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We study the influence of intrinsic noise on the structure and dynamics of responsive colloids (RCs), which
actively change their size and mutual interactions. The colloidal size is explicitly resolved in our RC model as
an internal degree of freedom (DOF) in addition to the particle translation. A Hertzian pair potential between
the RCs leads to repulsion and shrinking of the particles, resulting in an explicit responsiveness of the system
to self-crowding. To render the colloids active, their size is internally driven by a dichotomous noise, randomly
switching (“breathing”) between growing and shrinking states with a predefined rate, as motivated by recent
experiments on synthetic active colloids. The polydispersity of this dichotomous active responsive colloid
(D-ARC) model can be tuned by the parameters of the noise. Utilizing stochastic computer simulations, we
study crowding effects on the spatial distributions, relaxation times, and self-diffusion of dense suspensions
of the D-ARCs. We find a substantial influence of the “built-in” intrinsic noise on the system’s behavior, in
particular, transitions from unimodal to bimodal size distributions for an increasing colloid density as well
as intrinsic noise-modified diffusive translational dynamics. We conclude that controlling the noise of internal
DOFs of a macromolecule or cell is a powerful tool for active colloidal materials to enable autonomous changes
in the system’s collective structure and dynamics towards the adaptation of macroscopic properties to external
perturbations.
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I. INTRODUCTION

For the development of soft functional materials, scientists
are typically inspired by proven concepts in nature, as ex-
pressed by bacteria, cells, and microswimmers [1,2]. Unlike
inert matter, such as wool or plastic, they all have a power
source, such as ATP or glucose, which is consumed. And
they all have something enginelike built in that enables an
internally controlled change of their appearance or move-
ment. Consequently, their overall behavior and motion are
not purely a result of external forces but partially driven by
internal mechanisms. Thus, it is not a surprise that active
particles have become a large field of interest. The treated top-
ics range from motile Brownian particles [3–5] over particles
with autonomously oscillating size [6–8] to active (nonmotile)
hydrogels with pH-feedback [9].

To construct livinglike materials, internal activity has to
be linked with a large responsiveness to stimuli in the en-
vironment [10]. For example, bacteria use quorum sensing,
emitting and detecting small molecules to evaluate local
density, to adapt their internal (genetic, size, speed, etc.) be-
havior according to their population [11,12]. Inspired from
nature, the approved strategies of responsiveness have been
transferred to create artificial materials with controlled re-
sponse. Widely investigated are, for example, thermosensitive

*Corresponding author: joachim.dzubiella@physik.uni-freiburg.de

poly(N-isopropylacrylamide) (PNIPAM) microgels, which
possess a volume phase transition (switching between col-
lapsed and swollen states) upon small changes in temperature
[13], and other stimuli, such as ionic strength [14], pH
[7,15,16], or light [17]. Potential applications are, e.g., target-
oriented drug-delivery where colloids can carry and eject
a drug at the diseased tissue [18,19], or stimuli-responsive
switchable catalysis [20,21].

Responsiveness, switching, and internal activity lead to
nonequilibrium distributions and fluctuations on the parti-
cle scale, eventually coupled to their collective structure
and function. For instance, some bacteria switch randomly
between a normal and a persistence state and are there-
fore resistant to antibiotic treatment due to a small amount
of bacteria in the persistence state [22,23]. In synthetic
systems, block copolymer vesicles show a controlled con-
traction and expansion behavior upon applying environmental
triggers [24,25]. Thereby, a stochastic “breathing” akin to
dichotomous noise behavior may be realized. But also au-
tonomously self-pulsating colloids can exhibit irregularities
and dichotomous-noise-like effects in their oscillations [26].
In biology, control of internal processes by intrinsic noise
gives cells the opportunity to engender heterogeneity in a
colony and thereby gain robustness or efficiency [27]. How-
ever, these are only a few of the many examples of stochastic
or pseudostochastic effects in biology and chemistry [28,29].

Theoretically, it is crucial that fluctuations and noise are
well defined in a model; in particular, in equilibrium the
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fluctuation-dissipation theorem must hold [30]. Fluctuations
and noise are used to coarse-grain one or multiple microscopic
effects that are computationally too expensive to simulate in
detail. The Gaussian noise for the translational coordinates
typically coarse-grains the interaction with the surrounding
solvent (“bath”) with a random walk. The fluctuations of
active internal degrees of freedom (DOFs) may be far from
being Gaussian (white), and we can speak of nonequilib-
rium and colored noise effects [31]. A simple option to
violate fluctuation-dissipation and include a kind of activity
is to couple different DOFs to different thermostats [32–36],
where one could picture the internal “engine” as an additional
heat bath that can cool or heat the internal DOF. Another
possibility is that the particles switch randomly between
different kinds of states. This can be an active switching be-
tween different sizes [37,38], between attractive and repulsive
particle-particle interactions [39], or between different motil-
ity states [40].

In this work, we study the effects of intrinsic dichotomous
noise in a model of responsive colloids (RCs) on colloidal
structure and dynamics. We recently developed an RC model
that resolves besides the translational DOFs an additional
internal DOF (or “property”) [41], for example, one represent-
ing the colloid’s size [42,43]. The property is assumed to be
governed by stochastic dynamics enabling temporal changes
and responses to neighboring colloids and other environmen-
tal stimuli. The idea of an additional DOF has been used with
increasing frequency in recent years to model complex col-
loids [44–48] or proteins [49]. Other than in previous works
[35,42], we do not drive the internal DOF with a Gaussian
noise but rather with a dichotomous noise. This means that
each colloid switches randomly between a growing and a
shrinking state. In contrast to known, more coarse-grained
and phenomenological models of active switching colloids
[37,39], this model is based on a microscopic Hamiltonian,
and it includes also the continuous transition between the two
states. The dichotomous noise is one of the simplest switching
noises (relevant for the experimental examples above), and it
has the advantage of being a very well-studied noise [4,50–
56]. In particular, it has a known analytical solution for the
harmonic potential [56]. Using this dichotomous model in
stochastic, overdamped simulations, we study intrinsic noise
effects on the structure and dynamics of dense colloidal
dispersions in the steady state. For an enhanced physical in-
terpretation of the results, we also insert a recapitulation of
the existing single-particle solution [56], and we present a
modified perturbation theory for RCs [43].

II. MODEL AND METHODS

A. Dichotomous active responsive colloid model

To model suspensions of active responsive colloids
(ARCs), we utilize our previously introduced RC model [42]
as a basis, and we modify it with respect to the type of
noise for the internal DOF. Consider N colloids with trans-
lational temperature T , where each colloid (particle) i has a
center-of-mass position in three-dimensional (3D) space xi.
Additionally, each colloid has an associated property σi, in
our case study representing a sphere’s diameter. This leaves

us with in total 4N DOFs in the system (three translational
and one internal DOF per particle).

For our free energy, we consider a single-particle term
U (σ ) and a pair potential term φ. Together we obtain the
Hamiltonian

H = 1

2

∑
i

∑
j �=i

φ(ri j, σi, σ j ) +
∑

i

U (σi ), (1)

where ri j = |xi − x j | is the pair distance between two parti-
cles i and j.

An appropriate pair potential for soft repulsive and elastic
colloids, such as hydrogel particles, is the Hertzian potential
[57,58]. The Hertzian interaction potential of two particles is

φi j = φ(ri j ; σi, σ j ) = ε

(
1 − ri j

σ̃

)5/2

�

(
1 − ri j

σ̃

)
(2)

with the average diameter of both particles σ̃ = (σi + σ j )/2
and �(·) denoting the Heaviside-step function. The potential
strength is set to ε = 500 kBT , which is found for typical
thermosensitive colloids in experiments [57]. The pair poten-
tial is purely repulsive and cut at σ̃ . Thus, not overlapping
particles do not interact, and the larger the overlap, the higher
the potential energy. A more detailed discussion about the
Hertzian potential can be found elsewhere [42,57].

In addition to the pair potential, RCs feature the inter-
nal parent energy landscape, U (σ ), for the evolution of the
size property σ . We choose U to be a harmonic potential
of the form U (σ ) = 1

2βδ2 (σ − σ0)2 with a potential width of
δ = 0.2σ0, and β = 1/kBT being the inverse thermal energy.
This defines a preferred particle size of σ0 and avoids very
small and very large particle sizes due to its confinement. A
Gaussian parent implies a simple linear elastic response of the
size, while for hydrogels more accurate nonlinear responses
can also be straightforwardly employed [47].

The translational force FT
i acting on a particle i is given

by the gradient of the Hamiltonian in Eq. (1). We transfer this
procedure to the property coordinate σ , which leads to the
forces

FT
i = −∇iH = −

∑
j �=i

∇iφi j, (3)

F σ
i = −∂σ,iH = −∂σ,iU −

∑
j �=i

∂σ,iφi j, (4)

where ∇i and ∂σ,i are the derivatives with respect to the trans-
lational coordinates and the property coordinate, respectively.
Since the pair potential φi j also affects the property, an overlap
of two particles leads not only to a repulsion but also to a
shrinking of both particles [42]. Thus, the particles respond
internally to their local environment.

Regarding the equations of motions, as in [42] we neglect
the inertia term for the viscous and stochastic motion of
all DOFs of the RCs, leading to overdamped Langevin-like
dynamics. To solve the stochastic differential equations, we
chose the basic Euler algorithm, which is computationally
slower but simpler compared to more sophisticated methods
like the Runge-Kutta or Milstein scheme [59]. The discretized
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version for the position and property reads (Itô convention
[59])

xi(t + 	t ) = xi(t ) +	t

γT
FT

i (t ) +
√

2kBT 	t

γT
ξT

i (t ), (5)

σi(t + 	t ) = σi(t ) +	t

γσ

F σ
i (t ) + 	tI (t ). (6)

Here 	t is the simulation time step, γT and γσ are the
translational and property friction coefficients, and FT

i , F σ
i

are the forces from Eqs. (3) and (4). In this overdamped
dynamics, the random translational movement of a particle
is described by Stokes friction γT ∝ σ and the conventional
Gaussian (white) noise with 〈ξi(t )〉 = 0 and 〈ξT

i,k (t )ξT
j,�(t ′)〉 =

δi jδk�δ(t − t ′). Here k, � ∈ {x, y, z}, and δ is the Kronecker
delta and the Dirac δ-function, respectively. Since the size σ

is a dynamically changing variable, we assume that the ad
hoc friction of a particle is calculated by γT(σ ) = γ 0

T σ/σ0

with γ 0
T = γT(σ0) = 1 τ

βσ 2
0

. This also sets the single-particle
diffusion for fixed size σ0 through the Stokes-Einstein equa-
tion D0

T = 1/(βγ 0
T ). We define the unit of length σ0 ≡ 1, the

unit of time τ ≡ 1, and the unit of energy 1/β ≡ 1. Moreover,
we fix the property friction coefficient (setting the timescale
of the size relaxation) to γσ = 1000γ 0

T , which is therefore
much higher than for the translation and assures that diffusion
happens on a faster timescale than size changes [42].

As motivated in the Introduction, we activate our particles
internally by using a dichotomous noise I (t ) for the random
behavior of the size, σ . Equations (5) and (6) define, there-
fore, our dichotomous ARC model (D-ARC). The features of
the dichotomous noise I (t ) and its consequences on single-
particle behavior will be discussed in detail in the next section.
If I (t ) were replaced by a Gaussian noise with temperature T ,
the system would be identical to the equilibrium RC system
studied previously with Brownian dynamics for all DOFs
[42]. We note that the active case of an internal Gaussian noise
with a temperature different from the translational tempera-
ture (i.e., different DOFs coupled to two different temperature
baths) was studied by Gaindrik et al. [35], exhibiting rich
nonequilibrium effects.

B. Dichotomous noise

In contrast to Gaussian noise, dichotomous noise is discrete
and can only take two values I = ±vD [see Fig. 1(a)]. If a
particle receives the value +vD, we say it is in the (+) state,
and for −vD it is in the (−) state. Due to the fact that vD

has units of velocity, we call it dichotomous velocity. It is
the velocity with which a particle in the absence of other
forces grows or shrinks. Another difference from the Gaussian
noise is that it is not δ-correlated in time. More precisely, the
dichotomous noise is defined via [52]

〈I (t )〉 = 0, (7)

〈I (t )I (t ′)〉 = v2
De−2λ|t−t ′ |, (8)

where λ denotes the switching rate between the two states.
The switches happen purely randomly in time. The probability
that a particle is still in the same state after a time t (no switch)
is given by the Poisson process P(t ) = exp[−λt]. Since only
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FIG. 1. Dichotomous noise. (a) Comparison of Gaussian noise
(blue circles) and dichotomous noise (red dots). For both, the
noise values for a series of 100 time steps are shown. The variances
are normalized to 1 and the dichotomous process has a switching rate
of λ = 0.05/time step and therefore at each time step a probability
of e−0.05 ≈ 0.95 to remain in the current state. (b) Parent property
distribution p(σ ) for a constant dichotomous velocity and different
exponents α. The denoted switching rates are related to α via Eq. (11)
and correspond to the parameters used in the simulation.

the last noise value has an influence on the next one, it is still a
Markov process, which is why it is also called a dichotomous
Markov process. It should be noted that the notation in the lit-
erature is not consistent, and the prefactor of 2 in the exponent
of Eq. (8) is sometimes omitted.

C. Parent distribution under dichotomous noise

In the following, we discuss analytical solutions of the iso-
lated, single-particle case, or the low density limit (LDL), of
our model, where particle-particle interactions are neglected.
However, the property distribution of the DOF, p(σ ), in a
harmonic potential under dichotomous noise is nontrivial,
since it is not simply given by the Boltzmann distribution p ∝
exp(−βU ). For an isolated colloid, the property equation of
motion from Eq. (6) simplifies to

σ̇ = f + gI with f (σ ) = − 1

γσ

∂σU (σ ), g(σ ) = 1.

(9)
Kitahara et al. found in an impressive work [50] a station-
ary solution of Eq. (9) for natural boundaries and general
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functions f (σ ) and g(σ ):

p(σ ) = p0
g(σ )

v2
Dg2(σ ) − f 2(σ )

× exp

[
2λ

∫ σ

dσ ′ f (σ ′)
v2

Dg2(σ ′) − f 2(σ ′)

]
(10)

with a normalization factor p0. By inserting our f (σ ) and
g(σ ) from Eq. (9) into Eq. (10), we obtain for the stationary
probability distribution [56]

p(σ ) =

⎧⎪⎨
⎪⎩

p0

(
1−

(
σ − σ0

	

)2
)α

, σ ∈ (σ0 − 	, σ0 + 	),

0 otherwise

with 	 = vDβγσ δ2, α = λβγσ δ2 − 1 (11)

and p0 = �(α + 3/2)/[
√

π �(α + 1)] being a prefactor nor-
malizing the distribution to 1 which contains the gamma
function �. The parameter 	 defines the width of the distribu-
tion, which is only nonzero in the interval σ ∈ (σ0 − 	, σ0 +
	). At both boundaries, the force due to the single-particle
potential and the dichotomous force cancel. Consequently,
the particles have a minimum and a maximum size, which
is identical to the distribution’s boundaries. The dichotomous
velocity vD is proportional to the width 	. The second pa-
rameter describing the property distribution is the exponent α,
which depends on the switching rate λ of the noise.

The property distribution for different values of α can be
seen in Fig. 1(b). In the limit of no switching (λ → 0, α →
−1), the distribution consists of two Dirac δ-functions, one
at each boundary, which is a simple bidisperse system. For
low switching rates (α < 0), the DOF develops a probability
distribution with two finite-width peaks and a lower probabil-
ity in between, which is a bimodal distribution. The transition
state to unimodality (one peak) is a uniform distribution
(α = 0). Further rise of the switching rate (α > 0) results
in an increasingly sharp peak in the center. In the limit of
infinitely fast switching (λ → ∞, α → ∞) we obtain one
Dirac δ-function at σ0, characterizing a monodisperse sys-
tem. Gaussian white noise is obtained in the limit λ → ∞,
vD → ∞ with λ/v2

D = βγσ /2.
Already the single-particle solution is interesting from a

physical point of view of (bio)chemical matter. It enables
colloids or bacteria to control their own size distribution by
internally tuning their switching rate (and swelling velocity),
which is important for function [60]. We focus in this work on
the influence of the switching rate λ, which is an important
parameter for biological systems, like bacteria, to regulate
switching between different phenotypes [23]. However, note
that the control of the parameter vD would also be quite
powerful since it is in the LDL directly proportional to the
distribution width.

Beyond the LDL, at higher densities, particles interact and
the distribution p(σ ) will be modified. We thus distinguish
in our work between the property distribution in the LDL
p(σ ) (the “parent”) and the emergent property distribution for
nonvanishing particle densities, N (σ ).

FIG. 2. Snapshots of the simulation. (a) Low particle density
(ρσ 3

0 = 0.19) and low switching rate (λτ = 0.01). (b) High particle
density (ρσ 3

0 = 0.95) and high switching rate (λτ = 0.1). The box
with periodic boundary conditions is depicted by thin black lines.
The particle’s color visualizes its size; red indicates a large particle,
blue a small one, and a white particle has a size of σ = σ0. The two
boxes are scaled to the same reference length; the left box has a side
length of L ≈ 14σ0 and the right box has a side length of L ≈ 8σ0,
respectively. Snapshots are made with OVITO [64].

D. Simulation details

The computer simulations leading to the numerical results
contain N = 512 particles in a cubic box with periodic bound-
ary conditions. To obtain a certain particle number density ρ,
the length of the box is fixed to L = 3

√
N/ρ. Simulation snap-

shots for two different densities are shown in Fig. 2. Initially
all particles are distributed on a simple cubic lattice filling
in the whole box. Simultaneously, each particle receives a
random state [(+) or (−)] and a size σi pulled from a Gaussian
distribution centered at σ0 and with variance δ2.

For the time evolution, a simple Euler algorithm is used
[cf. Eqs. (5) and (6)]. The duration of one time step is 	t =
10−4τ . Each simulation contains 3 × 106 (or 5 × 106) equili-
bration steps to ensure that the system is in the steady state,
and 107 subsequent production steps, which are used to collect
data. The configuration is written out every 1000th time step.
For each analyzed parameter set, five independent simulations
were performed; all results are averages over these five data
sets. With γσ = 1000γT and a dichotomous velocity of vD =
0.01σ0/τ , the property motion is much slower than the trans-
lational motion. This choice leads to internal relaxations much
slower than translation, which is motivated by small, chem-
ically stimulated microgels for which translational diffusion
happens much faster than size changes due to the complex
internal processes [61]. It is also known in general that in-
ternal degrees of freedom can slow down internal relaxation
beyond idealized hydrodynamic conformational behavior, for
example in the slowing down of polymer folding rates due
to internal friction processes [62]. All model and simulation
parameters are summarized in Table I.

To implement the dichotomous noise, we make use of
method 2 presented in [54]. Each particle gets initially a
random remaining time tr = − ln(u)/λ, where u is drawn from
a uniform distribution between 0 and 1. After the remaining
time is over, the particle switches its state and a new remaining
time, drawn in the same way, is assigned to the particle. This
procedure leads to the same noise as deciding at each time
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TABLE I. Parameters in the numerical simulation, their values, and their description. The table is divided into four parts: unit sizes, model
parameters, varied parameters, and simulation-specific parameters.

Parameter Value Description

σ0 1 unit length and mean size of an isolated particle
τ 1 unit time defined by translational diffusion D0

T = 1 σ 2
0 /τ

β 1 inverse unit energy (kBT = 1/β)

δ 0.2σ0 width of U (σ )
γ 0

T 1 τ/(βσ 2
0 ) translational friction coefficient of a particle with size σ0

γσ 103 τ/(βσ 2
0 ) property friction coefficient

vD 0.01 σ0/τ dichotomous velocity
βε 500 Hertzian potential strength

λτ {0.01, 0.025, 0.032, 0.05, 0.1, 0.25} (dichotomous) switching rate
ρσ 3

0 {0.019, 0.19, 0.57, 0.95, 1.33} number density of particles

N 512 number of particles
	t 10−4τ length of one time step

300τ − 500τ equilibration time
1000τ production time
10/τ output frequency

step whether a particle switches its state or not, but it saves
some computational time.

The used random number generator for a uniform distri-
bution between 0 and 1 is the Mersenne Twister MT19937,
followed by the Marsaglia polar method [63] to obtain random
numbers drawn from a Gaussian distribution.

E. Radial distribution function and structure factor

A common measure to analyze the structure of a sus-
pension is the radial distribution function (RDF), g(r). It
correlates the pair distances between particles and is defined
as [30]

g(r) = 1

4πr2ρN (N − 1)

〈∑
i

∑
j �=i

δ(r − ri j )

〉
(12)

with ri j = |xi − x j |. Since we can split our particles into two
groups [(+)- and (−)-state particles], we can also split the
RDF into its components via

g(r) = 1
4 g−(r) + 1

4 g+(r) + 1
2 g±(r), (13)

where g−(r) and g+(r) are the RDFs of only the (−)- and (+)-
state particles, respectively. Meanwhile, g±(r) includes only
distances of particles with different states. We also calculate
the structure factor [65]

S(q) = 1 + 4πρ

∫ ∞

0
dr r2 sin(qr)

qr
[g(r) − 1], (14)

which can be obtained by scattering experiments [30].

F. Diffusion coefficient

For characterizing the translational diffusion in our sys-
tems, we compute the spatial mean-squared displacement
(MSD)

MSD(t ) ≡ 〈[x(t ) − x(0)]2〉. (15)

For long times, the MSD is proportional to t and we can obtain
an effective diffusion coefficient through fitting via MSD(t ) =

6Deff
T t . Only the values within the interval t ∈ [10τ, 250τ ] are

used for the fit to omit the short-time diffusion and the MSD
values with small statistics in the case for long times.

G. Property autocorrelation function

A common measure to access the dynamics and relaxation
times of a DOF is the autocorrelation function (ACF). We
define the normalized ACF of the property as

Cσσ (t ) = 〈σ (t )σ (0)〉 − 〈σ 〉2

〈σ 2〉 − 〈σ 〉2 , (16)

which starts at Cσσ (t = 0) = 1 and converges to 0 in the
long-time limit because the initial and final values of σ are
uncorrelated due to the random processes. The ACF for one
dichotomous particle in a harmonic potential, which corre-
sponds to our LDL, can be determined analytically [56] and
reads

CLDL
σσ (t ) = 1

tδ − tD
[tδe−t/tδ − tDe−t/tD ] (17)

with the time constants tδ = βγσ δ2 and tD = 1/2λ. We see
that the normalized ACF is a sum of two independent expo-
nential decays. The potential time tδ describes the timescale
on which a noiseless particle moves to the center of the single-
particle potential. The dichotomous time tD characterizes the
timescale of the mean lifetime of a state. Both processes
are independent of each other. Finally, to quantify the de-
cay’s speed we use the correlation time tcorr, which is defined
by

Cσσ (tcorr ) = 1/e. (18)

In equilibrium systems, the time derivative of the un-
normalized autocorrelation function is proportional to the
response function (fluctuation-dissipation theorem) [55]. This
relation was already successfully used in nonequilibrium sys-
tems [66], which gives us access to a utilizable response
function.
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FIG. 3. (a) Emergent property distribution N (σ ) for a density of ρσ 3
0 = 0.95 and different switching rates. The displayed α denote the

exponent in the LDL which can be converted to λ using Eq. (11). The values close to the edges are impaired by the binning algorithm, and
they have to be treated with caution. (b) Property distribution N (σ ) for a constant switching rate and different particle densities. One can see
a transition from unimodal to bimodal for increasing densities. (c) Packing fraction η = πρ〈σ 3〉/6 vs number density for different switching
rates. The symbols and solid lines depict the simulation results, the dashed lines the LDAT, and the dash-dotted line the linear scaled LDL.
(d) The symbols depict the effective exponent αeff from fitting Eq. (11) to the obtained property distribution. The dashed lines show again the
prediction from the LDAT.

III. RESULTS

A. Property distribution

We first examine property distributions for nondilute par-
ticle densities: In Fig. 3(a) the emergent property distribution
N (σ ) is shown for ρσ 3

0 = 0.95 and different switching rates.
Although the system is quite dense, we can see clear similari-
ties to the low-density limit (LDL). The edges of the bimodal
distributions are still very sharp because of the comparatively
slow movement in the σ -dimension. Consequently, a particle’s
σ -movement can be seen as in a mean potential established by
the other particles in addition to the single-particle potential.
However, an interesting phenomenon can be extracted from
the α = 0 distribution in Fig. 3(a), which corresponds to the
uniform distribution in the LDL [cf. Fig. 1(b)]. The increase
in density shifts the flat distribution towards bimodality. This
can more clearly be seen in Fig. 3(b), which shows also the
property distribution but only for λτ = 0.032 and different
densities in return. Four points shall be stressed from this fig-
ure: (i) For increasing density, the distribution’s center shifts
to lower values of σ [cf. snapshot in Fig. 2(b)], while (ii) the
distribution gets narrower at the same time. Both (i) and (ii)

are also observed in [42], where a Gaussian noise is used for
the property instead of the dichotomous noise. (iii) The dis-
tribution makes a transition from unimodality to bimodality.
While it is unimodal for this specific λ for low densities (e.g.,
ρσ 3

0 = 0.019), it is bimodal for higher densities (e.g., ρσ 3
0 =

1.33). Thus, it is a density-induced transition. (iv) We observe
asymmetries for higher densities. For ρσ 3

0 = 0.95, one can see
that the right edge shows an indication of bimodality while
the left edge has a unimodal shape. Figure 3(a) shows that
these asymmetries are comparatively small for the covered
densities.

The crowding effect itself is well described with the mean
packing fraction η = πρ〈σ 3〉/6, which is the volume frac-
tion filled by the colloids. The packing fraction is shown
in Fig. 3(c) versus number density. The simulation results
of our RCs show a sublinear behavior of η(ρ) due to the
colloid shrinking in crowded environments [42]. The spread
with respect to the switching rate results from the different
property distribution shapes: low switching rates privilege
extreme sizes, while a small and a large colloid fill more space
than two average-sized colloids (σ 3-dependency). Therefore,
η increases with decreasing λτ . We complement our result
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with a perturbation theory for RCs [42]. Briefly, we make
a low-density assumption and calculate the mean force on
a particle with size σ . By a perturbation of the free-energy
landscape U (σ ) with nonzero particle densities, we obtain our
low-density approximation theory (LDAT). Details and equa-
tions are shown in Appendix. Predictions from our LDAT for
the packing fraction can be seen as dashed lines in Fig. 3(c).
Even though the theory underestimates the crowding effect
for high densities, it exhibits sublinear behavior, which is the
crucial point.

As we saw in Fig. 3(a), the property distribution’s shape
for higher densities is still quite similar to that in the LDL
described by Eq. (11). Therefore, we want to fit Eq. (11)
to the obtained distribution and determine an effective value
for α, which then describes the distribution’s shape and the
degree of unimodality/bimodality. The left and right edge
of a distribution are identified by taking the first σf and
last value σl of the normalized distribution [

∫
dσN (σ ) =

1] crossing N (σ ) = 0.001. With these parameters, the new
center σ1 = (σf + σl )/2 and width 	1 = (σl − σf )/2 of the
distribution can be calculated. Equation (11) with given σ1

and 	1 can now be fitted to the obtained distribution with
α as the fit parameter. The emerged value is the effective
exponent αeff . Figure 3(d) shows αeff as a function of den-
sity for different switching rates. We see for all covered
switching rates a decrease of αeff for rising ρ. This illus-
trates the observed transition from unimodality (αeff > 0) to
bimodality (αeff < 0).

The basis for the uni-to-bimodal transition lies in the
mean potential seen by a particle. In the LDL we have
for the property only the quadratic single-particle potential.
The additional potential, arising from particle-particle in-
teractions, shifts the total potential to lower σ values and
narrows it. While the dichotomous velocity remains un-
modified, the distance between minimum and maximum σ

shortens. Hence, more particles gather at the distribution’s
edges, which induces a trend to bimodality. This bimodality
is not a consequence of barrier crossing in the free-energy
landscape as in our previous RC model [43], but is a result of
the underlying noise as in [31,66]. The LDAT (see Appendix)
can now be used to approximate the property distribution for
nonvanishing densities. The αeff predicted from the LDAT
is also shown in Fig. 3(c). It describes the trend quite well
for low densities, and it also predicts the density-induced
transition. For higher densities, the LDAT underestimates the
transition, which is a result of the neglect of higher-order
interaction terms in the theory.

Regarding the physical interpretation of our results, we
speculate that the observed density behavior may enable ac-
tive colloidal suspensions to perform a collective response
to changes in density without communication via chemical
signaling. This could be interesting in combination with au-
tonomously, self-oscillating particles where the occurrence
of the oscillations can be highly dependent on the den-
sity and numbers of neighboring “coupling” particles [7].
The unimodal-bimodal transition may also engender auto-
matic changes in size diversity depending on the density.
This could be an important factor in the development of
adaptive materials [60] based on synthetic active colloidal
dispersions.

B. RDF and structure factor

We now analyze the spatial particle-particle correlations by
inspecting radial distribution functions (RDFs). Figure 4(a)
shows the RDFs for ρσ 3

0 = 0.95 and different switching rates.
The observed behavior for high λτ is as expected for common
monodisperse liquids [67]. However, for λτ = 0.01 we ob-
serve a clear deviation, consisting of a substructure of three
washed-out step functions. The explanation can be found
when splitting the RDF into its individual components [cf.
Eq. (13)], as is done in Fig. 4(b). If we consider only the
(−)-state particles in our system (green dashed line), we spot a
peak that is located at rp ≈ 0.7σ0; this is much lower than the
peak of the total g(r) (rp ≈ 1.0σ0). The reason is that (−)-state
particles are in general much smaller than the average. The
same can be said for (+)-state particles (violet dashed line)
with the difference that the peak is at further distances. Only
g±(r) shows an approximately “normal” behavior with a peak
in between the others. Since the three peaks have a compara-
bly large distance and the total RDF is the sum of these three
[g±(r) counts double], g(r) shows a substructure. Thus, the
appearance of the substructure is not a result of the particles’
dynamics but simply of the bimodal property distribution.
Note that a substructure is present for all switching rates, but
is in general not visible in the RDF due to too close peaks.

To visualize the substructure, we plot the corresponding
structure factor [see Eq. (14)] of Fig. 4(a) in Fig. 4(c). For
all λτ we see a first peak at qσ0/2π ≈ 1.2 resulting from
the presence of the first coordination shell. The second peak
shows the substructure: while it is clearly visible for high
switching rates, it is suppressed for λτ = 0.01. A similar but
weaker effect is also visible for λτ = 0.025, where the second
minimum is suppressed. The approximately identical behavior
for qσ0/2π < 1 for all λτ implies a very similar long-range
order while losing short-range structure (qσ0/2π > 1) is rec-
ognized for high λτ . This can be explained by the broad
property distribution, which leads to many different occurring
short particle-particle distances [see also Fig. 4(a)].

We tentatively conclude that physically the intrinsic noise
and internal distributions have a major global effect and can
serve as control mechanisms to tune the collective structure of
the colloid dispersion.

C. Transition times of internal states

We now turn to the system’s property dynamics. For this,
we utilize the normalized ACF Cσσ (t ) introduced in Eq. (16).
In Fig. 5(a) it is shown for ρσ 3

0 and different switching rates.
We can see that the higher λτ is, the faster the correlation
decays. This can be explained by the LDL solution in Eq. (17):
The property relaxes slower for lower switching rates because
drastic changes of the property only appear after a switch.
In addition, we can see that the ACF converges for a high
λτ (yellow line) to a simple exponential decay, because the
dichotomous time constant tD = 1/2λ decreases and provides
a negligible term in Eq. (17). The large fluctuations for high
switching rates arise because the initial 〈σ 2〉 and final value
〈σ 〉2 are very similar for narrow property distributions. To
rationalize our findings, we show in Fig. 5(a) also the the-
oretical ACF calculated from the perturbation theory. It is
obtained by inserting the new potential width δ1 from the
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FIG. 4. (a) RDF for a number density of ρσ 3
0 = 0.95 and different switching rates. (b) The g(r) can split into its components according to

Eq. (13). The dashed blue line shows the total RDF, the green (violet) dashed line shows the g(r) of only the (−)-state [(+)-state] particles;
g±(r) (golden dash-dotted line) is for RDF between particles of different states. (c) Structure factor calculated from the RDFs shown in (a) with
the same colors as in (a).

LDAT (see Appendix) into Eq. (17). We find a surprisingly
good agreement with the simulation, which can be traced back
to the dominant influence of λτ in Eq. (17) compared to the
small changes in δ1.

The obtained correlation times are shown in Fig. 5(b) as
a function of λτ for different ρσ 3

0 . The correlation time de-
creases with increasing λτ ; this is true for all covered number
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FIG. 5. (a) Normalized ACF of the property [see Eq. (16)] for
a number density of ρσ 3

0 = 0.95 and different switching rates. The
solid lines belong to the simulation results, while the dashed lines
show the theoretical prediction by Eq. (17) with a new potential
width δ1. Intersections with the gray dotted line at Cσσ = 1/e yield
the correlation times. (b) Correlation time tcorr from Eq. (18) as a
function of λ for different ρσ 3

0 . The gray dash-dotted line indicates
the theoretical solution in the LDL of Eq. (17).

densities. In addition, we see that tcorr decreases also with
increasing number density because for larger ρσ 3

0 the distri-
bution’s width gets narrower (cf. Fig. 3). Since the intrinsic
time constant, tδ , in Eq. (17) is proportional to the potential’s
width squared, this leads to an effective larger time constant,
yielding a faster decay. Figure 5(b) also shows as a gray dash-
dotted line the theoretical tcorr from the ACF in the LDL [cf.
Eq. (17)]. This coincides with the obtained simulation results
for low densities (light green circles).

Hence, our results demonstrate how the internal dynam-
ics of colloids are partially controlled by the intrinsic noise.
However, to get full control, supervision of the free energy
landscape is also necessary.

D. Translational diffusion

Finally, we analyze the translational diffusive dynamics.
Figure 6(a) demonstrates that the MSD in our system is
proportional in time and thus normal diffusive. Figure 6(b)
shows the effective diffusion coefficient Deff

T /D0
T versus ρσ 3

0
for different switching rates, where D0

T denotes the diffusion
coefficient of an isolated particle with size σ0. The diffusion
shows two qualitatively different regimes: For densities up to
ρσ 3

0 ≈ 0.9 the effective diffusion coefficient decreases. This
can be explained by crowding, which slows diffusion down.
The crowding is poorly characterized by the number density
because the average particle size shrinks in our model with
ρσ 3

0 . Therefore, crowding is better described by the packing
fraction η displaying a saturating behavior [cf. Fig. 3(c)].
As a consequence, for high densities the shrinking particle
sizes lead to a higher Stokes diffusion. This also explains
the differences for various switching rates: In the LDL, the
effective diffusion coefficient is proportional to 〈1/σ 〉, which
increases for more bimodal distributions (lower α). This is in
contrast to existing simulation results of a bidisperse model
with switching between a small and a large size [38]. The
crucial difference is that changes in the switching rate in [38]
do not change the size distribution.

In summary, the effective diffusion coefficient is compara-
tively constant under changes in density if one considers that
two completely different physical effects (increased crowding
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this log-log plot. (b) Effective diffusion coefficient vs density for
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the diffusion of a free particle with size σ0, D0

T .

and decreased Stokes friction) work against each other. For a
specific pair potential, it might even be possible to achieve a
density-independent effective diffusion coefficient. This could
be an interesting mechanism for the transport of colloids to
keep them mobile at higher densities. The results in this sec-
tion demonstrate that it is possible to control the translational
diffusive dynamics by tuning collectively the internal switch-
ing rate.

E. Effective temperature definition

In this section, we attempt to define an effective tem-
perature of the property to facilitate an interpretation of the
system on a thermodynamic level. This is inspired by already
existing approaches to effective temperature definitions in
nonequilibrium, e.g., for active motile Brownian particles [5]
and two-temperature-baths systems [32–35]. In our system,
the translational movement has an intrinsic temperature T
as the input parameter fed into the Gaussian noise; this is
not the case for the dichotomous noise. Choosing a standard
calculation via the property’s mean-squared velocity is not
possible since velocities are not considered in an overdamped
system. However, the options of defining such a temperature
are nonetheless manifold, and several of them are discussed in
the recent work by Medeiros and Queirós [55]. For simplicity,
we consider here an isolated particle to evade the interaction
term. Other definitions also include interactions but only for
white noise [32].

TABLE II. Limits of the definitions of the dichotomous temper-
ature TD [cf. Eq. (19)] and the property temperature Tσ [cf. Eq. (20)].
The analyzed limits are the white-noise limit as well as the limits for
high and low switching rates.

Limit TD Tσ

vD, λ → ∞, λ/v2
D = γσ /(2T ) → T → T

λ → ∞ → 0 → 0
λ → 0 → ∞ → T (	/δ)2

For our system, we predefine two requirements for a proper
temperature: First, in the Gaussian white-noise limit [λ, vD →
∞ with λ/v2

D = γσ /(2T )] the defined temperature has to con-
verge to the translational temperature T , since this describes
the thermodynamic equilibrium case. Second, in the no-
noise limit (λ → ∞ and vD = const), representing a frozen
property DOF, the temperature has to be zero. In the fol-
lowing, we will present and discuss two possible temperature
definitions.

The MSD of a free particle in one dimension driven
only by dichotomous noise is known [4] and for long times
and finite switching rates linear in time. With the result-
ing diffusion coefficient DD = v2

D/2λ and the Stokes-Einstein
equation D = kBT/γ it is possible to define a dichotomous
temperature

TD = γσv2
D

2λkB
= T

(	/δ)2

2α + 2
. (19)

This Ansatz via the effective diffusion coefficient can also be
applied to active Brownian particles [5]. The limits of Eq. (19)
are shown in Table II and fulfill both of our requirements,
namely the Gaussian white-noise limit and the no-noise limit.
The term dichotomous temperature refers to the fact that this
temperature definition is only noise-dependent and does not
include the free-energy landscape.

Another possible definition was introduced in [55] by com-
paring definitions from kinetic theory, system entropy, and
response theory. In the overdamped case, they consistently
result in the same temperature, for us the property temperature
[68],

Tσ = βδ2v2
Dγ 2

σ /kB

1 + 2βδ2γσλ
= T

(	/δ)2

2α + 3
. (20)

It indeed defines a proper temperature that fulfills both of
our requirements (see Table II). It is worth mentioning that
this temperature definition obeys the fluctuation-dissipation
relation between the response function R(t, t ′) and the unnor-
malized autocorrelation function ∂C̃σσ (t, t ′)/∂t ′ = T R(t, t ′),
which holds in thermal equilibrium [55].

Both definitions predict a qualitative trend for the distribu-
tions, which is known for temperatures: For low temperatures,
the probability distribution in a confined potential is nar-
row [cf. α = 9.0 in Fig. 1(b)]. With increasing temperature,
the probability distribution gets broader. In the limit of no
switching (λ → 0, vD = const), the interpretations of the two
temperatures are more difficult. The term “noise” is also
questionable because it is a constant term. While the di-
chotomous temperature TD diverges, the property temperature
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converges to T (	/δ)2. Nonetheless, the property σ in our sys-
tem does not even change in time in this limit, so a vanishing
temperature could also be justified. However, the permanent
energy supply of the internal noise to maintain the size feels
conflictive with a cold temperature. Also, the diffusion never
reaches proportionality MSD ∝ t for long times. In a nutshell,
is there even a reasonable temperature for the low switching
rate limit?

We introduced two effective temperature definitions to de-
scribe our additional property degree of freedom, namely the
dichotomous temperature TD and the property temperature Tσ .
The definitions, although from completely different Ansätzes,
are very similar [see Eqs. (19) and (20)]. But which one is
better? This question cannot be answered. Both definitions
have their justification. The dichotomous temperature charac-
terizes the activity of the noise while the property temperature
describes the property motion in the harmonic potential. Both
definitions fulfill the requirements of the Gaussian white-
noise limit (Ti → T ) and the convergence towards zero in the
high switching rate limit. At the same time, both definitions
yield strange results in the low switching rate limit, both in
different ways.

The discussion shows that a reasonable temperature defi-
nition of a system with dichotomous noise is difficult and can
be controversial. Nonetheless, an effective temperature defini-
tion gives us the possibility to compare it to the translational
temperature and to have an effective parameter to describe
qualitative trends.

IV. CONCLUSION

In summary, we have introduced and characterized a model
for (nonmotile) active responsive colloids (ARCs) by assum-
ing that non-Gaussian dichotomous noise governs the internal
fluctuations of the particles. This leads to the dichotomous
ARC (D-ARC) model.

The intrinsic noise is controlled by a dichotomous velocity
and an internal switching rate, leading already for a single-
particle with a harmonic confinement of the internal DOF to
nontrivial parent distributions and dynamic unimodal-bimodal
transitions. We emphasize that these transitions, first having
a purely mathematical nature, have already interesting con-
sequences when interpreted in a physicochemical context.
They enable “living” colloidal particles to control their own
size distribution by internally tuning their switching rate and
swelling velocity for a possible adaptation of function [60].
The switching rate is indeed an important parameter for bio-
logical systems, like bacteria, to regulate transitions between
different phenotypes [23]. In addition, we demonstrate in
particular that the modification of intrinsic noise (which an
active particle can do) has substantial physical effects on the
collective behavior of the dispersion:

(i) The intrinsic noise parameters (swelling/shrinking ve-
locity and switching rate) induce a transition from unimodal
to bimodal behavior, significantly controlling single-particle
behavior.

(ii) The noise-controlled property distribution and its tran-
sition is modified by packing and crowding; in turn, the
collective liquid structure and dynamics is affected and tuned,
and property distributions are self-consistently modified.

(iii) Diffusion is homeostatic in the compressible RCs; it
can be actively tuned by the intrinsic noise and is relatively
constant over the tested density range.

Hence, as a key message of this paper, the type of internal
fluctuations can play a substantial role not only for single
particles but also for the structure and dynamics of the whole
interacting dispersion. The main ingredient of the dichoto-
mous noise leading to the observed behavior is the temporary
persistence in the direction of motion. We expect other noises
with this characteristic to show qualitatively similar results.
Examples in two dimensions are active Brownian particles or
the parental active model [31]. We demonstrated a similarly
striking behavior already for a simpler model of ARCs where
the internal DOF was coupled to a different temperature bath
(while still with white noise) than the translation [35]. In con-
trast to the latter work, however, introducing a colored noise
with more “control buttons” showed much more complexity
because of the richer internal structure—including a uni- to
bimodal transition—and the dynamics of a single particle.

An interesting study for the future could be the coupling
of the individual (particle-dependent) noise and the internal
DOF, leading to feedback. This could lead to collective os-
cillations of existing self-oscillating colloids [26] or other
synchronous behavior as they happen in bacteria [12]. The
following question, therefore, automatically arises: How can
the “decision” of a single particle lead to collective changes
by chemical signaling? This is another proven concept in
bacterial and animal kingdoms.

ACKNOWLEDGMENTS

We thank Michael Bley, Polina Gaindrik, and Sebastian
Milster for useful discussions. J.D. acknowledges support by
the state of Baden-Württemberg through bwHPC and the Ger-
man Research Foundation (DFG) through Grant No. INST
39/963-1 FUGG (bw-ForCluster NEMO) and by the DFG
via Grant No. WO 2410/2-1 within the framework of the
Research Unit FOR 5099 “Reducing Complexity of Nonequi-
librium Systems.”

APPENDIX: PERTURBATION THEORY IN THE
LOW-DENSITY APPROXIMATION

We attempt to compare the simulation results to a theoret-
ical prediction. Therefore, we calculate observables within a
simple low-density approximation theory (LDAT), which es-
sentially is a perturbation approach for the free energy starting
from the LDL. We start with the pair-property distribution
function g(r; σ, σ ′), which is the conditional probability for
a particle with size σ to find a particle with size σ ′ at a dis-
tance r. By approximating that this pair-property distribution
function is given by the LDL expression, we obtain [41]

g(r; σ, σ ′) ≈ exp[−βφ(r; σ, σ ′)]. (A1)

This is an equilibrium assumption that we apply to our out-
of-equilibrium system. We will see that our system is in a
quasiequilibrium, making this a reasonable approach for low
densities. To obtain the radial distribution function out of the
σ -resolved g(r; σ, σ ′), one has to integrate out the properties
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σ and σ ′ [41],

g(r) =
∫

dσ

∫
dσ ′N (σ )N (σ ′)g(r; σ, σ ′), (A2)

where N (σ ) is the emergent property distribution.
The aim of our perturbation theory is to approximate this

emergent distribution, since many observables can be calcu-
lated or approximated with it (e.g., RDF, packing fraction,
size ACF). The Ansatz we choose is identical to the one used
in [43], however we have to modify it at some point. The
mean force on a particle with property σ originating from
interactions with other particles is given as

Fpp(σ ) = −ρ

∫
V

d3r
∫ ∞

−∞
dσ ′N (σ ′)

∂φ(r; σ, σ ′)
∂σ

g(r; σ, σ ′).

(A3)
This is the force −∂φ/∂σ between two particles with sizes
σ, σ ′ and distance r, where the variables r and σ ′ are inte-
grated out. As shown in [43], by applying the LDL [Eq. (A1)],
Eq. (A3) can be written as

Fpp(σ ) = − 5
4πρεκ[σ 2 + 2σ 〈σ 〉 + 〈σ 2〉] (A4)

with κ ≈ 6.377 × 10−4 for βε = 500, and 〈· · · 〉 denoting the
ensemble average with respect to the emergent distribution.

The discontinuity of the parent distribution at the bound-
aries σ0 ± 	 makes the further procedure as in [43] unrea-
sonable for our system. Therefore, we choose a numerical
approach to obtain the emergent distribution. We assume that
the disturbed property distribution can still be described by
Eq. (11) but with a new center σ1, a new width 	1, a new

exponent α1, and within a harmonic potential with new width
δ1. This Ansatz requires a quadratic energy landscape. To be
self-consistent, we therefore linearize Eq. (A4) by doing a
first-order Taylor expansion around σ1 of the quadratic term
σ 2 ≈ 2σ1σ − σ 2

1 . This results in a quadratic term for the
interparticle free-energy term Fpp(σ ) = − ∫ σ

0 dσ ′Fpp(σ ′). By
inserting the expectation values of the emergent distribution

〈σ 〉 = σ1 and 〈σ 2〉 = σ 2
1 + 	2

1

2α1 + 3
(A5)

into Eq. (A4), we obtain a function with only two
unknowns (σ1,	1). The initially free parameters δ1 =
δ/

√
1 + 5πρβεκδ2σ1 and α1 = λ	1

vD
− 1 can be eliminated by

the definition of the new quadratic potential and the relations
in Eq. (11), respectively. Together with the linear single-
particle force term Fsp = −∂σU (σ ), we get the total mean
force Ftot = Fsp + Fpp. The latter has to fulfill again the two
boundary conditions

Ftot (σ1 − 	1) = vD and Ftot (σ1 + 	1) = −vD, (A6)

because sizes outside these boundaries are not possible in
the steady state. We can solve the two equations in (A6)
numerically for σ1 and 	1 for different particle densities ρ

and therefore obtain a LDAT for N (σ ; ρ).
The general theoretical approach is quite universal and can

easily be adapted to other interaction potentials, noises, and
single-particle potentials [43]. The dependence of Eq. (A4) on
the potential strength and the hard-sphere limit are discussed
in [43].
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