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Effect of scatterer interactions on photon transport in diffusing wave spectroscopy
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We calculate the effect of particle size, concentration, and interactions on the photon transport mean-free
path l∗ that characterizes the multiple light scattering in diffusing wave spectroscopy (DWS). For scatterers of
sufficient size, such that the first peak of the suspension structure factor S(qmax) remains in the range of accessible
scattering vectors, neither repulsive nor attractive interactions between scatterers contribute strongly to l∗; its
values are bounded by those for hard spheres and scatterers without interactions. However, for scatterers smaller
than the wavelength of light, crowding induced by attraction or repulsion can lead to nonmonotonic behavior in
l∗ with increasing scatterer concentration. The effect is strongest for repulsive particles.
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I. INTRODUCTION

Diffusing wave spectroscopy (DWS) measures dynamics
by light scattering in a high multiple-scattering regime [1,2].
It is a noninvasive method to study soft materials, and has
been widely used in academic and industrial research, includ-
ing studies of colloid [3–9] and polymer solution dynamics
[10,11], protein aggregation kinetics [12,13], drug stability
[14,15], film drying [16], microrheology [17–19], and for
performing rheometry in special or extreme conditions, such
as at high pressure [20,21].

In DWS, the homodyne intensity correlation function of
the light intensity g(2)(t ) = 〈I (t0)I (t0 + t )〉/〈I〉2 depends on
both the motion of the scatterers and the characteristics of
light transport through the sample. It is necessary to separate
these contributions to isolate, for instance, the changes in dy-
namics that occur when scatterers become more concentrated
or interact from concurrent changes in the photon transport
through the sample. In models of light transport that are used
to interpret DWS measurements, the principal quantity of in-
terest that characterizes the multiple scattering is the transport
or photon mean-free path length, l∗, the length over which a
photon’s propagation direction randomizes.

l∗ depends on the spatial distribution of scatterers and their
scattering characteristics. To date, there has not been a system-
atic calculation of l∗ reported with the aim of understanding
its dependence on the interactions between scatterers. Such in-
teractions affect the spatial distribution of scatterers through a
structure factor S(q) and may complicate the interpretation of
DWS experiments by obscuring the contributions of scatterer
dynamics from those of the light transport. For instance, an
increase in l∗ will lead to a slower decay of the correlation
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function, which could be interpreted naively as slower scatter
dynamics due to particle concentration or interparticle inter-
actions.

In the present work, we calculate l∗ for scatterers with
increasing concentration using four model interactions: the
limit of no interactions; hard spheres; repulsion modeled by an
effective hard sphere; and attractive, sticky hard spheres. For
scatterers of sufficient size, such that the first peak of S(qmax)
remains in the range 0 � qmax � 2k0, neither repulsive nor
attractive interactions between scatterers contribute strongly
to l∗; its values are bounded by those for hard spheres and
scatterers without interactions, which differ by only a small
amount. Here, k0 = 4πns/λ for the vacuum wavelength λ

and suspending medium refractive index ns. However, for
smaller scatterers, crowding induced by attraction, and espe-
cially repulsion pushes, qmax > 2k0, and can lead to strong
nonmonotonic behavior in l∗ with increasing concentration.
Before discussing the results of our calculations, we review
the light transport in DWS experiments in the next section.

II. THEORY

In this section we provide an overview of the equations and
methods used to calculate the photon mean-free path length,
l∗. Based on the definition equation of l∗, the calculation
consists of modular components that calculate the form factor,
P(q), and structure factor, S(q). The modular structure is ap-
plied in the PYTHON package [22] (details are in Appendix C).

A. Photon mean-free path

In the photon diffusion model of multiple scattering, both
the scattering mean-free path, l , and the photon mean-free
path, l∗, determine the light transport properties. The two are
related by

l∗ = 2k2
0

〈q2〉 l, (1)
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where q = 2k0 sin(θ/2) is the scattering vector for a scattering
angle θ , and 〈 · · · 〉 denotes the average over all scattering
angles. The scattering mean-free path is the average distance
between scattering events and is given by l = 1/ρσ , where ρ

is the number density of scatterers and σ is the scattering cross
section. Substituting this relation gives

l∗ = 2k2
0

ρσ 〈q2〉 . (2)

For uniform, spherical, interacting particles,

σ = 1

k2
0

∫
4π

P(q)S(q)d�, (3)

where the integral is over the solid angle �. The average
mean-square scattering vector can thus be written as,

〈q2〉 =
∫

4π
q2P(q)S(q)d�∫

4π
P(q)S(q)d�

. (4)

Substituting and simplifying,

l∗ = 2k4
0

(
ρ

∫
4π

q2P(q)S(q)d�

)−1

(5)

and integrating over the azimuthal angle gives

l∗ = k4
0

(
πρ

∫ π

0
q2P(q)S(q) sin θdθ

)−1

(6)

or, equivalently,

l∗ = k6
0

(
πρ

∫ 2k0

0
q3P(q)S(q)dq

)−1

. (7)

Finally, nondimensionalizing the scattering vector with the
scatterer radius a, we arrive at

l∗ = k6
0a4

(
πρ

∫ 2k0a

0
(qa)3P(qa)S(qa)d (qa)

)−1

. (8)

The strong weighting toward high scattering vectors is an
important characteristic of Eq. (8). A detailed derivation is
provided by Weitz and Pine [2].

The notation for the form factor in the literature can be
confusing. P(qa) is not a normalized form factor P̃(q). There-
fore, the dependence of Eq. (8) on the scatterer size must also
account for contributions in P(qa). The two are related by

P(qa) = 2
9 k6

0a6(m − 1)2P̃(qa), (9)

where m = np/ns is the ratio of the particle and solvent re-
fractive indices. Using the normalized form factor, Eq. (8) is
written

l∗ = 2(m − 1)2

(
9πa2ρ

∫ 2k0a

0
(qa)3P̃(qa)S(qa)d (qa)

)−1

.

(10)
Equation (10) is strictly valid when the structural correla-

tions of the dispersed scatterers occur on length scales that
are smaller than l∗ [23]. In this work, this condition is always
true (e.g., l∗ � 2a), but scatterers with significantly higher
refractive index contrast (e.g., titania or zinc oxide in water)
could violate this condition as the concentration increases. A
more restrictive condition for Eq. (10), that the mean scatter-
ing length is larger than the length of structural correlations,

l � 2a, is also valid for the range of concentrations and
refractive indices considered here. However, Kaplan et al.
[23] note that this condition may, in fact, be too restrictive
based on the results of measurements in highly concentrated
suspensions [24–26].

B. Scatterer form factor

The form factor P(qa) accounts for the anisotropy of scat-
tered light. Here, we calculate it by averaging the parallel i1
and perpendicular i2 polarization scattering intensities

P(qa) = i1 + i2
2

. (11)

We calculate i1 and i2 using Rayleigh-Gans-Debye (RGD)
scattering theory when conditions of weak scattering |m −
1| � 1 and the Born approximation k0a|m − 1| � 1 hold.
The perpendicular scattering intensity is

i2 = k6
0V 2

4π2
(m − 1)2

{
3

qa3
(sin q − q cos q)

}2

(12)

and the parallel intensity

i1 = i2 cos2 θ. (13)

V = 4
3πa3 is the scatterer volume.

For scatterers of any size and refractive index where the
limits of RGD theory do not apply, the form factor can be cal-
culated by Mie scattering theory [27], following the method
outlined by Kerker [28] and van de Hulst [29]. The perpen-
dicular and parallel scattering intensities are calculated from
the corresponding Mie scattering amplitude functions by

i1 = S∗
1S1

i2 = S∗
2S2,

(14)

where

S1(θ ) =
∞∑

n=1

(2n + 1)

n(n + 1)
[anπn(cos θ ) + bnτn(cos θ )]

S2(θ ) =
∞∑

n=1

(2n + 1)

n(n + 1)
[bnπn(cos θ ) + anτn(cos θ )]. (15)

The Mie coefficients an and bn are defined as

an = ψ ′
n(mx)ψn(x) − mψn(mx)ψ ′

n(x)

ψ ′
n(mx)ζn(x) − mψn(mx)ζ ′

n(x)

bn = mψ ′
n(mx)ψn(x) − ψn(mx)ψ ′

n(x)

mψ ′
n(mx)ζn(x) − ψn(mx)ζ ′

n(x)
,

(16)

where ψn(x) (commonly Sn) and ζn(x) are the Riccati-Bessel
functions and x = 2πa/λ is a dimensionless size parameter
(λ is the wavelength of the light in the medium). The angular
functions πn(cos θ ) and τn(cos θ ) equal

πn(cos θ ) = dPn(cos θ )

d cos θ

τn(cos θ ) = cos θ · πn(cos θ ) − sin2 θ
dπn(cos θ )

d cos θ
, (17)

where Pn(cos θ ) is the Legendre polynomial of degree n
and Pm

n (cos θ ) is the associated Legendre polynomial of

064609-2



EFFECT OF SCATTERER INTERACTIONS ON PHOTON … PHYSICAL REVIEW E 106, 064609 (2022)

degree n and order m. The angular functions are numeri-
cally implemented using the recursive relation described by
Kerker [28]

π ′
n(cos θ ) = (2n − 1)πn−1(cos θ ) + π ′

n−2(cos θ ) (18)

with initial conditions

π ′
0(cos θ ) = 0

π ′
1(cos θ ) = 0.

(19)

C. Structure factor

The structure factor S(q) accounts for the spatial distribu-
tion of scatterers and depends on the particle interactions. For
calculations with hard spheres, we use the analytic solution
for S(q) derived from the Ornstein-Zernike equation with
the Percus-Yevick closure [30–33]. Expressions for S(q) are
summarized in Appendix A.

The hard-sphere model is modified to account for elec-
trostatic double-layer interactions using an excluded annulus
of radius ae larger than the physical scatterer radius a when
calculating S(q). The form factor is still a function of the
physical radius a.

In the case of the attractive interaction, we use a square
well interparticle potential

φ(r) =
⎧⎨
⎩

∞ r � 2a
−u0 2a < r � 2(a + �)
0 2(a + �) < r

, (20)

where u0 is the well depth and � is the well width. This
sticky hard-sphere (SHS) model was originally solved by
Baxter [34] for an infinitely deep and narrow well. Menon
et al. [35] provide a structure factor for a given (square) well
depth and width, parameterized by a perturbation parameter
ε = �/(2a + �) and a stickiness parameter [34,36]

τ = (12ε)−1 exp(−u0/kBT ). (21)

Here, the parameters ε and u0 (and thus τ ) are chosen to
remain above the critical point of the (metastable) binodal at
τc ≈ 0.10–0.12 [35–37]. The parameters cover regions both
above and below the dynamic percolation line according to
the phase diagram of Miller and Frenkel [37]. We summarize
the analytic expression for S(q) in Appendix B.

III. RESULTS AND DISCUSSION

In the following discussion, we calculate l∗ for silica dis-
persions using Eq. (10). The model parameters are based on
experimental values for Stöber silica particles. The refrac-
tive index is np = 1.447 [38–40], the solvent refractive index
ns = 1.333, and the light vacuum wavelength λ = 685 nm.
The magnitudes of the calculated l∗ for both repulsive and
attractive suspensions are sensitive to the particle and sol-
vent refractive indexes. When using the value np = 1.457, for

FIG. 1. The transport mean-free path, l∗, as a function of volume
fraction for the aqueous silica with (a) a = 172.5 nm, and (b) a =
100 nm.

instance, the magnitudes of the l∗ can differ by approximately
25%. We first discuss the effect of repulsive interactions on l∗,
then we turn to attractive interactions.

A. Repulsive interactions

We plot l∗ for silica particles with a = 172.5 nm in
Fig. 1(a). As expected, l∗ decreases with increasing scatterer
concentration. Below volume fractions φ < 0.08, l∗ is fairly
insensitive to the particle interactions. Above this concentra-
tion, interactions between particles, either from the excluded
volume of hard spheres or an excluded annulus, lead to mod-
estly higher l∗ values compared to the case where interactions
are neglected [using S(q) = 1 in Eq. (10)]. Note that the
excluded annulus is not considered as a physical layer of
the particle, so it does not contribute to the calculations for
volume fraction nor the form factor.

On the same figure, experimental measurements of l∗ are
shown for monodisperse silica particles with diameter 2a =
345 nm. The experiments for determining the l∗ use the

064609-3



NICHOLAS SBALBI, QI LI, AND ERIC M. FURST PHYSICAL REVIEW E 106, 064609 (2022)

FIG. 2. Form factor, P(qa), as a function of the normalized wave
vector, qa, for silica of two sizes (in radius): 172.5 nm (blue curve,
left axis) and 100 nm (red curve, right axis) dispersed in water. The
P(qa)s calculated from different theories (RGD and Mie) are also
compared.

transmittance method [41] where the transmittance intensity
is measured and compared with that from a standard sample
with known l∗,

l∗ = T

Tref + 4l∗
ref/3L(Tref − T )

l∗
ref , (22)

where T and Tref indicate the transmittance intensity. L is the
sample or cuvette thickness, and l∗

ref is the known value of
the standard sample. The transmittance intensities were mea-
sured using DWS RheoLab (LS Instruments AG, Fribourg,
Switzerland). From Fig. 1(a), we find that the experimentally
measured l∗ values agree with calculated l∗ when the excluded
annulus is considered. There is good agreement when we use
an excluded annulus of ∼50.0 nm, which is close to the Debye
length of the suspension.

A more interesting case occurs when we calculate l∗ for
smaller particles (less than half the size) with radius a = 100
nm [Fig. 1(b)]. At low volume fractions, the photon mean-free
path length does not depend significantly on the interactions,
but its value is slightly larger than that in Fig. 1(a) owing to
the weaker scattering of the smaller particles. With increasing
concentration, however, the smaller particles exhibit a larger
difference between l∗ values for hard spheres than when we
neglect interactions. More surprising, though, is the effect
when a modest excluded annulus of 20 nm is added. This
repulsion leads to strong nonmonotonic behavior in l∗. The
values first decrease, then rise steeply for volume fractions
above approximately φ > 0.15. To explain these results, we
next will examine the form factor and structure factors of the
scatterers that lead to the l∗ values shown in Fig. 1.

The form factors P(q) calculated from RGD and Mie the-
ories are compared in Fig. 2 for the two particle sizes. Each
curve is plotted between 0 � q � 2k0 to be consistent with
the upper integration limit in Eq. (10). As expected, the form
factor decreases markedly with increasing scattering vector.
The smaller particles begin to exhibit an upturn before the
cutoff.

Examining Fig. 2, we see that increasing particle size leads
to more light scattered in the forward direction. P(qa) scales
with the square of the particle volume, P(0) ≈ 4π�ρ2V 2,
where �ρ is the difference in scattering density between par-
ticle and surrounding. Therefore, P(qa) for the 100 nm radius
particles is approximately 25 times smaller than the values for
172.5 nm nanometer radius particles. For silica particles, the
RGD approximation is in relatively good agreement with Mie
theory, with smaller values in the low-qa regime. Although
we use Mie scattering in this work, it is useful to see that
reasonable results can be obtained with the simpler analytic
theory when its conditions are met.

While the form factor features (and magnitudes) provide
scattering information of single particle, and are important
in determining l∗, the structure factor, S(q), reveals the char-
acteristics of interparticle scattering effects. A representative
set of S(qa) curves for aqueous silica with a diameter of
2a = 345 nm at three selected volume fractions are presented
in Fig. 3(a). The curves are plotted to a scaled scattering vector
magnitude qa = 2k0a.

In this range of scattering vectors, the structure factor ex-
hibits modest variations at φ = 0.05. The magnitude of the
variation increases with volume fraction and the major peak
in S(qa) shifts toward high-qa values with increasing volume
fraction. In the low-q regime, S(qa) decreases over the same
concentrations. The magnitude of both of these changes is
larger when an excluded annulus is included, representing the
larger effective repulsion due to the electrostatic double layer,
and the higher effective (not solids) volume fraction of the
suspension.

For larger scatterers, significant features of the structure
factor stay within the range of scattering angles accessible
in a DWS experiment. As particles become smaller, the case
becomes different [Fig. 3(b)]. The peak of the structure factor
now lies outside of the range of scattering vectors. As the con-
centration increases, the magnitude of S(qa) monotonically
decreases. In both cases of physical (hard-sphere) and effec-
tive (with excluded annulus) volume fractions, the limiting
values of S(0) agree with the Carnahan-Starling expression
[42]

S(0) = (1 − φ)4

(1 + 2φ)2 + φ3(φ − 4)
. (23)

Now the behavior of l∗ for repulsive interactions with
different scatterer sizes can be understood by examining the
contributions of P(qa) and S(qa) in Eq. (10). We plot the inte-
grand, a−4k−6

0 πρ(qa)3P(qa)S(qa), in Fig. 4, which accounts
for the form and structure factor as well as the q3 weighting.
For larger particles [Fig. 4(a)], the integrand values stay nearly
entirely within the range 0 � qa � 2k0, with a maximum
observed. While an excluded annulus leads to a higher peak,
the change in the total area is limited due to the mass con-
servation in the scattering vector space. For smaller particles
[Fig. 4(b)], the integrand curves increase from φ = 0.05–0.15,
then essentially remain unchanged to φ = 0.3. However, the
excluded annulus causes the integrand to drop significantly
at the higher concentration, which leads to the large increase
in l∗.

Our analysis leads to a general heuristic for DWS exper-
iments to account for possible changes in l∗ with increasing
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FIG. 3. Structure factor as a function of qa for a model repul-
sive hard-sphere silica system (solid lines) with different volume
fractions: 0.05, 0.15, and 0.30 for particle radii (a) a = 172.5 nm
and (b) a = 100 nm. The dashed lines represent calculations with an
excluded annulus thickness of 30 nm.

concentration: if the particle radius is sufficiently large such
that the maximum of the structure factor S(qmax) remains
within 0 � qmaxa � 2k0a, then l∗ will track with values where
interactions are neglected. A reasonable approximation (for
spherical scatterers) is to use the hard-sphere structure factor.
If, however, qmaxa > 2k0a, since qmax ∼ π/a, scatterers with
diameters

2a < λ/2ns (24)

could exhibit strong nonmonotonic behavior of l∗ with in-
creasing concentration.

B. Attractive suspensions

Knowing the importance of repulsive interactions and sus-
pension structure in the l∗ calculation, we extend our analysis
to attractive interactions using the sticky hard-sphere model
(SHS). Based on the phase diagram of the SHS particles

FIG. 4. The integrand, a−4k−6
0 πρ(qa)3P(qa)S(qa), as a function

of qa for repulsive suspensions (a) of three different volume frac-
tions and a = 172.5 nm with an excluded annulus ae = 30 nm, and
(b) when the particle radius is smaller, a = 100 nm.

[35,43], three sets of model parameters are chosen to exam-
ine three different points in the phase diagram: the liquid
state [τ = 0.40, ε = 0.10, η = φ/(1 − ε)3 = 0.21], on the
dynamic percolation line [τ = 0.15, ε = 0.02, η = φ/(1 −
ε)3 = 0.16], and below the percolation line [τ = 0.15, ε =
0.02, η = φ/(1 − ε)3 = 0.32].

Attractive interactions in suspensions have a significant
effect on the structure factor, mainly as an increase at low
scattering vectors. Low-q upturns indicate large-scale struc-
tures formed within the suspension [44–46]. These signatures
are clearly visible in Fig. 5 for both particle sizes. Here, the
structure factor S(q) in the low-q regime has the largest values
close to the percolation line. S(q) is not only affected by the
attractive interaction, but also by the volume fraction. Further-
more, while the major S(q) peaks are not captured for smaller
particles, same as what was seen in repulsive suspensions, the
low-q behavior is less sensitive to particle size.
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FIG. 5. Structure factor as a function of qa for a model attractive
silica system with volume fractions: 0.15 and 0.30. Calculations for
two particle radii are shown: (a) a = 172.5 nm and (b) a = 100 nm.

Even with significant differences between repulsive and
attractive structures in the low-q regime, their effect on the
integrand of Eq. (10), and hence on light transport, is weak
(Fig. 6). The shapes and characteristics of the integrand
are qualitatively similar to the results for repulsive particles
(Fig. 4), mainly due to the q3 weighting in Eq. (8). For
smaller particles, the shape is insensitive to differences in the
attractive interaction. Moreover, while the excluded annulus
in repulsive systems compresses the shape of the peaks of
the integrand, the attractive interaction effectively shifts the
location of peaks in the qa dimension.

The calculated l∗ values as a function of volume fraction
of the attractive suspensions are presented in Fig. 7. For both
particle sizes, the l∗ values are close to those for repulsive
suspensions. However, for smaller particles, when repulsive
interactions lead to the l∗ upturn above around φ = 0.15,
the introduction of attractive interaction effectively suppresses
this effect. At relatively high volume fractions, the attractive
interaction compresses the first peak of S(q), bringing the

FIG. 6. The integrand, a−4k−6
0 πρ(qa)3P(qa)S(qa), as a function

of qa for attractive aqueous silica suspensions with two radii: (a)
a = 172.5 nm and (b) a = 100 nm.

integrand to a lower value shown in Fig. 6(b), while this is
not observed in attractive suspensions with larger particles
[Fig. 6(a)].

We measured l∗ for the same silica suspension used above
with addition of 120 mM sodium chloride to introduce a weak
attraction. Based on the expected van der Waals and double-
layer interactions (Hamaker constant AH = 0.83 × 10−21 J,
surface potential ψ0 = −40 mV), this should lead to a sec-
ondary minimum in the interaction potential on the order of
2–3 kT and range � ∼ 10 nm. The results of the measure-
ments agree well with the calculations [Fig. 7(a)].

IV. CONCLUSION

In this work, we examined the effect of particle interactions
on the light transport properties of suspensions. In repulsive
suspensions, l∗ is calculated with hard-sphere and excluded
annulus interactions. The values of l∗ for larger scatterers
agree with experimental measurements. However, when the
particle size is sufficiently small compared with the light
wavelength, l∗ may change nonmonotonically with increasing
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FIG. 7. The transport mean-free path, l∗, as a function of volume
fraction for attractive aqueous silica suspensions with two different
sizes: (a) a = 172.5 nm, (b) a = 100 nm.

volume fraction. This is explained by the range of accessible
scattering vectors, 0 � qa � 2k0a. For smaller particles, the
first peak of the structure factor S(q) exceeds 2k0; the particles
are crowded together and scattering is dominated by lower
wave vectors, which decrease with increasing concentration.
This is, in part, why applications such as opacifiers in coat-
ings require the particle sizes to be on the order of half the
wavelength.

The effect of attractive suspensions were modeled with the
sticky hard-sphere model (SHS) using the solutions developed
by Menon et al. [35]. While we might expect to see significant
effects on l∗ with attraction due to changes in the structure
factor, the fact that these occur at low wave vectors, combined
with the strong weighting of Eq. (10) to higher q, makes the
light transport properties relatively insensitive to the presence
of attraction. However, the current work focuses on situations
where the attraction is sufficiently weak that phase separation
or gelation do not occur. In the latter case, the strong parti-
cle localization will affect the scattering form and structure

factors, potentially through strong resonant scattering between
particles.

These results give DWS users greater confidence that the
light transport properties can be separated from changes in
the dynamics measured using diffusing wave spectroscopy,
and provide important guidance for the interpretation of ex-
periments when using particles that are small relative to the
wavelength of light. In situations where strong particle local-
ization occurs, close to maximum packing or in a gel, the
particle scattering and light transport models used here may
not apply. However, the results of this work are useful for
cases when DWS is used to characterize particle interactions
and their effect on suspension dynamics at moderate volume
fractions.
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APPENDIX A: PERCUS-YEVICK STRUCTURE FACTOR

The Percus-Yevick (PY) closure of the Ornstein-Zernicke
integral equation yields an analytic expression for the struc-
ture factor [30,33], which is related to the Fourier transform
of the direct correlation function Ĉ(q) by

S(q) = 1

1 − ρĈ(q)
. (A1)

With the parameters

λ1 = (1 + 2φ)2

(1 − φ)4
(A2)

and

λ2 = −(1 + φ/2)2

(1 − φ)4
, (A3)

where ρ is the density of the scattering particle. φ is the vol-
ume fraction. The Fourier transform of the direct correlation
function is

ρĈ(q) = −24φ(c1 + c2 + c3), (A4)

where

c1 = λ1

(2qa)3
[sin(2qa) − (2qa) cos(2qa)], (A5)

c2 = −6φλ2

(2qa)4
[(2qa)2 cos(2qa)

− 2(2qa) sin(2qa) − 2 cos(2qa) + 2], (A6)

and

c3 = −φλ1/2

(2qa)6
[(2qa)4 cos(2qa)

− 4(2qa)3 sin(2qa) − 12(2qa)2 cos(2qa)

+ 24(2qa) sin(2qa) + 24 cos(2qa) − 24]. (A7)

064609-7



NICHOLAS SBALBI, QI LI, AND ERIC M. FURST PHYSICAL REVIEW E 106, 064609 (2022)

The PY solution overestimates the packing density of hard
spheres near close packing by a factor 3

√
2/π [33] and for

φ = 0.3 the PY theory gives a value for the osmotic com-
pressibility S(0) that is 4% too low [47]. For our purposes,
at volume fractions far from close packing and where the q3

dependence of multiple scattering weights higher scattering
vectors, the analytic form and reasonable accuracy of the PY
model justify its use.

APPENDIX B: STICKY HARD-SPHERE STRUCTURE
FACTOR

The structure factor for sticky hard spheres is expressed in
the form [35]

S(q) = 1

A2(q) + B2(q)
, (B1)

where

A(q) = 1 + 12η

{
α

[
sin(q) − κ cos(q)

κ3

]

+ β

[
1 − cos(κ )

κ2

]
− λ

12

sin(q)

κ

}
(B2)

B(q) = 12η

{
α

[
1

2κ
− sin(κ )

κ2
+ 1 − cos(κ )

κ3

]

+ β

[
1

κ
− sin(κ )

κ2

]
− λ

12

[
1 − cos(κ )

κ

}
(B3)

and

κ = qa

η = φ

(1 − ε)3

α = 1 + 2η − μ

(1 − η)2

β = −3η + μ

2(1 − η)2
, μ = λη(1 − η),

(B4)

where λ can be solved using the quadratic

λτ = 1 + η/2

(1 − η)2
− λη

(1 − η)
+ λ2η

12
. (B5)

APPENDIX C: PYTHON CODE

An open-access PYTHON code [22] is available for esti-
mating the light transport properties in DWS microrheology.
The modular structure of the Python compilation enables the
customization of the form factor and structure factor models
in scattering, and the applications on various of colloidal
systems.

The main file is scattering.py. The functions
mie_scattering and rayleigh_scattering calculate
light scattering properties for scatterers, including scattering
intensities and photon mean-free path. The input parameters
are the particle and medium refractive indices, particle radius,
and incident light wavelength along with the desired structure
factor model. The default is to assume non-interacting
particles by setting the structure factor S(q) = 1. The
documentation within scattering.py provides further
details. Examples calculations and scripts can be found in the
repository.
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