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Diffusion of a tracer in a dense mixture of soft particles connected to different thermostats
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We study the dynamics of a tracer in a dense mixture of particles connected to different thermostats. Starting
from the overdamped Langevin equations that describe the evolution of the system, we derive the expression
of the self-diffusion coefficient of a tagged particle in the suspension, in the limit of soft interactions between
the particles. Our derivation, which relies on the linearization of the Dean-Kawasaki equations obeyed by the
density fields and on a path-integral representation of the dynamics of the tracer, extends previous derivations
that held for tracers in contact with a single bath. Our analytical result is confronted to results from Brownian
dynamics simulations. The agreement with numerical simulations is very good even for high densities. We show
how the diffusivity of tracers can be affected by the activity of a dense environment of soft particles that may
represent polymer coils—a result that could be of relevance in the interpretation of measurements of diffusivity
in biological media. Finally, our analytical result is general and can be applied to the diffusion of tracers coupled
to different types of fluctuating environments, provided that their evolution equations are linear and that the
coupling between the tracer and the bath is weak.
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I. INTRODUCTION

Describing suspensions of interacting active particles
(agents which are able to take up energy from their environ-
ment and to convert it into directed motion) has been a central
challenge of statistical physics during the past decades and
has resulted in the design of different successful theoretical
frameworks [1–4]. More recently, going beyond the situation
where all the particles in the suspension are identical, the
question of mixtures of particles with different levels of activ-
ity has drawn a lot of attention. Indeed, in various situations
of physical or biological interest, one encounters situations
where particles that are active, in the sense that they are very
far from equilibrium, interact with “passive” particles, which
are only submitted to the equilibrium thermal fluctuations of
their environment. This is, for example, the case in the in-
tracellular medium, where many different agents (organelles,
proteins, enzymes...) have different levels of activity, and such
heterogeneities are known to have a significant impact on the
structure and dynamics of the cytoplasm [5,6].

From a theoretical perspective, a natural way to model
these mixtures is to assume that the different groups of par-
ticles are in contact with different thermostats—the simpler
situation is that of a binary mixture of “hot” and “cold” parti-
cles. This concept has progressively attracted more and more
attention in nonequilibrium statistical physics and was ex-
plored numerically in colloidal suspensions [7,8], polymeric
systems [9–12], and in the context of the thermal Casimir
effect [13]. From an analytical perspective, phase separation
in mixtures of “hot” and “cold” particles was studied in the
low-density limit, in which the system reduces to a two-body
problem [14,15]. The three-body problem for particles in con-
tact with different thermostats was solved recently for specific
pairwise interactions [16].

Although a lot of knowledge has been gathered about
collective properties in mixtures of particles in contact with
multiple thermostats, little is known about the properties of
tagged particles in such suspensions, in spite of their impor-
tance. For instance, the self-diffusion coefficient of a tracer is
a key observable to describe the transport properties inside
these complex systems and may be of interest to interpret
observations from experimental cell biology [5,6]. So far, the
long-time self-diffusion coefficient in mixtures of particles
with different temperatures has only been investigated in the
low-density limit, and in the case of short-range repulsive
interactions between the particles [17].

Here we consider the general situation of a tracer whose
diffusion is affected by its coupling to multiple fluctuating
fields in contact with different thermostats. In this setting we
derive the effective diffusion coefficient of the tracer in the
small-coupling limit, using a path-integral representation that
was previously designed to study the dynamics of a tracer in
contact with a single bath [18]. In particular, we apply this
formalism to the situation of a dense suspension of particles
interacting via soft potentials, that we choose to be Gaus-
sian soft-core potentials, which are relevant to describe the
interactions between polymer coils [19–22]. We argue that
this potential is also well adapted to model the diffusion
of large tracers (organelles, macromolecules...) in the intra-
cellular medium. Technically, the equations obeyed by the
density fields are obtained using Ito calculation and adapting
the usual Dean-Kasawaki derivation [23,24] and are then lin-
earized and solved for—a technique that was used in different
contexts over the past years (microrheology of colloidal sus-
pensions [25–27], active matter [28–33], binary mixtures [34],
electrolytes [35–40]).
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FIG. 1. Top: System under study and considered in the main text:
a tracer, whose position at time t is denoted by r0(t ) is coupled to
a binary mixture constituted of particles of type A and B. Bottom:
General situation considered in Appendix A. A tracer, at position
r0(t ), is coupled to two fluctuating fields, φA(r, t ) and φB(r, t ). The
parameters hA and hB quantify the intensities of the couplings.

Comparing with results from numerical simulations of the
microscopic dynamics of the system, we check the validity
of the approximations on which our analytical result relies.
In the range of parameters investigated here, analytical results
are always very close to numerical results, with a discrepancy
that never exceeds 5%. We also show that the dynamics of
tracers is significantly enhanced when they are placed in a
“hot” bath. This effect, which relies on local energy transfer
from the hotter to the colder particles, was evidenced numer-
ically [7,8] and was described analytically in the low-density
limit and for hard, repulsive, short-ranged potentials [17]. The
present work therefore provides an analytical basis for this
effect in the opposite limit of very soft particles, and for
potentially very high densities—two important aspects for the
applicability of such theories in biological context. Finally, we
emphasize that this formalism is very general and can be used
to describe diffusion in different kinds of fluctuating environ-
ments, such as membranes, colloidal suspensions, or more
generally, Gaussian fields with various prescriptions for the
relevant order parameters that can either be nonconserved or
conserved (“model A” and “model B” dynamics, respectively
[41,42]).

II. MODEL

We consider a tracer whose position is denoted by r0(t ) and
which interacts with a bath of N particles, whose positions are
denoted by r1(t ), . . . , rN (t ) (Fig. 1). The bath particles can

be of different types. We assume that there are N different
types and that Nα denotes the number of particles of type α in
such a way that N =∑N

α=1 Nα . We assume that each particle
in the system obeys an overdamped Langevin dynamics and
that the evolution of the system is given by the N + 1 coupled
equations:

dra

dt
= −κα

N∑
b=0

∇Vαβ (ra − rb) +
√

2Dαζa(t ), (1)

where Vαβ denotes the pair interaction potential between two
particles a of type α and b of type β (we use the notation Vα0

to denote the interaction between the tracer and a particle of
type α), and to simplify the notation we use the convention
∇Vαβ (0) = 0. The bare diffusion coefficient of a particle of
type α is related to the mobility κα through the Einstein
relation Dα = kBTακα . Note that the mobility of the particles
is assumed to be independent of the temperature in such a
way that the bare diffusion coefficient of each species is pro-
portional to the temperature of the corresponding thermostat.
The noise terms ζa(t ) have the following properties:

〈ζa,i(t )〉 = 0, (2)

〈ζa,i(t )ζb, j (t
′)〉 = δabδi jδ(t − t ′). (3)

In order to coarse-grain the dynamics, we define the density
of bath particles of type α as

ρα (x, t ) =
∑

particles a
of type α

δ(ra(t ) − x). (4)

Using Ito calculation [43] and relying on the usual derivation
proposed by Dean for a single-component fluid [24] and later
extended for binary mixtures [34,37], we obtain the coupled
equations for the fields ρα:

∂tρα =
√

2Dα∇ · [ηα

√
ρα] + Dα∇2ρα

+ κα∇ ·
⎡⎣ρα

N∑
β=1

∇(Vαβ ∗ ρβ ) + ρα∇(Vα0 ∗ δr0 )

⎤⎦,

(5)

with

〈ηα,i(x, t )ηβ, j (x′, t ′)〉 = δαβδi jδ(x − x′)δ(t − t ′). (6)

The symbol ∗ represents spatial convolution:

( f ∗ g)(x) =
∫

dy f (y)g(x − y), (7)

and we use the shorthand notation δr0 (x) = δ(x − r0). The
evolution of the tracer position is given by the equation of
motion:

d

dt
r0(t ) = −κ0

N∑
α=1

∇(Vα0 ∗ ρα )(r0(t ), t ) +
√

2D0ξ(t ), (8)

with the noise 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′), and where κ0 is the
bare mobility of the tracer. The goal of the calculation is to
determine the mean-square displacement of the tracer and its
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self-diffusion coefficient in the long-time limit, defined as

Deff = lim
t→∞

〈[r0(t ) − r0(0)]2〉
2dt

, (9)

where d is the spatial dimension (see Sec. A 3 in Appendix A
for a detailed discussion on the conditions required for normal
diffusion to be observed in this model). From now on we
consider the case of a binary mixture (N = 2). Equation (5)
is written for α = A, B and is linearized, defining φi as ρi =
ρ̄i + √

ρ̄iφi. This technique was introduced to study tracer dif-
fusion in colloidal suspensions [25] and allows one to retrieve
results from the “random phase approximation” [19–21] when
applied to compute static quantities, such as pair correlation
functions.

We define the total density ρ = ρ̄A + ρ̄B and the fraction
X such that ρ̄A = Xρ and ρ̄B = (1 − X )ρ. At leading order in
φi, we find

∂tφA =
√

2DA∇ · ηA + DA∇2φA

+ κA

[
∇2(XvAA ∗ φA) + ∇2(

√
X (1 − X )vAB ∗ φB)

+
√

ρ̄A

ρ
∇2(vA0 ∗ δr0 )

]
(10)

(and similarly for φB), where we define vαβ = ρVαβ . We adopt
the following conventions for Fourier transformation:

f̃ (k) =
∫

dx e−ik·x f (x), (11)

f (x) =
∫

dk
(2π )d

eik·x f̃ (k). (12)

In Fourier space, the coupled equations for φ̃A(k, t ) and
φ̃B(k, t ) then read

∂t

(
φ̃A(k, t )

φ̃B(k, t )

)
= −m

(
φ̃A(k, t )

φ̃B(k, t )

)
− k2

⎛⎜⎝
√

X
ρ̄

e−ik·r0(t )κAṽA0√
1−X

ρ̄
e−ik·r0(t )κBṽB0

⎞⎟⎠
+
(√

2DAik · η̃A√
2DBik · η̃B

)
, (13)

with

m = k2

(
kBTAκA + κAX ṽAA κA

√
X (1 − X )ṽAB

κB
√

X (1 − X )ṽAB kBTBκB + κB(1 − X )ṽBB

)
.

(14)
After linearization, the equation for the position of the tracer
reads

d

dt
r0(t ) = −κ0

√
X

ρ̄
∇(vA0 ∗ φA)(r0(t ), t )

− κ0

√
1 − X

ρ̄
∇(vB0 ∗ φB)(r0(t ), t ) +

√
2D0ξ(t ).

(15)

To summarize, we show through Eq. (15) how the dynamics
of the tracer is linearly coupled to the density fields associated
to each type of particle that constitutes the bath of particles.
These density fields obey a linear set of equations, which is
written explicitly in Fourier space [Eq. (13)].

III. EFFECTIVE DIFFUSION COEFFICIENT

Although we managed to find a simple equation of motion
for the tracer, which couples its position and the density fields
associated with bath particles, computing its mean-square dis-
placement is still a complicated task. Indeed, the position r0 of
the tracer, which obeys Eq. (15), actually affects the evolution
of the density fields, whose dynamics depend explicitly on r0

through Eqs. (13). Treating this nontrivial coupling between
the dynamics of the tracer and that of the field can be achieved
in the small-coupling limit. We rely on the calculation that
was done by Dean and Démery in the situation where a tracer
is coupled to a single field [18] and extend it to the present
situation, where the tracer is coupled to a binary mixture. The
derivation of the effective diffusion coefficient of the tracer in
arbitrary dimension and in the limit of weak coupling is given
in Appendix A. In three dimensions, the result reads

Deff

D0
= 1 −

∑
α,β,γ

κ0κβ

∫ ∞

0
dk

k6

6π2

√
XαXγ

ρ
ṽα0̃vγ 0

∑
ν=±1

2c(ν)
αβ

(D0k2 + μν )2

⎡⎣δγβ + Tβ

T0
(D0k2 − μν )

∑
ε=±1

c(ε)
γ β

μν + με

⎤⎦, (16)

where we used the fluctuation-dissipation relation D0 =
kBT0κ0 and the fact that the integrand only depends on the
modulus of k to perform angular integrals. In this expression,
Xα = X if α = A and Xα = 1 − X if α = B. The eigenvalues
μ± are explicitly related to the physical parameters through
the relation

μ± = k2

2
{κA(kBTA + X ṽAA)

+ κB(kBTB + (1 − X )ṽBB)} ± s

2
, (17)

with

s ≡ k2
{
[κA(kBTA + X ṽAA) − κB(kBTB + (1 − X )ṽBB)]2

+ 4κAκBX (1 − X )ṽ2
AB

}1/2
. (18)

The coefficients c(±1)
αβ are the elements of the matrices

c(±) = 1

2s

(±mAA ∓ mBB + s ±2mAB

±2mBA ∓mAA ± mBB + s

)
, (19)

where the matrix m was defined in Eq. (14).
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Equation (16) is the central result of the present work. Sev-
eral comments follow: (i) This expression is explicit in terms
of all the parameters of the problem (interaction potentials
between the different species, mobility coefficients, temper-
atures of the thermostats...) and can then be evaluated easily
by performing the integral numerically. (ii) It was derived
using a very general scheme in such a way that its general
expression [see Appendix A and in particular, Eqs. (A33) and
(A34)] is applicable to other situations and may describe the
diffusion of a tracer coupled to different fields, provided that
the Hamiltonian of the system is quadratic in the fields φα and
that the tracer-field couplings are linear. (iii) The convergence
of the integrands in Eq. (16) (and therefore the existence of
normal diffusion) actually depends on the small-k behavior of
the rescaled potentials ṽαβ (k). This is discussed in Sec. A 3.

We emphasize that the A − B mixture is stable as long as
both eigenvalues μ± [Eq. (17)] stay positive, to ensure that the
solutions of Eq. (13) do not diverge. μ+ is always positive, and
the condition μ− � 0 reads

(kBTA + X ṽAA)(kBTB + (1 − X )ṽBB) � X (1 − X )ṽ2
AB. (20)

In the specific case where TA = TB = T , the stability condition
simplifies to

(1 + XũAA)(1 + (1 − X )̃uBB) � X (1 − X )̃u2
AB, (21)

where we define ũαβ = ṽαβ/(kBT ). In all the situations
considered below, we chose parameters where the mixture
remains stable.

IV. SOME LIMIT CASES

We now consider a few asymptotic limits of the general
expression of the effective diffusion coefficient in three di-
mensions [Eq. (16)]. We assume here that the interaction
potentials are such that all the k integrals written in this
section converge, which implies that the diffusion of the tracer
is normal. An example of such a potential will be given and
studied in detail in the next section.

A. Low-density limit

We first consider the low-density limit (ρ → 0) of Eq. (16),
in which the result takes a simple form. In this limit, it
is straightforward to show that c(1)

αβ = δα,1δβ,1 + O(ρ2) and

c(−1)
αβ = δα,2δβ,2 + O(ρ2). Moreover, one gets from the defi-

nition of μ± the following expansions: μ+ = DAk2 + O(ρ2)
and μ− = DBk2 + O(ρ2). From Eq. (16), this yields the fol-
lowing expression for the effective diffusion coefficient:

Deff

D0
= 1 − ρ

∑
α,β

D
(0)
αβ + O(ρ2), (22)

with

D
(0)
αβ = δαβ

∫ ∞

0
dk

k2Xβκ0Ṽβ,T (k)2(D0 − Dβ + 2kBT0κβ )

6π2kBT0(Dβ + D0)2
.

(23)
Interestingly, we observe that the correction to the diffusion
coefficient does not involve the cross terms DAB and DBA,
which only appear at order ρ2.

B. A tracer in contact with a single hotter bath

We then consider the particular situation where the tracer
is a particle much larger than the bath particles, which are of
a single type A and which are connected to a hotter thermostat
than the tracer (TA � T0). For simplicity, we can assume that
the mobility of the particles is given by the Stokes-Einstein
relation for a spherical particle κα = 1/(6πησα ), where σα is
the radius of the particle. Considering this particular case in
Eq. (16) and taking the limit TA � T0 yields

Deff

D0
= 1 + ρ

6π2

σA

σ0

∫ ∞

0
dk k2 Ṽ0A(k)2

(kBT0)(kBTA)
. (24)

The interaction potential V0A(r) is typically a function of the
variable r/(σ0 + σA), in such a way that its Fourier trans-
form can be assumed to have the following form: Ṽ0A(k) =
(σ0 + σA)3ε0A f [k(σ0 + σA)], where ε0A is the typical interac-
tion energy between the tracer and the bath particles, and f is
dimensionless. This yields

Deff

D0
= 1 + ρ

6π2

σA(σ0 + σA)3

σ0
A, (25)

where A is a dimensionless constant. It is interesting to
deduce from this expression the typical root-mean-square dis-
placement of the tracer, rescaled by its bare value. In the limit
σ0 � σA, one gets

√
Deff − √

D0√
D0

∼ σ0. (26)

This scaling, which was observed experimentally for large
tracers dispersed inside the cytoplasm of living cells [6],
was also derived in the limit of a low density of crowders
with purely repulsive interactions [17]. Interestingly, it then
appears that this scaling is robust against changes of the mi-
croscopic details of the model.

In the particular situation where all the particles have the
same size and interact via the same potential V and for an
arbitrary temperature difference between the thermostat of the
tracer and that of the bath, we get the following expression:

Deff

D0
= 1 − ρ

6π2

×
∫ ∞

0
dk k2 ρṼ (k)2[(2θ − 1)ρṼ (k)2 + (3θ − 1)kBTA]

θ [ρṼ (k) + (θ + 1)kBTA][ρṼ (k) + kBTA]
,

(27)

where we introduced the ratio between the tracer and bath
temperatures θ = T0/TA. In the case where θ = 1, we retrieve
previous results that were obtained in the equilibrium case
where all the particles are connected to the same thermostat
[25]. We then consider the limit where the bath is much
“hotter” than the tracer θ � 1:

Deff

D0
=

θ�1
1 + ρ

6π2θ

∫ ∞

0
dk k2Ṽ (k)2 + O(1). (28)

In this situation, as expected intuitively, we find that Deff >

D0; in other words, the hot bath enhances the diffusion of the
tracer with respect to its bare value. In the opposite limit of
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θ � 1, we get

Deff

D0
=

θ�1
1 − ρ

2π2θ2

∫ ∞

0
dk k2Ṽ (k)2 + O

(
1

θ3

)
, (29)

where, on the contrary, the diffusion of the tracer is hindered
by the colder bath.

V. COMPARISON WITH NUMERICAL SIMULATIONS

In order to go beyond the asymptotic analysis of limit
cases, we now confront our analytical result to numerical
simulations. We consider a binary mixture of Gaussian par-
ticles which interact via the following potential,

Vαβ (r) = εαβe−r2/σ 2
αβ , (30)

and its Fourier transform,

Ṽαβ (k) = π3/2σ 3
αβεαβ e−k2σ 2

αβ/4. (31)

This potential was introduced in the 1970s as a toy model to
study phase transitions in suspensions of repelling particles
[19], and its validity to describe polymer coils was discussed
more recently [44]. The properties of the Gaussian-core fluid
have been thoroughly studied through numerical simulations
and approximate analytical approaches [19–22], which makes
it a good candidate to probe our analytical theory. Note that
the parameters εαβ would generally be functions of the tem-
perature, especially when these potentials are used to model
polymer coils, but we assume here for simplicity that they do
not depend on temperature. Finally, we emphasize that the k
dependence of this potential ensures the convergence of all the
integration over Fourier modes and therefore the existence of
a normal diffusion regime.

In all the simulations presented below, we consider three-
dimensional systems, we set σAA = σBB = σAB = 1, i.e., we
assume that all particles have the same size, and that they
have the same mobility κA = κB = κ . This sets the unit length
in our simulations. The evolution of the system is simulated
using Brownian dynamics, which is a direct resolution of the
coupled overdamped Langevin equations [Eq. (1)] using the
Euler scheme (see Appendix B for details on the numerical
simulations).

A. Tracer in a single-component fluid

In order to probe the range of parameters where our
approximations (linearization of the Dean-Kawasaki equa-
tion for the bath densities and limit of weak coupling between
the tracer and the bath) are valid, we first consider the situation
of a single-component fluid, where all the particles and the
tracer are of type A. We plot in Fig. 2 the diffusion coefficient
of a tracer as a function of the density ρ. In this single-
component fluid, the effective diffusion coefficient of a tracer
is a decreasing function of the density. For a fixed value of
the density, the effective diffusion coefficient decreases when
the intensity of the repulsion εAA increases: this is explained
by the fact that crowding effects, which tend to hinder self-
diffusion, are less pronounced when particles are softer. The
relative decrease of the diffusion coefficient remains moderate
in every case; for the highest value of ε at the highest density,
the effective diffusion coefficient is decreased by at most 17%.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
ρ

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

D
eff
/
D
0

ε = 0.5

ε = 1

ε = 1.5

ε = 2

ε = 3

FIG. 2. Diffusion coefficient of a tracer as a function of the
overall density ρ in a suspension of identical particles interacting
via a Gaussian core potential [Eq. (30)] for different values of the
interaction parameter ε in kBT units. The results from numerical
simulations (symbols) are compared to the analytical expression
obtained from our approach [Eq. (16)]. Error bars are within symbol
size.

The comparison between numerical simulations and the
results from our analytical expression confirms its range of
validity. We expect the expression of the diffusion coefficient
given in Eq. (16) to remain valid as long as the interaction
potentials are soft enough, i.e., if they remain finite and if their
value at zero separation remains small or comparable to kBT .
Indeed, for ε = 0.5kBT , analytical results are in quantitative
agreement with simulations even at high densities. When ε

increases, analytical results slightly overestimate the diffu-
sion coefficient with a relative difference to simulation results
smaller than 3% in the worst case. Note that, to the best of our
knowledge, the validity of the weak-coupling approximation
has not been investigated in this way before. Therefore this
first comparison guides the rest of our numerical simulations
and indicates the range of parameters where our analysis is
valid.

At high densities we observe that the effective diffusion
coefficient becomes an increasing function of the density.
Since the particles are soft, the potential takes a finite value for
r = 0, and at high density, particle overlapping shall result in
non-trivial sources of entropic increase, which may exceed the
associated energetic cost. Although this effect is well known
in suspensions of soft spheres [45–48], its relevance in the
present context is not clear, and we will leave this regime aside
from our analysis.

B. Tracer in a binary mixture with one thermostat

We now consider the situation of binary mixtures made of
two types of particles A and B. We vary the fraction of A par-
ticles, denoted by X , and we compute the effective diffusion
coefficient of the A particles, which play the role of tracers,
divided by their bare value D0 = DA. We assume that all the
particles have the same size but that their interaction potentials
differ through the parameter εαβ . We chose εBB = εAB = kBT ,
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FIG. 3. Diffusion coefficient of particles of type A as a function
of the overall density ρ for different compositions of the A − B
binary mixture (X is the fraction of A particles). All the particles have
the same size (σαβ = 1 for all α, β = A, B) and are connected to the
same thermostat, but the interaction parameter εαβ differs depending
on the considered pair: εBB = εAB = kBT and εAA = 0.5kBT .

and εAA = 0.5kBT . In other words, the interactions between A
particles are softer than between the B − B and A − B pairs.
We plot in Fig. 3 the rescaled effective diffusion coefficient
of A particles as a function of the overall density, obtained
both from our analytical expression [Eq. (16)] and from nu-
merical simulations. We observe that for a given value of the
overall density ρ, the effective diffusion coefficient of soft
particles decreases when the fraction of A particles decreases,
i.e., when the proportion of harder particles increases. This is
consistent with the idea that particles tend to diffuse faster in
a softer environment. The comparison between analytical and
numerical results confirm that our approach provides a very
good estimate of the effective diffusion coefficient of tracer
in binary mixtures in the regime of weak interactions (εαβ

smaller or comparable to kBT ). Indeed, it should be noted that
the difference between analytical and numerical results never
exceeds 1.5%. Note that the overall variation of the rescaled
diffusion coefficient is of the order of 5%.

C. Case with two different thermostats

We finally consider the case of an A − B binary mixture
made of 5% of A particles, which play the role of tracers.
All the particles interact via the same potential [σαβ = 1 and
εαβ = kBT for all pairs (α, β)], but the two species are con-
nected to different thermostats. We will assume that TA � TB

and will vary TA while maintaining TB fixed. The effective
diffusion coefficient of A particles as a function of the overall
density for different values of the temperature ratio TA/TB

is shown in Fig. 4. When TA = TB, we retrieve the results
obtained for the single-component fluid (Fig. 2). When the
ratio between TA and TB decreases, i.e., when the B parti-
cles become much “hotter” than the A particles, the effective
diffusion coefficient of the tracers with respect to their base
values increases to a point where the enhancement induced
by the “hot” bath compensates the decrease of the diffusion

FIG. 4. Diffusion coefficient of particles of type A in a binary
A − B mixture as a function of the overall density and for different
values of the ratio between the temperatures of the thermostats to
which each group of particles is connected. All the particles interact
via the same potential [σαβ = 1 and εαβ = kBT for all pairs (α, β)].

coefficient that results from the crowding effects (see, for
instance, the case TA/TB = 0.333, where the rescaled effective
diffusion coefficient remains very close to 1 for all values of
the density). Finally, when the two temperatures are separated
by an order of magnitude (see the case TA/TB = 0.1), the
crowding effects are overcompensated and the diffusion of the
tracers is significantly enhanced with respect to the equilib-
rium reference situation: the diffusion coefficient of the tracer
is enhanced by 30%–40% compared to its bare value. Our
analytical predictions are in good agreement with numerical
simulations: the difference between both is smaller than 5%
in every case. Finally, it should be noted that the diffusion
coefficient of B particles that are in large excess is almost not
affected by the presence of “colder” A particles.

VI. CONCLUSION AND PERSPECTIVES

We studied the dynamics of a tracer in contact with mul-
tiple fluctuating fields which are not connected to the same
thermostats. We derive a general analytical expression for
the effective diffusion coefficient, which holds provided that
the dynamics of the fluctuating media (which can represent
colloidal suspensions, membranes, complex fluids...) is linear
and the coupling between the tracer and its environment is
weak. We apply our formalism to the case of a tracer in contact
with a dense binary mixture of particles which interact via
soft Gaussian-core potentials, which represent polymer coils.
Each type of particle is connected to a different thermostat in
such a way that one is “hot” and the other one is “cold.” Our
analytical expression for the diffusion coefficient of a tracer
in contact with such a mixture is compared to Brownian dy-
namics simulations and found to be in very good agreement.
We show how the diffusivity of the tracer is affected by the
heterogeneity of the mixture and by the relative temperature
of the two thermostats, therefore extending to higher densities
and to different kinds of interaction potentials results that
were recently derived in the low-density limit and for purely

064608-6



DIFFUSION OF A TRACER IN A DENSE MIXTURE OF … PHYSICAL REVIEW E 106, 064608 (2022)

repulsive hard core interactions between particles. The present
work can be extended in multiple directions. In particular, the
generality of the present formalism can be applied to study
the diffusion of tracers in contact with other types of mix-
tures, such as electrolytes or charged media. Another natural
extension would to consider the situation where the tracer is
“active,” for instance, driven by colored noise or modeled by
a run-and-tumble process.

APPENDIX A: DERIVATION OF THE DIFFUSION
COEFFICIENT

Starting from Eqs. (13) and (15), the goal of this Ap-
pendix is to derive the analytical expression for the effective
diffusion coefficient of the tracer that is given in the main text
in Eq. (16).

1. Generalized Langevin equation

Operator formalism. Following [18], it is convenient to
rewrite the evolution equation of the position of tracer r0(t )
[Eq. (15)] and of the density fields φα [Eq. (13)] under the
form

d

dt
r0(t ) = −κ0

δH
δr0(t )

+ √
κ0η(t ), (A1)

∂tφα (x, t ) = −καRα

δH
δφα (x, t )

+ √
καξα (x, t ), (A2)

where we introduce the following Hamiltonian, which de-
pends on all the fields φ1, . . . , φN and on the position of the
tracer:

H = 1

2

∑
α,β

∫
dx φα (x)�αβφβ (x) −

∑
α

hαKαφα[r0(t )],

(A3)
and where the noise terms obey〈

ηi(t )η j (s)
〉 = 2kBT0δi jδ(t − s), (A4)〈

ξα (x, t )ξβ (x′, s)
〉 = 2kBTαδαβRα (x − x′)δ(t − s). (A5)

The quantities Kα , Rα , and �αβ are linear operators, and we
used the following shorthand notations for the given operators
A, B and field ψ :

Aψ (x) =
∫

dx′ A(x − x′)ψ (x′), (A6)

ABψ (x) =
∫

dx′
∫

dx′′ A(x − x′)B(x′ − x′′)ψ (x′′). (A7)

In Fourier space, Eqs. (13) and (15) are retrieved from the
general equations (A1) and (A2) with the following relations
between the operators Kα , Rα , and �αβ and the pair interaction
potentials ṽαβ :

R̃α (k) = R̃β (k) = k2, (A8)⎧⎪⎪⎨⎪⎪⎩
�̃AA = kBTA + X ṽAA

�̃BB = kBTB + (1 − X )ṽBB
1

2
(�̃AB + �̃BA) =

√
X (1 − X )ṽAB,

(A9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
hAK̃A =

√
X

ρ̄
ṽA0

hBK̃B =
√

1 − X

ρ̄
ṽB0

. (A10)

Dynamics of the fields φα . The next step of the calculation
consists in deriving a generalized Langevin equation obeyed
by the position of the tracer. To this end we first solve for the
dynamics of the fields φα (x, t ). We start from Eq. (A2), which
reads in the case of a binary mixture,

∂tφA(x, t ) = − κARA
[
�AAφA + 1

2
(�AB + �BA)φB

]
+ hAκARAKA[x − r0(t )] + √

κAξA(x, t ), (A11)

and the equivalent for φB. The equations for φA and φB read,
in Fourier space,

d

dt

(
φ̃A(k, t )
φ̃B(k, t )

)
= −m

(
φ̃A

φ̃B

)
+
(

hAκAe−ik·r0(t )R̃AK̃A + √
κAξ̃A

hBκBe−ik·r0(t )R̃BK̃B + √
κBξ̃B

)
, (A12)

where the dependences over k are not written explicitly for
clarity, and where we define the matrix m as

m =
(

κAR̃A�̃AA
1
2κAR̃A(�̃AB + �̃BA)

1
2κBR̃B(�̃AB + �̃BA) κBR̃B�̃BB

)
. (A13)

Equation (A12) is a simple set of couple linear first-order
differential equations, whose resolution requires the matrix
exponential M̃ ≡ exp[−(t − s)m], which is written in the
form

Mαβ = c(+)
αβ e−(t−s)μ+ + c(−)

αβ e−(t−s)μ− , (A14)

where we defined the matrices,

c(±) = 1

2s

(±mAA ∓ mBB + s ±2mAB

±2mBA ∓mAA ± mBB + s

)
, (A15)

the eigenvalues,

μ± = mAA + mBB

2
± 1

2

√
(mAA − mBB)2 + 4mABmBA, (A16)

and the quantity,

s =
√

(mAA − mBB)2 + 4mABmBA. (A17)

After Fourier inversion, one finds the solution of Eq. (A11) in
real space under the form

φα (x, t ) =
∫ t

−∞
ds
∑

β

{hβκβMαβ (t − s)RβKβ[x − r0(s)]

+ √
κβMαβ (t − s)ξβ (x, s)}, (A18)

where Mαβ are the elements of the inverse Fourier transform
of M̃.

Dynamics of the tracer. Starting from Eq. (A1), the dynam-
ics of the tracer is given by

d

dt
r0(t ) = κ0

∑
α

hα∇Kαφα[r0(t )] + √
κ0η(t ). (A19)

Using the expression for the field derived previously
[Eq. (A18)], the equation for the dynamics of the tracer can
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be rewritten as

d

dt
r0(t ) = √

κ0η(t ) +
∫ t

−∞
dsF[r0(t ) − r0(s), t − s]

+ �[x, t], (A20)

with

F(x, u) = κ0

∑
α,β

hαhβκβ∇KαMαβ (u)RβKβ (x), (A21)

and

�[x, t] = κ0

∑
α,β

hα
√

κβ∇Kα

∫ t

−∞
ds Mαβ (t − s)ξβ (x, s).

(A22)

2. Path-integral representation

Starting from Eq. (A20), we now aim at calculating the
mean-square displacement of the tracer at a given time t f ,
defined as 〈[r0(t f ) − r0(0)]2〉, and the self-diffusion coeffi-
cient, defined in Eq. (9). To this end, we follow the lines
of Ref. [18], in which a perturbative path-integral study was
outlined. Introducing a variable p conjugated to the position of
the tracer, the partition function associated to Eq. (A20) can
be written under the form

Z =
∫

DxDp e−S[x,p], (A23)

where the action S[x, p] = S0[x, p] + Sint[x, p] has the fol-
lowing contributions:

S0[x, p] = −i
∫

dt pi(t )ẋi(t ) + D0

∫
dt pi(t )pi(t ), (A24)

Sint[x, p] = i
∫

dt ds pi(t )Fi[x(t ) − x(s), t − s]θ (t − s)

+
∫

dt ds pi(t )Gi j[x(t ) − x(s), t − s]

× pj (t )θ (t − s). (A25)

We used the Einstein summation convention and where θ

denotes the Heaviside function. The matrix elements Gi j are
defined as

Gi j (x − x′, t − t ′) ≡ 〈�i(x, t )� j (x′, t ′)〉, (A26)

and read, in Fourier space,

G̃i j (k, t ) = 2κ2
0 kik j

∑
α,β,γ

hαhγ κβK̃αK̃γ kBTβ R̃β

×
∑

ν,ε=±1

c(ν)
αβ c(ε)

γ β

e−μν |t |

μν + με

, (A27)

where the sums over α, β, and γ run over all the constituents
of the mixture, and where we use the expression of the matrix
exponential Mαβ given in Eq. (A14). Expanding in the limit
where the tracer-bath interactions are small (i.e., when the
interaction action Sint is small compared to S0) and at first
non-trivial order, one gets the following expression for the
mean-square displacement of the tracer:

〈[r0(t f ) − r0(0)]2〉 � 〈[r0(t f ) − r0(0)]2〉0 − IF − IG, (A28)
where the average 〈. . . 〉0 is taken over the bare action S0, and
where we defined

IF =
〈
ir0(t f )2

∫
dt
∫

ds θ (t − s)pi(t )

× Fk,i[r0(t ) − r0(s), t − s]

〉
0

(A29)

�
t f →∞ 4D0

∫
dd k

(2π )d
k2κ0

∑
α,β

hαhβκβK̃α (k)K̃β (k)R̃β (k)

×
∑
ν=±1

c(ν)
αβ

(D0k2 + μν )2
t f , (A30)

and

IG =
〈
r0(t f )2

∫
dt
∫

ds θ (t − s)pi(t )p j (s)

× Gk,i j[r0(t ) − r0(s), t − s]

〉
0

(A31)

�
t f →∞ 4

∫
dd k

(2π )d
k2κ2

0

∑
α,β,γ

hαhγ κβK̃α (k)K̃γ (k)R̃β (k)kBTβ

×
∑

ν,ε=±1

c(ν)
α,βc(ε)

γ ,β

μν + με

· D0k2 − μν

(D0k2 + μν )2
t f . (A32)

Then, using the definition of Deff = limt→∞〈r0(t f )2〉/(2dt f )
and integrating over all Fourier modes, we write the effective
diffusion coefficient under the form

Deff = D0 −
∑
α,β

Dαβ (A33)

with

Dαβ = κ0κβ

d

∫
dd k

(2π )d
k2[hαK̃α (k)]R̃β (k)

∑
γ

[hγ K̃γ (k)]
∑
ν=±1

2c(ν)
αβ

(D0k2 + μν )2

⎡⎣D0δγβ + kBTβκ0(D0k2 − μν )
∑
ε=±1

c(ε)
γ β

μν + με

⎤⎦.

(A34)
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FIG. 5. Mean-square displacements of particles of type A in a
binary A − B mixture, divided by time, as a function of time in
reduced units (t � = σ 2

BB/(kBTBκB ) is the time needed for a particle
B to diffuse over a length equal to its size). The results obtained
for several values of the overall density and for TA/TB = 0.1 are
displayed. Note that the total duration of one trajectory is here 4000t �

and that the results are averaged over six independent trajectories.

Finally, using the mapping between the operators Kα , Rα ,
and �αβ and the interaction potential between the particles
in the suspension [Eq. (A10)], one gets the expression for
the diffusion coefficient of the tracer given in the main text
[Eq. (16)].

3. Convergence of the integral over Fourier modes

We finally discuss the convergence of the integral in
Eq. (A34), along the lines of Ref. [18]. Indeed, depending on
the k dependence of the operators K̃α , R̃α , and �̃αβ , the inte-
gral over k = |k| may diverge, in which case it would need to
be regularized by lower or upper cutoffs. The large-k behavior
is bounded by the typical molecular size, whereas the small-k
dependence is bounded by the typical system size. Depending
on the small-k behavior of the integrand, the integral may have
a non-trivial dependence over system size, which indicates the
possibility of anomalous diffusion.

Assuming that all the operators R̃α on the one hand and all
the operators �̃αβ on the other hand have identical small-k
behaviors, it is straightforward to show that the reasoning
presented in Ref. [18] still holds and that there exists a crit-
ical dimension below which the integrals do not converge,
therefore leading to anomalous diffusion. In the present paper,
we only consider situations where diffusion is normal. In
particular, in Sec. V, this will be ensured by our choices of the

soft interaction potentials Vαβ (r) defined in Eq. (30), whose
Fourier transform goes to a finite constant when k → 0.

APPENDIX B: DETAILS ON NUMERICAL SIMULATIONS

To perform Brownian dynamics simulations, we have used
the LAMMPS computational package [49]. We used the com-
mand “fix brownian,” that allows one to integrate overdamped
Langevin equations for the positions of particles thanks to
a Euler scheme. The interaction potentials are Gaussian
[Eq. (30)], and size parameters are always the same: σAA =
σBB = σAB = 1. To compute interaction forces, a cutoff dis-
tance equal to 2.5σAA is used. The input mobility of particles
is always the same, as it depends only on the particle size. To
study the diffusion of cold A tracers, we fix the temperature of
the group of A particles to a value smaller than that of B ones.
The diffusion coefficient at infinite dilution of A particles is
thus smaller than that of B particles.

In every case, a total number of N = 4000 particles are
placed in a cubic simulation box with periodic boundary con-
ditions. The length of the box Lbox is varied to change the
total density ρ of the system, with ρ = N/L3

box. The time step
is �t = 0.002t�, with t� = σ 2

BB/(kBTBκB) the time needed for
a particle B to diffuse over a length equal to its size. In each
case, one long trajectory of 20 × 106 time steps is first run to
equilibrate the system. Then, mean-squared displacements of
tracers are averaged over particles and time, and also over sev-
eral independent trajectories. To study the diffusion in a single
component fluid, three independent trajectories of 10 × 106

time steps each were done. In the case of a binary mixture with
one thermostat, three independent trajectories of 20 × 106

time steps each were done. To compute the tracer diffusion
coefficient in mixtures with two different thermostats, results
were averaged over six to nine independent trajectories of
20 × 106 time steps each, depending on the temperature of
the tracers. Cold particles are indeed intrinsically slower than
hot ones, and long trajectories must be run to ensure that they
travel across the whole simulation box. The uncertainty of
the computed self-diffusion coefficients was evaluated from
the standard deviation of values obtained from different tra-
jectories. The uncertainty on Deff

D0
was in each case smaller

than 0.005. Note that the size of the symbols used in the
figures is larger than these error bars. The mean-squared dis-
placements were found to be linear at all time for every system
investigated here. An example of the results obtained for the
binary A − B mixture with particles connected to two different
thermostats is displayed in Fig. 5.
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