̇. We indeed find that (σ f , u̇) away from
the rupture front closely follow the identified steady-state flow
curve.

C. Statistics of slip events

We now test the (i) scaling relations we derived earlier for
slip events and (ii) the correspondence between the stress σc

where avalanches diverge and the rate-and-state characteristic
stress σmin, in the neighborhood of which nucleation of un-
stable rupture front is predicted in homogeneous systems, at
σ ∗ � σmin [40].

1. Interface roughness

As discussed in the theoretical section, the fluctuation of
the strength of the interface δσ ∗ must be reflected in the
fluctuations δσ f of the physical stress carried by the inter-
face, since slip will tend to occur until the mean stress in
a region of size A, σ f (A), has relaxed toward σ ∗(A). We
have no direct measurement of σ ∗(A). Instead, we study
σ f (A) and its fluctuation δσ f (A). We consider the system
directly after 4000 system-spanning events,8 indicated in blue

8Which is about 10% of the total number of events that occur during
quasistatic loading.

(a) (b)

FIG. 7. (a) Standard deviation of the distribution of mean inter-
facial stress σ f on a patch of blocks of size A as a function of A. In
particular, we measure std({∑ j+A

i= j σi/A}) (with i the index of a block
along the weak layer), with the set {. . .} coming from choosing j at
random locations in each realization of the ensemble; see the Ap-
pendix for a precise statement. (b) Roughness exponent ζ measured
from the mean-square fluctuations of slip (note that a spatial average
on r is implied). The error bar on ζ includes both statistical errors
(estimated from a least-squares regression) and systematic biases
(estimated by reducing the fitting range), as detailed in the Appendix.

in Fig. 3(b). We randomly choose patches of linear length A
along the interface and compute the average stress in each
patch. We then measure the mean and the standard devia-
tion δσ f (A) for different length A. In Fig. 7(a), we confirm
the power-law behavior δσ f (A) ∼ A−χ , from which we gain
an estimate of the exponent χ entering Eq. (6) [assuming
δσ f (A) ≈ δσ ∗(A)].

Such stress fluctuations must affect the roughness of the
interface, as argued above. We confirm this view in Fig. 7(b),
which displays the relationship between the slip fluctuations
||u(r) − u(r′)|| and the distance ||r − r′||. This observation
confirms a power law postulated in Eq. (5) with an exponent
ζ � 0.60, a measurement consistent with the scaling relation
χ = 1 − ζ of Eq. (7).

2. Statistics of avalanches

To acquire a large statistics, we follow the strategy in
Ref. [47] of manually triggering 9000 events such as in
Fig. 4(b), using a local perturbation at imposed strain, fol-
lowing a system spanning event. The postmortem effect of
such an avalanche on the slip profile is shown in Fig. 8(a),
illustrating the definitions of the spatial extension A and the
total slip S. As shown in Figs. 8(b)–8(d), we confirm power-
law behaviors for the distribution of avalanches P(S) ∼ S−τ ,
the avalanche geometry S ∼ Ad f , and duration T ∼ Az; with
τ ≈ 1.77, z ≈ 0.649 and d f ≈ 1.60.

9An exponent z < 1 is asymptotically impossible, since it would
lead to a diverging propagation speed v ∼ A1−z for large events.
Once the speed of sound is reached, one presumably finds z = 1.
At that point, our hypothesis on the existence of a characteristic
slip rate of avalanches must break down, instead we expect this rate
to decrease with A. However, this limit is presumably very hard to
reach empirically. In our system, we estimate that the speed of sound
would be reached for A = 40 000 blocks or 2000Lc, far beyond what
we can achieve numerically. This crossover is also presumably not
observable in earthquakes, since Lc is believed to be kilometric in
faults.
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(a)

(d)

(f) (g)

(b)
(c)

(e)

FIG. 8. [(a)–(d)] Example of slip profile u(r) before (bottom
black curve) and after (top green curve) an avalanche. The linear ex-
tension A and total slip S are schematically indicated. Our results are
consistent with P(S) ∼ S−τ (b), S ∼ A1+ζ (c), and avalanche duration
T ∼ Aζ (d). (e) Cumulative probability �(A) of avalanches (whose
A < L) triggered at different stresses σ . The thin line indicates a fit
�(A) ∼ A1−τA exp(−A/Ac ). Indeed, the obtained Ac(σ ) collapses our
data (g). (f) Fit of the offset σc such that Ac ∼ (σ − σc )−ν , while
imposing our prediction for ν in Eq. (9).

3. Nucleation size

To estimate the nucleation size Ac beyond which an
avalanche becomes a rupture front spanning the system, we
measure the cumulative distribution of avalanche elongation
�(A) at various stress levels, as shown in Fig. 8(e). Next
we fit �(A) ∼ A1−τA exp(−A/Ac) 10 so as to extract Ac. In
Fig. 8(f), we confirm that rescaling �(A) by such an obtained
Ac indeed collapses the different curves. There is a consid-
erable empirical indeterminacy on the exponent ν entering
Ac ∼ (σ − σc)−ν , because the value of σc is not known a pri-
ori. To proceed, we impose the predicted value ν = 1/(1 − ζ )
with ζ = 0.60 and choose σc to obtain the best power-law
behavior, as displayed in Fig. 8(f). We obtain a good fit, show-
ing that ν is consistent with our prediction. Most importantly,
we get σc ≈ 0.17 ± 0.01 which is consistent with the value
σmin ≈ 0.17 extracted from the effective flow curve. Since
rate-and-state predicts a threshold for unstable slip events at
σ ∗ ≈ σmin, our observations support that σ ∗ indeed controls
avalanches in disordered frictional interfaces.

10τA = 1 + (τ − 1)(1 + ζ ) as follows from Eqs. (1), (2), and (10).

TABLE I. Overview of results: scaling predictions and measured
exponents in our d = 1 system. We report the fitted exponents in
Figs. 7 and 8. The uncertainty sums the statistical error plus an
estimate of the systematic error stemming from the finite system size
(which is estimated by considering the change in exponent in a twice
smaller system).

Scaling Prediction Measurement

P(S) ∼ S−τ — 1.77 ± 0.25
δu(r) ∼ rζ — 0.60 ± 0.08
S ∼ Ad f 1 + ζ � 1.60 1.60 ± 0.09
T ∼ Az ζ � 0.60 0.64 ± 0.06
Ac ∼ (δσ )−ν 1/(1 − ζ ) � 2.5 2.25 ± 0.77

4. Summary of results

The set of exponents measured are reported in Table I. d f

and z are in excellent agreement with our predictions (ν is
nicely consistent with those but cannot be extracted precisely).

These exponents differ markedly from those obtained in
the absence of inertia with the same dimension d = 1 and
long-range interactions, for which it is found numerically
that ζ ∈ [0.34, 0.39] [57–62]. These values are in reason-
able agreement with renormalization group (RG) predictions
[60,63,64]. However, RG has not been successfully developed
when velocity weakening is important. In that case, our results
indicate the existence of a new universality class.

At the experimental level, crack propagation [65–67] and
contact line experiments [68,69] often report ζ ∈ [0.5, 0.7].
These exponents are closer to our predictions, yet it is unclear
if inertia is responsible for this discrepancy with over-damped
numerical observations [57–62], or if other effects are at
play [67].

IV. CONCLUSION AND PERSPECTIVE

A. Summary

We have introduced a theoretical framework for the nucle-
ation and statistics of slip at a disordered frictional interface. It
builds on rate-and-state results [8,40] showing that in the pres-
ence of strong velocity-weakening effects, a homogeneous
system presents a threshold stress σ ∗ beyond which a rupture
can invade the system. We have argued that in the presence of
disorder, such a threshold must lead to power-law avalanches.
Rupture occurs when one avalanche becomes larger than some
size Ac beyond which the disorder becomes negligible and
cannot stop a rupture. Ac diverges as σ → σ ∗

+ with some new
exponent. This framework leads to quantitative predictions,
partly based on extending arguments from the depinning liter-
ature [42], where the threshold stress can be defined statically,
to situations where the threshold is dynamically defined. Most
importantly, our theoretical approach should stand as long
as the frictional interface is well described by rate-and-state,
irrespectively of the underlying mechanism causing velocity
weakening. Note that we have numerically checked this pre-
diction only in a specific model, leaving a check to broader
classes of models for future work.

Next we used a minimal model of frictional interface as
a Rosetta stone, in which (i) rate-and-state equations can
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be calibrated and their predictions tested and (ii) disorder is
easily controllable and slip statistics readily measurable. It
allowed for a stringent test of our scaling predictions and put
forward numerical values for exponents that future theories
should seek to explain.

B. Geophysical data

We have argued that for a disordered but overall flat
velocity-weakening frictional interface, the distribution of slip
events should be bimodal. Power-law-distributed avalanches
are present, which display scaling properties. We find, for
example, a scaling relationship between the avalanche size
or “seismic moment”11S and its associated stress drop δσ f ∼
S−1/(d f ν) ∼ S−0.25. In the geophysics literature, these empir-
ical facts are debated. Some studies report that the stress
drop mildly decreases [70] or increases [71] with the earth-
quake size. Furthermore, as noted in the Introduction, for a
single fault bimodal [17] or monomodal [18] slip distributions
have been argued for. In our opinion, the interpretation of
these results is complicated by the geometry of faults, which
display broadly distributed segments where slip can occur
[19]. We view our theoretical results as a first step focusing
on a simple interface geometry. Arguably, more complex ge-
ometrical factor must be included to rationalize geophysical
observations. In this respect, it would be very interesting to
consider a frictional interface made of power-law-distributed
segments. It can be readily implemented in our model, where
the geometry of plastic regions where slip occurs can be
chosen at will.

C. Future works

More generally, our methodology corresponds to a min-
imal model with a desired rate-and-state behavior. In the
future, controlled disorder can be used to incorporate other
phenomena of interest and study how they shape slip statistics.
A particularly relevant case is thermal creep, which is ex-
pected to lead to an N-shaped effective flow curve, which can
be readily obtained by simulating the dynamics in our model
at finite temperature. Likewise, the materials surrounding the
interface can be viscoelastic instead of elastic, which is a
sufficient condition (but not always necessary [72]) to obtain
aftershocks [73].

ACKNOWLEDGMENTS

We thank A. Rosso, J.-F. Molinari, T.D. Roch, M.A.D.
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APPENDIX: DETAILS OF THE MODEL

1. Equation of motion

We consider standard continuum elastodynamics, so that
the equation of motion reads

ρ̃∂2
t̃ w̃i(r) = div[σ̃i j (r)] − α̃∂t̃ w̃i(r), (A1)

where w̃i(r) is the displacement field (a function of position
r, whose vectorial nature is omitted for notational simplicity)
and ∂t̃ w̃i and ∂2

t̃ w̃i its first and second time derivative. ρ̃ is the
mass density and α̃ is the (small) damping coefficient, both are
taken homogeneous. div[σ̃i j (r)] is the divergence of the stress
tensor σ̃i j . The latter follows from linear elasticity, which we
model as

σ̃i j (r) = [κ̃/(d + 1)]tr[ε̃i j (r)]δi j + 2μ̃[ũ(r) − ũmin(r)]Ni j (r).

(A2)

Here ε̃i j (r) = [∂iw̃ j (r) + ∂ jw̃i(r)]/2 is the strain tensor.
d + 1 12 is the dimension of the bodies (here d + 1 = 2), κ̃

is the bulk modulus, μ̃ is the shear modulus, δi j is the unit
tensor, and tr(ai j ) = ai jδi j is the trace of ai j . Ni j (r) defines
the direction of shear as

Ni j (r) = dev[ε̃i j (r)]/ũ(r), (A3)

where dev[ε̃i j (r)] is the deviatoric (trace-free) part of the
strain tensor and

ũ(r) ≡ ||ε̃i j (r)||d ≡ (dev(ε̃i j (r)]dev[ε̃i j (r)]/2)1/2 (A4)

corresponds to the magnitude of the shear strain, which we
refer to as “slip”. Likewise, we define the magnitude of shear
stress

||σ̃i j (r)||d ≡ (2 dev[σ̃i j (r)]dev[σ̃i j (r)])1/2. (A5)

The potential energy landscape in Fig. 3(a) is defined along
ũ(r), with ũmin(r) the currently closest local minimum along
the coordinate ũ(r). It is always equal to zero in the bulk [in
blue in Fig. 3(a)], but typically finite along the “weak” layer
[in red in Fig. 3(a)]. Along that layer, the cusps are separated
by a distance chosen randomly from a Weibull distribution
that has a typical value 2ũ0.

2. Units

A typical magnitude of shear strain is the typical yield
strain ũ0 of a block, which we use to define units, such that
εi j (r) ≡ ε̃i j (r)/ũ0 and σi j (r) ≡ σ̃i j (r)/σ̃0 with σ̃0 ≡ 4μ̃ũ0.
Thereby, we denote dimensionless quantities • and their
dimension-full equivalent •̃.

We define the plastic slip up(r) ≡ ũmin(r)/ũ0 as the loca-
tion of the current local minimum in dimensionless slip space,
see Fig. 3(a). These definitions are such that, on average, the

12We use d as the dimension of the interface.
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number of times a block yields s(r) = �up(r)/2 ≈ �u(r)/2.
The slip rate u̇ ≡ �u/�t , with time t ≡ t̃/t̃0, where t̃0 ≡ �̃0/c̃s

with c̃s the shear wave speed. We note that length is expressed
in units of �̃0 such that L ≡ L̃/�̃0 and �0 ≡ �̃0/�̃0 = 1. In our
dimensionless units, slip at the interface, that we define as
the strain in the blocks, thus coincides with the displacement
discontinuity across the interface. Furthermore, time t indi-
cates the number of blocks a shear wave traversed. A slip
rate u̇(r) = 0.5 thus indicates that a typical block yields once
during time it takes a shear wave to travel the distance of one
block.

We extract the total slip S ≡ ∫
L s(r)dr (

∫
L . . . dr denotes

the integral along the weak layer) as the total number of times
blocks yield, A the number of blocks that yield at least once
(thus A ≡ ∫

L[s(r) + |s(r)|]/[2|s(r)|]dr), and T the (dimen-
sionless) duration between the first and the last time that a
block yield during an event.

3. Numerical model

The numerical treatment of this equation of motion cor-
responds to a discretization in space using finite elements
[where at the weak layer the elements coincide with the blocks
of linear size �̃0, see Fig. 3(a)] and in time using the veloc-
ity Verlet algorithm. The numerical values of all parameters,
and more details, can be found in Refs. [47,74]. Different
from those references, here we consider a bigger system of
L = 4 × 36 blocks (except for the results in Fig. 4 which are
made on the system of Ref. [47]), and a 10-times-smaller
typical strain ũ0 to acquire more events per realization while
respecting the small strain assumption. Note that this does
not lead to any change in terms of the dimensionless quan-
tities reported here and in Ref. [47]. In addition, we perform
flow experiments by imposing a fixed shear rate to the top
boundary. In practice, the shear is supplied to the system in
a distributed manner, such that in each time step all nodal
displacements are updated according to an affine simple shear,
though only the top boundary is fixed. We measure both σ f

and u̇ as averaged in space along the interface and on a finite
window of time deep in the steady state, as well as on different
realizations.

4. Quantities

The remote stress is the volume averaged shear stress,

σ ≡
∥∥∥∥
∫∫

L
σ(�r) d�r

∥∥∥∥
d

=
n∑

β=1

( f̃x )β/(n�̃0σ̃0), (A6)

with σ(�r) the adimensional stress tensor at a position �r in
(d + 1)-dimensional space and

∫∫
L . . . dr the integral over the

entire domain in (d + 1)-dimensional space. ( f̃x )β are the re-
action forces in horizontal direction of the n + 1 nodes along
the top boundary (one node is “virtual” because of the periodic
boundary conditions in horizontal direction) whose position is
prescribed. The remote strain is the volume averaged strain,

ε ≡
∥∥∥∥
∫∫

L
ε(�r) d�r

∥∥∥∥
d

= (w̃x )β/(H̃ ũ0), (A7)

with (w̃x )β the displacement in horizontal direction of one of
the nodes along the top boundary (the displacement of all of

these nodes is definition equal), and H̃ ≈ L�̃0 the actual height
of the sample.

The stress along the interface

σ f ≡
∥∥∥∥
∫

L
σ(r) dr

∥∥∥∥
d

=
∥∥∥∥∥

L∑
i=1

σ i

∥∥∥∥∥
d

, (A8)

with i referring the block index along the weak layer (num-
bered from left to right). We note that

σ f (A) =
∥∥∥∥∥

i+A∑
i= j

σ i

∥∥∥∥∥
d

(A9)

(where periodicity implies σ i = σ i+L).
The slip along the interface is

u ≡
∥∥∥∥
∫

L
ε(r) dr

∥∥∥∥
d

=
∥∥∥∥∥

L∑
i=1

εi

∥∥∥∥∥
d

. (A10)

Finally, the slip rate is

u̇ ≡
∥∥∥∥
∫

L
∂tε(r) dr

∥∥∥∥
d

=
∥∥∥∥∥

L∑
i=1

∂tεi

∥∥∥∥∥
d

. (A11)

5. Radiation damping

A nucleating event, whereby part of the interface and bulk
are still static as the rupture invades the interface, is stabilized
by the bulk surrounding it: To increase the slip rate u̇ the bulk
around the rupture has to be accelerated. Due to the cost of
accelerating an expanding volume, the interfacial stress σ f

inside the event differs from the remote stress σ . Because the
bulk is accelerated by elastic waves that radiate away from
the interface this effect is commonly referred to as “radiation
damping”. We emphasize that this is an effect of standard
elastodynamics: It is not added by hand to our model.

The effect of radiation damping corresponds to a
“cost” of stress [8] �σ̃xy = ṽμ̃/(2c̃s), with ṽ ≡ 2�(δr̃x )/�t̃
[75] the rate of change of the displacement discontinuity
δr̃x ≡ 2ε̃xy�̃0 = 2ũ�̃0 such that �σ̃ = (4�ũ�̃0/�t̃ )(μ̃/c̃s) =
4μ̃�ũ/(�t̃/t̃0) or �σ̃/(4μ̃ũ0) = (�ũ/ũ0)/(�t̃/t̃0) and thus
�σ = u̇.

6. Computation of Lc

For the rate-and-state law L̃c = −πμ̃D̃c/( ˙̃u∂σ̃ /∂ ˙̃u) [40]
with ∂σ̃ /∂ ˙̃u = (ã − b̃)/ ˙̃u the derivative of the steady state
in Eq. (12), such that L̃c = −πμ̃D̃c/(ã − b̃). In our model,
a block, on average, loses memory over a sliding distance
D̃c = ũ0�̃0. Using, furthermore, our units of stress such that
a = ã/σ̃0 and b = b̃/σ̃0, we find L̃c = −πμ̃ũ0�̃0/[σ̃0(a −
b)] = −π�̃0/[4(a − b)], and thus Lc = −π/[4(a − b)] ≈ 26.

7. Power-law fits

The power-law fit of y = cxb is performed using a least-
squares fit of the linear relation z ≡ ln y = ln c + b ln x. In the
case of an uncertainty δy (typically a standard deviation) we
assume that δy 
 y such that we use δz = δy/y. The error of
the fitted exponent, δb f , is then the square root of the relevant
component at the diagonal of the 2 × 2 covariance matrix.

065001-9



T. W. J. DE GEUS AND MATTHIEU WYART PHYSICAL REVIEW E 106, 065001 (2022)

Where possible, we also compute the fluctuations of the expo-
nent, δb�, by reducing the fitting range by factors of two and
four. We report δb� in Fig. 7(b), and δb f in Figs. 8(b)–8(d) [in
Figs. 8(b) and 8(c) the δb� was simply found lower or equal to
δb�; in Fig. 8(d) the range is not sufficient to be reduced].

In Fig. 8(f) we account for the error in σ by taking the error
as dimensionless, allowing us to compose it in equal amounts

of the errors in σ (the standard deviation of σ in each bin) and
in Ac [the fitting error from Fig. 8(e)]. We use this protocol
also to fit ν given σmin ≈ 0.17 as reported in Table I.

In Table I we estimate the error on ν as the difference
between our prediction and a fit of the exponent of the data in
Fig. 8(f) using σc defined as the bottom of the effective flow
curve in Fig. 6.
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