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Thermal fluctuations and osmotic stability of lipid vesicles
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Biological membranes constantly change their shape in response to external stimuli, and understanding the
remodeling and stability of vesicles in heterogeneous environments is therefore of fundamental importance
for a range of cellular processes. One crucial question is how vesicles respond to external osmotic stresses,
imposed by differences in solute concentrations between the vesicle interior and exterior. Previous analyses
of the membrane bending energy have predicted that micron-sized giant unilamellar vesicles (GUVs) should
become globally deformed already for nanomolar concentration differences, in contrast to experimental findings
that find deformations at much higher osmotic stresses. In this article, we analyze the mechanical stability of a
spherical vesicle exposed to an external osmotic pressure in a statistical-mechanical model, including the effect
of thermally excited membrane bending modes. We find that the inclusion of thermal fluctuations of the vesicle
shape changes renders the vesicle deformation continuous, in contrast to the abrupt transition in the athermal
picture. Crucially, however, the predicted critical pressure associated with global vesicle deformation remains the
same as when thermal fluctuations are neglected, approximately six orders of magnitude smaller than the typical
collapse pressure recently observed experimentally for GUVs. We conclude by discussing possible sources of
this persisting dissonance between theory and experiments.

DOI: 10.1103/PhysRevE.106.064607

I. INTRODUCTION

The absolute majority of living cells function optimally in
environments with solute concentrations corresponding to an
osmotic pressure close to that of physiological saline. Thus,
the intracellular environment maintains an osmolarity in the
range 250 to 400 mM [1,2]. Nevertheless, in many organisms,
the cells are regularly exposed to osmotic stresses induced
by differences in the chemical environment between their
interior and the surrounding medium. Living organisms have
therefore developed a range of mechanisms for coping with
these variations [3,4]. Plants and most bacteria have rigid cell
walls that can sustain significant osmotic stresses, and at low
external osmotic pressures excessive swelling and membrane
rupture are prevented by developing an internal “turgor pres-
sure” [3]. For animal cells the situation is more complex, since
they have a less rigid plasma membrane associated with their
cytoskeleton. Low external osmotic pressures can here lead to
membrane rupture, while high external osmotic pressures will
cause the cell to shrink in volume resulting in a too crowded
internal medium that will slow down metabolic processes [5].
One strategy is to upregulate the intercellular concentration
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of osmotically active components such as salt or osmolytes,
but this comes at a cost in metabolic energy [4]. A more
direct defense against deformation or rupture due to osmotic
stress is however built into the intrinsic bending energy of the
cellular membrane. To quantify this contribution to vesicle
stability against osmotic stress, we will here focus on the
osmotic stability of a simple system consisting of unilamellar,
spherical vesicles built up by a single-component lipid bilayer.

The osmotic stability of spherical lipid vesicles has been
theoretically analyzed in the past [6–8], leading to the con-
clusion that the contribution from membrane bending to
stabilisation against osmotic collapse is relevant only for small
(nanometer-scale) lipid vesicles, and negligible for vesicles
of sizes comparable to eukaryotic cells (∼10 µm). In con-
trast, in a recent study [9] we experimentally measured the
osmotically induced deformation of freely suspended, single-
component giant unilamellar vesicles (GUVs) in this size
range and found that they were able to sustain significant
osmotic stresses before being deformed into a prolate shape at
osmotic stresses � � 0.15 atm, as shown in Fig. 1. Upon os-
motic reversal, the deformed vesicles exhibited reproducible
formation of “daughter vesicles” through an endocytosis-like
process (fourth step in Fig. 1) to quickly incorporate the ex-
ternal medium, indicating that a substantial bending energy
(>103 times the thermal energy) is stored in the deformed
vesicles. These experimental results are broadly in line with
previous experimental and computational studies on more
complex, multicomponent vesicle systems in buffer solutions,
where both osmotic deformation and daughter vesicle forma-
tion have been observed [10–14] at roughly similar osmotic
gradients as in Ref. [9]. Thus, even though neither of these
studies were directly focused on quantitatively determining
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FIG. 1. Microscopy images showing the osmotically induced
collapse of a spherical GUV. Glucose is added to the outside solution
to induce an osmotic gradient �. For small osmotic gradients the
vesicles remain effectively spherical, but as the gradient is increased
above � � 0.15 atm they deform into a prolate shape. Inversion of
the gradient by rinsing with pure water after vesicle deformation
leads to the formation of well-defined “daughter vesicles” through
an endocytosis-like process. Images adapted from Ref. [9].

the deformation threshold, the overall picture is that GUVs
exhibit a significant tolerance towards external osmotic gradi-
ents before becoming visibly deformed from spherical shape.
Motivated by this discrepancy, we here revisit the problem of
the stability of spherical vesicles exposed to external osmotic
stresses, taking into account the effect of thermal fluctuations
of the lipid membrane. While not previously analyzed in the
context of osmotic stability, such thermal shape fluctuations
have been extensively considered theoretically [15–20] and
experimentally [21,22] and have, among other things, been
shown to promote long-ranged repulsive interactions between
fluctuating lipid bilayers [15,16]. Thermal fluctuations have
also been theoretically predicted to have a drastic effect on
the pressure-induced buckling of nanoscopic solid shells [23].
Our analysis is based on the same basic formalism as used by
Ou-Yang and Helfrich in Ref. [6], but instead expanding the
thermally induced deformations in a set of fluctuation modes
described by spherical harmonics. Within this framework,
we derive a formally exact expression for the configuration
integral Z and evaluate it analytically for the two lowest fluctu-
ation modes. Our analysis shows that the inclusion of thermal
fluctuations (i) shifts the average volume of the vesicle to
significantly lower values compared to that of the perfect
sphere even for � = 0, and (ii) changes the vesicle deforma-
tion at finite osmotic stresses (� > 0) to a continuous one, in
contrast to the athermal case. Crucially, however, the collapse
of the vesicle volume occurs at the same value of the critical
pressure �c as in the athermal case [6]. Thus, the inclusion of
thermal fluctuations of the vesicle shape within a harmonic

approximation cannot explain the significant discrepancies
with experimental results, and we conclude the paper by dis-
cussing some possible reasons for this unsettling dissonance
between theory and experiments.

II. MODEL DESCRIPTION

We consider a unilamellar vesicle formed by a bilayer
containing 2NL lipid molecules. The area a0 per molecule
is assumed to be constant and independent of the osmotic
pressure, thus making the bilayer laterally incompressible and
leading to a fixed vesicle area A0 = NLa0. For a perfectly
spherical vesicle the resulting radius is thus R0 = (A0/4π )1/2.
The general expression for the vesicle bending energy Ub is
given to second order by the Helfrich Hamiltonian [24]

Ub =
∫ [

κ

2
(2H − H0)2 + κ̄K

]
dA, (1)

where H is the mean curvature, H0 the spontaneous curvature,
κ the bending rigidity, K the Gaussian curvature, and κ̄ the
saddle-splay rigidity. Notably, compared to previous works,
Eq. (1) lacks Lagrange multipliers ensuring that the vesicle
area and volume are kept constant. Instead, we handle these
conditions in a more mathematically convenient way through
a δ function in the configuration integral, as detailed below.
For a vesicle with conserved topology, the Gaussian curvature
term is constant and will thus be neglected below. For a
symmetric lipid bilayer, such as those composed of only a
single lipid component, there is furthermore no spontaneous
curvature of the bilayer. In the absence of thermal fluctuations
and osmotic stresses, the stable configuration of such a vesicle
is that of a perfect sphere with volume V0 = 4πR3

0/3, with an
energy given by U0 = 4π (2κ + κ̄ ). At finite temperatures, the
vesicle shape will fluctuate around the perfect sphere, leading
to an increase in the average membrane bending energy. At
constant area, all such thermal excitations must lead to a
decrease in vesicle volume, enabled by the fact that the bi-
layer is permeable to water. This yields an equilibrium vesicle
volume V < V0, determined by a balance between the bending
energy of the bilayer and the entropy of the thermally excited
membrane bending modes.

If the composition of the surrounding medium is changed
by the addition or removal of a solute to which the bilayer is
impermeable, then an osmotic imbalance is created. Assum-
ing ideal solution conditions, the induced osmotic pressure
is � = kT �c, where �c is the concentration difference, k
is Boltzmann’s constant, and T the temperature. If the os-
motic pressure is higher inside the vesicle than outside it,
corresponding to a decrease of solute concentration in the
surrounding medium (�c < 0), then a tension is created in
the bilayer, which eventually leads to vesicle rupture. When
�c > 0, the vesicle instead has a thermodynamic driving
force to shrink. If the vesicle interior has a finite solute con-
centration, then osmotic balance will be reached when the
vesicle has expelled enough water to equalize the interior and
exterior solute concentrations. For the case when the vesicle
contains pure solvent, the concentration can however not be
equalized by a finite reduction in volume, apart from the
small effect of hydronium, hydroxide and trace amounts of
other ions present at micromolar levels even in pure water.
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One possibility is then that the vesicle collapses completely,
thus balancing the external osmotic pressure through a direct
monolayer-monolayer interaction in the collapsed state. The
second option, which is the one we will consider here, is the
balancing of osmotic stress by an increase in bending free
energy associated with a finite volume decrease.

In Ref. [6], Ou-Yang and Helfrich analyzed the stability
of a spherical vesicle subject to an osmotic pressure �, using
Eq. (1) for the bending energy and neglecting thermal fluctu-
ations. They found that the vesicle remained spherical up to a
critical pressure �c, given by

�c = 2κ

R3
0

(6 − H0R0). (2)

For � > �c, an instability occurs in the deformation mode
with the largest wavelength, corresponding to a global de-
formation of the vesicle. A subsequent theoretical study by
Pleiner [8] based on a weakly nonlinear stability analysis
and including higher-order geometrical correction terms con-
cluded that the deformed state corresponds to an axially
symmetric, prolate shape. For a small unilamellar vesicle
(SUV) with R0 = 50 nm and bending rigidity κ = 20kT , the
critical pressure of Eq. (2) with H0 = 0 becomes �c ∼ 8 kPa,
corresponding to �c ∼ 3 mM, indicating that vesicles in
this size range can withstand nonnegligible osmotic stresses
without significant deformations. In contrast, a corresponding
GUV with R0 = 5 µm should withstand a pressure of only
8 mPa, corresponding to �c ∼ 3 nM, implying that almost
any (deliberate or accidental) increase of the solute concen-
tration in the external medium of a GUV suspension would
lead to vesicle collapse. As discussed above, this contrasts
with the general observation that spherical GUVs can be
readily formed and remain stable even in chemically complex
environments, and in particular with our recent observation
that GUVs remain effectively spherical up to external osmotic
pressures ∼106 times larger than that predicted by Eq. (2).

For small deviations from the sphere, the instantaneous
vesicle shape R(θ, φ) can be described by an expansion in
spherical harmonics Y	m(θ, φ) with associated coefficients a	m

[7]:

R(θ, φ) = R0

[
1 +

∞∑
	=0

	∑
m=−	

a	mY	m(θ, φ)

]
. (3)

The terms with 	 = 0 and 	 = 1 correspond, respectively, to a
change in average radius and a translation of the vesicle, while
the terms with 	 � 2 describe the shape of the vesicle and
thus determine its bending energy. The sum over 	 is truncated
above some value 	max set by the physical constraints of the
problem, as further discussed below. To leading order in the
coefficients a	m, the volume and area of the deformed vesicle
are given by

V = R3
0

[
4π

3

(
1 + a00√

4π

)3

+
∑
	m

a2
	m

]
, (4)

A = R2
0

[
4π

(
1 + a00√

4π

)2

+
∑
	m

a2
	m

(
1 + 	(	 + 1)

2

)]
, (5)

where
∑

	m implies summation over all 	 � 2 and the corre-
sponding m. The bending energy �Ub = Ub − U0 relative to
that of the perfect sphere is furthermore given by [7]

�Ub = κ

2

∑
	m

a2
	m(	 + 2)(	 + 1)	(	 − 1). (6)

For small deformations, we have that a00/
√

4π � 1, and
the brackets in Eqs. (4) and (5) can be expanded to leading
order in a00. Using the constant area constraint, the term in
a00 in Eq. (4) can then be eliminated to yield

V ≈ R3
0

[
4π

3
− 1

4

∑
	m

a2
	m(	 + 2)(	 − 1)

]
, (7)

highlighting that any deformation of the vesicle (a	m �= 0)
under the constant-area constraint necessarily leads to a de-
crease of the vesicle volume compared to that of the perfect
sphere. For later developments, we reexpress Eq. (7) as an
equation for the number of water molecules N in the deformed
vesicle:

N ≈ N0

[
1 − 3

16π

∑
	m

a2
	m(	 + 2)(	 − 1)

]
, (8)

where N0 is the number of water molecules in the perfect
sphere.

III. OSMOTIC STABILITY IN THE ABSENCE
OF THERMAL FLUCTUATIONS

From Eqs. (6) and (8), it follows that the minimum energy
for a given N corresponds to a deformation in the longest-
wavelength, 	 = 2 modes. The bending energy �Ub relative
to the perfect sphere is thus given by

�Ub = 16πκ
N0 − N

N0
≡ 16πκN̂, (9)

where N̂ ≡ (N0 − N )/N0 ∈ [0, 1] quantifies the relative devi-
ation from spherical shape. We now create an osmotic gradient
by dissolving solute in the external medium, changing the
external chemical potential to μw < μθ

w, where μθ
w is the

chemical potential of pure water. The (free) energy change
�Uμ relative to the pure water case associated with creating
this osmotic imbalance is

�Uμ = (
μw − μθ

w

)
(N0 − N ) = −�V0N̂, (10)

where we have used the osmotic pressure definition
�Vw = (μθ

w − μw ), with Vw the molecular volume of wa-
ter. By combining Eqs. (9) and (10), we note that the
total energy change �U = �Ub + �Uμ goes negative when
(μθ

w − μw ) > 16πκ/N0, which is equivalent to the stability
condition in Eq. (2) with H0 = 0. Thus, due to the linear
dependence on N̂ , for � > �c the vesicle can always min-
imise its energy by further decreasing its volume towards
zero (N̂ → 1), while for � < �c the minimum energy always
occurs for N̂ = 0, corresponding to the perfect sphere. In the
absence of thermal fluctuations, the vesicle deformation thus
corresponds to a sharp transition at � = �c from a perfect
sphere to a collapsed one, as found by Ou-Yang and Helfrich
[6].
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IV. GENERAL EXPRESSION OF THE CONFIGURATION
INTEGRAL

At finite temperature and in the absence of constraints, all
the harmonic bending modes in Eq. (6) become thermally
excited, and each mode contributes an average bending en-
ergy of kT/2. To avoid an unphysical energy divergence, an
upper cutoff 	max to the expansion in Eq. (3) first needs to
be defined. The most straightforward way to estimate 	max is
by assuming that the continuum picture of membrane defor-
mations ceases to be relevant for wavelengths comparable to
the bilayer thickness h, where 	max ∼ R0/h. For a GUV with
h = 5 nm and R0 = 5 µm, this estimate yields 	max ∼ 103 and
a total of ∼106 excited bending modes, since each value of 	

corresponds to (2	 + 1) degenerate modes. To account for the
relation between volume and bending energy caused by the
constraint of constant area A0, we will below treat the volume
V or, equivalently, the number of enclosed water molecules N
as a dependent variable, while ensuring that the constant-area
constraint is obeyed for each individual configuration. This
approach is different from previous treatments [7,18], which
have instead introduced a free energy term accounting for
the area constraint using a virtual (negative) tension in the
form of a Lagrange multiplier, ensuring that the constant area
condition is satisfied in the mean.

In the presence of an osmotic gradient, the probability PN

of having a vesicle containing N water molecules is given by

PN = ZN exp
[
β(N − N0)

(
μw − μθ

w

)]
N0∑

N ′=0

ZN ′ exp
[
β(N ′ − N0)

(
μw − μθ

w

)] , (11)

where β = (kT )−1, ZN = e−βFb(N ) is the N-particle config-
uration integral and Fb(N ) the corresponding bending free
energy, which we define relative to the perfect sphere. Note
that ZN , and thus Fb(N ), are independent of the osmotic stress
difference, which is fully contained in the second exponential
factor of Eq. (11).

To find how Fb(N ) varies with vesicle volume, we now
proceed to calculate the configuration integral ZN . The fact
that ZN describes fluctuations at constant N , corresponding to
a constant-volume constraint, introduces a coupling between
the different modes through Eq. (8). We take this condition
into account by introducing a δ function into ZN , yielding

ZN =
∫

exp[−β�Ub({a	m})]

× δ

(
CN −

∑
	m

a2
	m(	 + 2)(	 − 1)

)
{da	m}, (12)

where

CN ≡ 16π

3
N̂ (13)

is introduced to simplify notation. We now make the variable
substitution t	m ≡ [(	 + 2)(	 − 1)]1/2a	m which allows us to
express �Ub in Eq. (6) as a sum of two parts, where the second

one only contains modes with 	 � 3:

�Ub = κ

2

[
6

	max∑
	=2

	∑
m=−	

t2
	m +

	max∑
	=3

	∑
m=−	

(	2 + 	 − 6)t2
	m

]
. (14)

Since the first sum matches the argument of the δ function in
Eq. (12), the configuration integral simplifies to

ZN = g(	max)e−3κ̂CN

×
∫

exp

[
− κ̂

2

	max∑
	=3

	∑
m=−	

(	2 + 	 − 6)t2
	m

]

× δ

(
CN −

	max∑
	=2

	∑
m=−	

t2
	m

)
{dt	m}, (15)

where κ̂ ≡ κ/(kT ), and

g(	max) ≡
	max∏
	=2

[(	 + 2)(	 − 1)]−(	+ 1
2 ). (16)

Equation (15) shows explicitly that the lowest allowed energy
value is increased by 3κ̂CN , yielding a higher reference value
for thermal excitations as the vesicle volume is decreased.
This is consistent with the analysis of the athermal case, and
the value corresponds exactly to �Ub in Eq. (9). To proceed,
we note that the integrand in Eq. (15) is independent of m, and
make a variable substitution to (2	 + 1)-dimensional polar
coordinates, with

ρ	 ≡
(

	∑
m=−	

t2
	m

)1/2

. (17)

After integrating over the angular coordinates, we get

ZN (	max) = g(	max)h(	max)e−3κ̂CN

×
∫

exp

[
− κ̂

2

	max∑
	=3

(	2 + 	 − 6)ρ2
	

]

× δ

(
CN −

	max∑
	=2

ρ2
	

)
ρ4

2 · · · ρ2	max
	max

dρ2 · · · dρ	max ,

(18)

with

h(	max) ≡
	max∏
	=2

A2	+1 =
	max∏
	=2

π	2	+1

(2	 − 1)!!
, (19)

and where An is the surface area of the unit sphere in n
dimensions. The (	max − 1)-dimensional integral in Eq. (18)
represents an exact expression for the configuration integral.
In the following, we will proceed to solve it for the cases
	max = 2 and 	max = 3 to yield explicit expressions for the
free energy.

V. FREE ENERGY AND VESICLE VOLUME
IN THE ABSENCE OF OSMOTIC STRESS

We first consider the case 	max = 2, corresponding to
the inclusion of thermal fluctuations only in the most un-
stable, 	 = 2 mode. In this case, Eq. (18) reduces to a
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FIG. 2. Bending free energy Fb in the absence of osmotic stress,
plotted as a function of the reduced vesicle volume N̂ . For the
athermal case, the curve shows the linear function in Eq. (9), which
is minimised for N̂ = 0. For 	max = 2 and 3, Fb(N̂ ) is given by the
negative logarithms of Eqs. (20) and (21), respectively. Note that, as
further fluctuation modes are added, the optimal volume gradually
moves away from that of the perfect sphere.

one-dimensional integral that can readily be solved to yield

ZN (	max = 2) = π2

24
C3/2

N e−3κ̂CN . (20)

While also far from realistic values for GUVs, the case
	max = 3 differs qualitatively from 	max = 2, in that it includes
the effect on the 	 = 2 instability from fluctuations also in the
higher, 	 = 3 modes. In this case, the configuration integral
in Eq. (18) becomes two-dimensional, and can be straight-
forwardly solved by subsequent integration over ρ2 and ρ3 to
yield

ZN (	max = 3) = π6
√

10

9.72 × 107

CN

κ̂4
e− 9

2 κ̂CN

×
{

[(3CN κ̂ )2 + 24CN κ̂]I0

(
3

2
CN κ̂

)

− [(3CN κ̂ )2 + 12CN κ̂ + 32]I1

(
3

2
CN κ̂

)}
,

(21)

with Iα (x) the modified Bessel functions of the first kind
and order α. By taking the negative logarithm of ZN in
Eqs. (20) and (21), we obtain the corresponding free energies
Fb(N ) corresponding to 	max = 2 and 3, shown in Fig. 2.
The first obvious effect of increasing 	max is an increase in
the total free energy, as further bending energy modes now
become thermally excited. Furthermore, the minimum in free
energy is gradually shifted away from the perfect sphere
as more fluctuation modes are added. This shift is due to
the entropy gain associated with shrinking the vesicle: For
N̂ = 0, corresponding to the perfect sphere, there is only a
single possible configuration that simultaneously fulfills the
constant-area and constant-volume constraints, leading to a
diverging entropy. As N̂ increases, the number of accessible
vesicle configurations for the given area and volume increases,
leading to an entropic driving force for deformation. This is

compensated by the bending energy which increases mono-
tonically with N̂ , together leading to a nonmonotonic behavior
of Fb(N ) with a free energy minimum at nonzero N̂ .

From the explicit expressions for ZN in Eqs. (20)–(21), we
can quantify the devation from spherical shape in the absence
of osmotic stress by calculating the statistical-mechanical av-
erage 〈N̂〉0 using Eq. (11) with � = 0:

〈N̂〉0 =

∫ 1

0
N̂ZN̂ dN̂∫ 1

0
ZN̂ dN̂

, (22)

where ZN̂ is the configuration integral expressed as a function
of the reduced particle number N̂ .

An alternative, and much simpler, way of obtaining 〈N̂〉0

for arbitrary 	max is to employ the equipartition theorem,
which together with Eq. (6) yields that the thermal average
〈a2

	m〉 is given by [7]

〈
a2

	m

〉 = 1

κ̂ (	 + 2)(	 + 1)	(	 − 1)
. (23)

Inserting this expression into Eq. (8) and noting that there
are (2	 + 1) degenerate modes for each 	 directly yields an
expression for 〈N̂〉0:

〈N̂〉0 = 3

16πκ̂

	max∑
	=2

2	 + 1

	(	 + 1)
. (24)

The monotonically increasing nature of Eq. (24) implies that
the free energy minimum is gradually shifted towards larger
N̂ as 	max is increased. Crucially, N̂ diverges logarithmically
with 	max since the summand decays as 	−1 for large 	: this
shows that the (R0-dependent) choice of 	max is crucial when
discussing the effect of thermal fluctuations in lipid vesicles.
As we show below, using the value 	max = 1000 realistic for
GUVs yields physically reasonable values of N̂ , indicating
that this divergence is unproblematic in practice. A compar-
ison between Eq. (24) and the numerical solution of Eq. (22)
shows that the two expressions coincide perfectly for 	max = 2
and 3 for κ̂ > 1, below which the assumption of small defor-
mations breaks down, thus providing an independent check of
the expressions (20) and (21) for the configuration integral.

Before we proceed to the case of a nonzero osmotic gra-
dient, we note that, for low values of 	max, 〈N̂〉0 differs
from the optimal value N̂op obtained by instead minimising
βFb = − ln ZN with respect to N̂ , which gives

N̂op(	max = 2) = 3

32πκ̂
, (25)

while, from Eq. (24), we have

〈N̂〉0(	max = 2) = 5

32πκ̂
. (26)

The difference between Eqs. (25) and (26) seemingly goes
against basic statistical-mechanical results, but stems from
the fact that we are far from the thermodynamic limit which
here corresponds to having a large number of degrees of
freedom, i.e., 	max → ∞. Physically, this shows that, for very
small SUVs where only a few fluctuation modes are thermally
excited, fluctuations about the equilibrium volume will be
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FIG. 3. Average 〈N̂〉0 (solid lines/symbols) and optimal N̂op

(dashed lines) reduced vesicle size in the absence of an osmotic
gradient, as a function of the reduced bending stiffness κ̂ . Points
show results obtained from numerical solution of Eq. (22), and solid
lines were obtained from Eq. (24), illustrating the equivalence of the
two paths to 〈N̂〉0. N̂op was obtained from numerical minimisation of
βFb = − ln ZN .

significant. On the other hand, for GUVs with millions of
fluctuation modes, N̂op ≈ 〈N̂〉0, and thermal fluctuations of
the vesicle shape will effectively occur at a constant volume
Vop < V0.

In Fig. 3, we present the relative volume reduction N̂ ,
using both measures described above, as a function of κ̂ for
	max = 2 and 3, together with 〈N̂〉0 evaluated from Eq. (24)
for 	max = 1000, relevant for micron-sized GUVs. For very
small values of κ̂ , the volume reduction is clearly too large
for the harmonic approximation to be valid, while for phys-
ically relevant values of κ̂ ∼ 20 and 	max = 1000, we get
that 〈N̂〉0 ∼ 4 × 10−2, corresponding to a decrease in vesicle
volume of 4% compared to that of the perfect sphere. Finally,
the results show that the discrepancy between the two volume
measures (N̂op and 〈N̂〉0) decreases for 	max = 3 compared
to 	max = 2, and will eventually vanish as more fluctuation
modes are added.

VI. VESICLE DEFORMATION DUE TO OSMOTIC STRESS

We now turn to the case of an imposed osmotic imbalance
� > 0 across the membrane, corresponding to a higher solute
concentration outside than in the vesicle interior. In this case,
we can no longer rely on the equipartition theorem to easily
express 〈a2

	m〉 as in Eq. (23). Instead, we will use the expres-
sions (20) and (21) for ZN to compute the volume reduction in
the presence of an osmotic gradient. Reexpressing Eq. (11) as
a function of �, we can compute 〈N̂〉� according to

〈N̂〉� =

∫ 1

0
N̂ZN̂ exp(βN̂�V0)dN̂∫ 1

0
ZN̂ exp(βN̂�V0)dN̂

. (27)

For 	max = 2, the integrals can be analytically evaluated,
leading to the following generalization of Eq. (26) valid for
κ̂ � 0.2 and � � �c:

〈N̂〉�(	max = 2) = 5

32πκ̂

�c

�c − �
, (28)
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FIG. 4. Average reduced vesicle size 〈N̂〉� for κ̂ = 20 in the
presence of an osmotic gradient �, obtained from Eq. (27). The
inclusion of thermal fluctuations makes the vesicle deformation in-
creasingly gradual, while not affecting the location of the vesicle
collapse, which is still given by �c in Eq. (2). The red dashed line
shows the simplified expression (28), valid for � � �c, while the
solid lines correspond to an exact evaluation of Eq. (27). The dashed
line for N̂ = 1 corresponds to the fully collapsed vesicle.

where �c is still given by the athermal value in Eq. (2), show-
ing that, for 	max = 2, thermal fluctuations do not affect the
location of the instability compared to the athermal case, but
changes the nature of the transition from abrupt to continuous.
The picture does not change qualitatively when we include
also the 	 = 3 modes into the description, although we here
need to numerically evaluate Eq. (27), leading to the results
shown in Fig. 4. Strikingly, the position of the global vesicle
deformation remains at � = �c given by the athermal condi-
tion (2) even when fluctuations in 	 = 3 modes are included.
However, just as in the absence of an osmotic gradient (Fig. 3),
the N̂ curve is shifted upwards as 	max is increased from 2 to
3. As � approaches �c the difference between the two curves
decreases, before they collapse in the vicinity of �c. Since
the only 	max-dependence in 〈N̂〉� [Eq. (27)] comes from the
expansion of the free energy Fb, we analyze this effect by
forming the difference Fb(	max) − Fb(2). A direct derivation
from Eqs. (18) and (20) gives, after integrating Eq. (18) over
ρ2:

βFb(	max) − βFb(	max = 2)

� − ln
∫

exp

[
− κ̂

2

	max∑
	=3

(	2 + 	 − 6)ρ2
	

]

×
(
1−C−1

N

	max∑
	=3

ρ2
	

)3/2

ρ6
3 · · ·ρ2	max

	max
dρ3· · ·dρ	max .

(29)

Equation (29) is a monotonically decreasing function of CN

(and thus of N̂), showing that the 	 = 2 mode becomes in-
creasingly dominant the more the vesicle shape deviates from
the perfect sphere. This property of Fb explains the gradual
collapse of the curves for 	max = 2 and 3 as the pressure is
increased, and holds for any value of 	max. We thus expect
the general features in Fig. 4 to hold also for physically re-
alistic values of 	max for GUVs. In spite of being far from
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these values, our results furthermore show that the correlation
between fluctuations in the most unstable, 	 = 2 mode and
higher modes does not affect the athermal instability criterion.
This observation is far from trivial since when thermally ex-
citing higher bending modes, the energy can be stored in all
available modes rather than in only the 	 = 2 modes them-
selves. Such coupled fluctuations however change the nature
of the transition from abrupt to continuous: In the absence of
an osmotic stress, the average vesicle volume is marginally
affected by thermal fluctuations, while for � ≈ �c the effect
of thermal fluctuations can be sizable. Thus, the effect of an
osmotic stress is to “soften” the bending modes, making them
significantly more excited than for � = 0.

VII. DISCUSSION

By explicitly considering the effect of thermal shape fluc-
tuations, we have shown that spherical vesicles subject to
an external osmotic pressure respond in a continuous way
by gradually decreasing their volume, in contrast to the
abrupt instability occurring in the absence of thermal fluctua-
tions. Our description is formally exact within the harmonic
approximation, although the explicit calculations are lim-
ited to the small number of fluctuation modes present for
	max = 3. This limitation is due to the difficulty introduced
by the constant-volume constraint in Eq. (18), which couples
the fluctuations of modes of all 	, and requires further ap-
proximations to enable analytical progress towards physically
realistic values of 	max. One simple such approximation is
to assume that the constant-volume constraint in Eq. (18)
applies only to the 	 = 2 mode, thus ignoring the coupling
of fluctuations between modes of different 	. This leads to
a decoupling of the multidimensional integral into a prod-
uct of (	max − 1) Gaussian integrals that can be solved in
closed form. This decoupling however means that the position
of the minimum in Fb(N̂ ) is unchanged when modes with
	max > 2 are added, so that we do not capture any additional
effects on the vesicle volume compared to the 	max = 2 case.
Nevertheless, this approximation could provide useful for ob-
taining other observables not directly related to the vesicle
volume.

Since our analysis is purely thermodynamic in nature, the
results do not depend explicitly on the timescales of equili-
bration or fluctuations. A rough estimate of the equlibration
time can however be obtained from considering the water
permeability P ≈ 16 µm s−1 measured for GUVs made of
POPC lipids [12]. The kinetics of volume change due to a
concentration difference �c can however be estimated from
the water flux Jw = P�c and volume change V̇ = JwA0Vw.
The kinetics of the relative volume change V̇ /V0 is thus
given by

V̇

V0
= 3P�cVw

R0
. (30)

Using typical values of �c = 10 mM and R0 = 5 µm yields
V̇ /V0 ≈ 10% per minute, which indicates that the initial equi-
libration is a relatively slow process, but nevertheless fully
accessible on experimental timescales. Furthermore, once
equilibrium has been reached, GUV volume fluctuations are
negligible so that the system should be considered ergodic at

timescales typical for membrane shape fluctuations at con-
stant volume, which is a significantly faster process. For
SUVs, V̇ /V0 is 1–2 orders of magnitude larger, and both equi-
libration and volume fluctuations should occur on timescales
of less than seconds.

The main conclusion of our study is that the vesicle volume
formally goes to zero at a well-defined critical pressure �c

identical to the one first derived by Ou-Yang and Helfrich for
the athermal case [6]. As noted above, this critical pressure
is many orders of magnitude smaller than the experimentally
observed one, indicating that the theoretical description does
not include all relevant aspects of the problem. To conclude,
we will thus discuss a few possible sources of this significant
discrepancy between theory and experiments.

(1) While exact within the harmonic approximation, one
limitation of our treatment is that, as � approaches �c, the
vesicle volume gradually decreases beyond the point where
the assumption of small deviations from spherical shape im-
plicit in Eqs. (3)–(8) becomes invalid. Thus, strictly speaking,
the harmonic energy expression of Eq. (6) does not cover
all of the the experimentally relevant parameter space, sug-
gesting that additional terms should be introduced into the
model to quantitatively describe the significant deformations
at � ≈ �c. These terms can come from two different sources:
First, Eqs. (7) and (8) are valid only to leading order in
the amplitudes a	m. There are thus higher order geometrical
corrections to the expressions for the vesicle free energy [8].
Second, Eq. (1) is based on a series expansion of the bending
energy. Using the planar state as reference, one expects also a
fourth-order term with a positive coefficient [17]. Considering
that the bending modes become highly excited under osmotic
stress, such terms might give significant contributions to the
bending energy. However, the fourth-order bending effects are
inversely proportional to A0 [17] and are thus expected to be
more important for small vesicles than for GUVs. Interest-
ingly, the inclusion of anharmonic effects in combination with
thermal fluctuations have previously been shown to have a
drastic effect on the buckling of nanometer-scale solid shells
under external pressure [23], where the critical buckling pres-
sure was however shifted towards lower values than in the
athermal, harmonic case.

(2) The presence of a concentration difference between
the interior and exterior regions of the vesicle creates an asym-
metry which gives rise to a nonzero spontaneous curvature
H0 < 0 due to solute-bilayer interactions [25,26], even for the
case where the vesicle itself is fully symmetric, leading to an
increase of �c according to Eq. (2). However, the theoretical
�c corresponds to extremely low concentrations, so that the
asymmetry, and thus the spontaneous curvature contribution
to the bending energy, should be negligible around �c. How-
ever, in the presence of some other stabilising mechanism this
spontaneous curvature term might become important for the
osmotic pressures where GUVs are experimentally observed
to be stable. Unlike the fourth-order bending terms discussed
above, according to Eq. (2) this effect is expected to be more
important for GUVs than for small vesicles, since it scales
linearly with R0.

(3) All the results are based on the assumption that the
lipid bilayer is laterally incompressible, corresponding to con-
straining the fluctuations to a constant area A0. While a good
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approximation, this is not strictly the case and an external
osmotic pressure will induce a finite area reduction. The re-
sulting coupling between membrane contraction and osmotic
pressure will generically lead to a stabilisation of the spherical
vesicle relative to the constant-area case. To leading order, the
relative area change Â = (A − A0)/A0 should be proportional
to the pressure and inversely proportional to the stretching
elasticity KA. By dimensional analysis we furthermore expect
that Â ∼ R0, implying that the effect should become more
significant for GUVs than for small vesicles.

While the present work provides important insights
into the physics of shape fluctuations in vesicles under

osmotic stress, significant future work is thus required to
analyze to what extent the additional effects discussed above
can contribute to reduce or eliminate the discrepancy between
theory and experiment, and to further shed light on the role
of bending energy as a stabilising mechanism against osmotic
stress in biological systems.
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of vesicle reshaping and scission under osmotic shocks, Soft
Matter 17, 3798 (2021).

[14] S. U. A. Shibly, C. Ghatak, M. Abu Sayem Karal, M.
Moniruzzaman, and M. Yamazaki, Experimental estimation of
membrane tension induced by osmotic pressure, Biophys. J.
111, 2190 (2016).

[15] W. Helfrich, Steric interaction of fluid membranes in multilayer
systems, Z. Naturforsch. 33a, 305 (1978).

[16] W. Helfrich and R. Servuss, Undulations, steric interaction and
cohesion of fluid membranes, Il Nuovo Cimento D 3, 137
(1984).

[17] W. Helfrich, Size distributions of vesicles: the role of the effec-
tive rigidity of membranes, J. Phys. France 47, 321 (1986).

[18] S. T. Milner and S. A. Safran, Dynamical fluctuations of droplet
microemulsions and vesicles, Phys. Rev. A 36, 4371 (1987).

[19] I. Bivas and N. S. Tonchev, Membrane stretching elasticity and
thermal shape fluctuations of nearly spherical lipid vesicles,
Phys. Rev. E 100, 022416 (2019).

[20] T. V. S. Krishnan, K. Yasuda, R. Okamoto, and S. Komura,
Thermal and active fluctuations of a compressible bilayer vesi-
cle, J. Phys.: Condens. Matter 30, 175101 (2018).

[21] J. Oberdisse and T. Hellweg, Structure, interfacial film prop-
erties, and thermal fluctuations of microemulsions as seen by
scattering experiments, Adv. Colloid Interface Sci. 247, 354
(2017).

[22] I. Hoffmann, C. Hoffmann, B. Farago, S. Prévost, and M.
Gradzielski, Dynamics of small unilamellar vesicles, J. Chem.
Phys. 148, 104901 (2018).

[23] J. Paulose, G. A. Vliegenthart, G. Gompper, and D. R. Nelson,
Fluctuating shells under pressure, Proc. Natl. Acad. Sci. USA
109, 19551 (2012).

[24] W. Helfrich, Elastic properties of lipid bilayers: Theory and
possible experiments, Z. Naturforsch. C 28, 693 (1973).

[25] A. Kabalnov, U. Olsson, and H. Wennerström, Salt effects on
nonionic microemulsions are driven by adsorption/depletion at
the surfactant monolayer, J. Phys. Chem. 99, 6220 (1995).

[26] R. Ghosh, V. Satarifard, A. Grafmüller, and R. Lipowsky,
Budding and fission of nanovesicles induced by membrane
adsorption of small solutes, ACS Nano 15, 7237 (2021).

064607-8

https://doi.org/10.1073/pnas.1914599117
https://doi.org/10.1017/qrd.2022.3
https://doi.org/10.1146/annurev-micro-020518-115504
https://doi.org/10.1085/jgp.201411296
https://doi.org/10.1103/PhysRevLett.59.2486
https://doi.org/10.1080/00018739700101488
https://doi.org/10.1103/PhysRevA.42.6060
https://doi.org/10.1021/acs.jpclett.1c03369
https://doi.org/10.1016/S0006-3495(01)75914-0
https://doi.org/10.1016/j.colsurfb.2018.08.053
https://doi.org/10.1039/D0SM00155D
https://doi.org/10.1039/D0SM02012E
https://doi.org/10.1016/j.bpj.2016.09.043
https://doi.org/10.1515/zna-1978-0308
https://doi.org/10.1007/BF02452208
https://doi.org/10.1051/jphys:01986004702032100
https://doi.org/10.1103/PhysRevA.36.4371
https://doi.org/10.1103/PhysRevE.100.022416
https://doi.org/10.1088/1361-648X/aab6c7
https://doi.org/10.1016/j.cis.2017.07.011
https://doi.org/10.1063/1.5009424
https://doi.org/10.1073/pnas.1212268109
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1021/j100016a068
https://doi.org/10.1021/acsnano.1c00525

