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Simulating the flow of interacting ferrofluids with multiparticle collision dynamics

Patrick Ilg
School of Mathematical, Physical, and Computational Sciences, University of Reading, Reading, RG6 6AX, United Kingdom

(Received 24 September 2022; accepted 28 November 2022; published 14 December 2022)

Ferrofluid flow is fascinating since its fluid properties can conveniently be manipulated by external magnetic
fields. Novel applications in micro- and nanofluidics as well as in biomedicine have renewed the interest in the
flow of colloidal magnetic nanoparticles with a focus on small-scale behavior. Traditional flow simulations of
ferrofluids, however, often use simplified constitutive models and do not include fluctuations that are relevant at
small scales. Here we address these challenges by proposing a hybrid scheme that combines the multiparticle col-
lision dynamics method for modeling hydrodynamics with Brownian dynamics simulations of a reliable kinetic
model describing the microstructure, magnetization dynamics, and resulting stresses. Since both multiparticle
collision dynamics and Brownian dynamics are mesoscopic methods that naturally include fluctuations, this
hybrid scheme presents a promising alternative to more traditional approaches, also because of the flexibility
to model different geometries and modifying the constitutive model. The scheme was tested in several ways.
Poiseuille flow was simulated for various model parameters and effective viscosities were determined from the
resulting flow profiles. The effective, field-dependent viscosities are found to be in very good agreement with
theoretical predictions. We also study Stokes’ second flow problem for ferrofluids. For weak amplitudes and
low frequencies of the oscillating plate, we find that the velocity profiles are well described by the result for
Newtonian fluids at the corresponding, field-dependent viscosity. Furthermore, the time-dependent profiles of
the nonequilibrum magnetization component are well approximated by their steady-state values in stationary
shear when evaluated with the instantaneous local shear rate. Finally, we also apply our scheme to simulate
ferrofluid shear flow over a rough surface. We find characteristic differences in the nonequilibrium magnetization
components when the external field is oriented in flow and in a gradient direction.
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I. INTRODUCTION

Colloidal suspensions of magnetic nanoparticles (MNPs)
in nonmagnetic carrier fluids—known as ferrofluids—show
fascinating flow behavior due to their sensitivity to externally
applied magnetic fields [1,2]. Since the apparent viscosity
can conveniently be controlled by an external field, these
fluids find promising applications ranging from engineering
and micro- and nanofluidics to biomedicine [3–6]. Not sur-
prisingly, this exciting field is currently under active research
(see, e.g., Refs. [7,8] for recent reviews).

From a theoretical point of view, ferrofluids are a par-
ticularly interesting kind of complex fluid where the fluid
magnetization comes into play as a slow, nonhydrodynamic
variable [9,10]. Similar to other complex fluids, formulating
reliable constitutive models for ferrofluids is a formidable
challenge. Over the last decades, several different magneti-
zation equations and corresponding constitutive models have
been proposed, based on thermodynamic or kinetic theory
arguments, but no agreement has been reached yet (see, e.g.,
Refs. [10–18] and references therein). Some of these constitu-
tive models have been tested in experiments [19,20] or against
detailed molecular simulations [21,22]. Despite significant
progress in modeling ferrofluids, many flow simulations to
date still use rather simple constitutive models, sometimes
neglecting the magnetization dynamics altogether [23–27].
Since flow simulations are needed to design and plan technical

applications as well as biomedical treatments, the urgent need
for novel methods that are able to implement reliable consti-
tutive models by incorporating the suspension microstructure
has been pointed our recently [28].

Here, we address this challenge by extending the mul-
tiparticle collision (MPC) approach to ferrofluids that we
developed recently [29]. MPC is a very flexible method to
simulate fluid flow that naturally includes thermal fluctuations
[30–32]. The method has recently been used to include hy-
drodynamic interaction effects in particle-level simulations of
ferrofluids [33]. On a more coarse-grained level, the MPC
method has recently been extended to describe the flow of
complex fluids such as polymer solutions [34] and nematics
[35]. The hybrid MPC scheme proposed for ferrofluids in
Ref. [29] couples Brownian Dynamics simulations of a kinetic
model of ferrofluids to the MPC flow solver. In the spirit
of similar hybrid schemes which simulate complex fluids
with stochastic simulations and finite-element flow solvers
[36], these methods do not require closed-form constitutive
equations. Instead, the stochastic simulations directly solve
the underlying kinetic model, thereby avoiding the need for
closure approximations. Note that the stochastic simulations
include fluctuations in the stress contributions due to the finite
size of the ensemble used [36]. In Ref. [29], the classical ki-
netic model of Martsenyuk et al. [13] was implemented using
the MPC method. Although this model is widely considered
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a reliable representation of ultradilute ferrofluids, the model
fails to account for several phenomena observed for real fer-
rofluids, such as enhanced anisotropy of the magnetoviscous
effect [37,38] and sensitivity to nonrotational components of
the flow field [20].

The failure of the classical kinetic model to describe these
phenomena can be traced back to the neglect of the internal
microstructure of ferrofluids. The chain model proposed by
Zubarev and Iskakova [14,15] extends the classical kinetic
model and thereby overcomes these shortcomings. Rather
than considering isolated MNPs, the chain model develops
a kinetic theory for the dynamics of rigid, chainlike aggre-
gates of MNPs that are formed due to dipolar interactions
among the nanoparticles. Comparison to experiments and to
more detailed, many-body molecular simulations of interact-
ing ferrofluids show that the chain model captures the relevant
phenomena at least semiquantitatively [16,22,39,40]. There-
fore, in the present paper, we extend our previous work [29]
by implementing the chain model in a hybrid MPC scheme for
ferrofluids. Thereby, we also drop the restriction to two spatial
dimensions employed in Ref. [29] and present here a fully
three-dimensional scheme that is able to provide a physically
sound description of the flow of real ferrofluids. We verify
our implementation of the model by quantitatively comparing
simulation results for the effective viscosity extracted from
Poiseuille flow to analytical results. Using a broad range of
model parameters, we find very good agreement between
simulation and theoretical results. We also considered Stokes
second flow problem for ferrofluids. This benchmark problem
considers the flow induced by an infinite flat plate, harmon-
ically oscillating in its plane. Previous studies showed that
the MPC method is able to simulate the resulting flow for
Newtonian fluids [41]. Here we determine the time-periodic
flow profile for ferrofluids and find very good agreement with
the prediction for a Newtonian fluid with the corresponding
effective, field-dependent viscosity. Finally, we use our hybrid
MPC scheme to study ferrofluid shear flow over a rough
surface, where the roughness is idealized as square ridges.
Such structures are commonly encountered in micropatterned
surfaces and in microfluidic devices.

The paper is organized as follows. In Sec. II, we review the
equations of ferrofluid hydrodynamics and their coupling to
the stochastic formulation of the chain model. In Sec. III, we
describe the hybrid MPC model, where we present the cou-
pling of the angular momentum-conserving MPC algorithm
with Brownian dynamics simulations of the chain model for
ferrofluids. Verification of our implementation of this hybrid
scheme is shown in Sec. IV. Results for Stokes second flow
problem are shown in Sec. V and ferrofluid shear flow over
rough surfaces is presented in Sec. VI. Finally, some conclu-
sions are offered in Sec. VII.

II. FLUCTUATING FERROFLUID HYDRODYNAMICS

We here summarize the basic hydrodynamic equations for
ferrofluid dynamics. For more details, the reader is referred
to Refs. [9–12]. We start with the fluid momentum balance
equation that can be expressed as

ρ
d

dt
v = −∇p + ∇ · σhyd + ρfM, (1)

where ρ denotes the fluid density, v the velocity field, and
d/dt the material derivative. The driving forces are the gra-
dients of the scalar pressure p and the hydrodynamic stress
tensor σhyd, as well as the Kelvin-Helmholtz force density fM.
The latter can be written as

ρfM = (M · ∇)H + 1
2∇ × (M × H), (2)

where H denotes the magnetic field and M the magnetization.
The Kelvin-Helmholtz force (2) is responsible for much of the
peculiarities of ferrofluid flow and vanishes when no external
field is applied. As we shall later see, Eq. (2) is the only
field-dependent driving force in the case of noninteracting,
i.e., ultradilute ferrofluids.

Besides the hydrodynamic balance equations, the fluid also
needs to satisfy the magnetostatic Maxwell equations

∇ · (H + M) = 0, ∇ × H = 0. (3)

Equations (1)–(3) are not closed, as they are missing constitu-
tive equations for the stress tensor σhyd and the magnetization
M. There has been some discussion in the literature about the
appropriate form of the stress tensor σhyd and corresponding
magnetization equation for interacting ferrofluids (see, e.g.,
Refs. [10–12,17–20] and references therein). As discussed in
Ref. [11], assuming fast rotational relaxation appropriate for
ferrofluids implies that the hydrodynamic stress tensor σhyd is
symmetric.

Here, we employ the so-called chain model of ferrofluids
[14,15]. In this mesoscopic model, it is assumed that dipolar
interactions among the MNPs lead to chainlike aggregates that
can be described approximately as rigid ellipsoids of revolu-
tion with axis ratio r. The stronger the dipolar interactions,
the larger the value of r. The special case r = 1 describes
spherical particles, corresponding to noninteracting ferroflu-
ids. Within the chain model, one can use the theory of dilute
rigid suspensions to find that the stress tensor can be expressed
as σhyd = Tvis + Tpot, with the viscous contribution [15,42]

Tvis = 2ηsD + 5ηsφ[2Q1D + Q4(D · A(2) + A(2) · D)

− Q5D : A(4)], (4)

where φ denotes the volume fraction of the ellipsoidal aggre-
gates, ηs the solvent viscosity, and D = (1/2)[(∇v)T + ∇v]
the symmetric velocity gradient. The quantities A(n) denote
the nth-order alignment tensors of the ellipsoid orientation
and Qj = Qj (r), j = 0, . . . , 5, are geometric coefficients that
depend solely on the axis ratio r. More details on these
quantities are given in Appendix A. In the presence of an
interaction potential, as is the case for an externally applied
magnetic field H, there is an additional potential contribution
to the stress tensor for rigid suspensions. In the rigid-dipole
approximation, where the magnetic moment is assumed to
remain fixed within the particle and aligned parallel to the
symmetry axis of the ellipsoid, this contribution is given by
[43]

Tpot = 1
2 nkBT B[6A(2) − 2I − (mh + hm) + A(3) · h]. (5)

In Eq. (5), we introduced the number density n of ellipsoidal
aggregates and their shape factor B = (r2 − 1)/(r2 + 1). The
absolute temperature is denoted by T and kB is Boltzmann’s
constant. Moreover, we defined the dimensionless magnetic
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field h = μH/kBT with μ the magnetic moment of the ellip-
soidal aggregate and h = |h| the Langevin parameter. With
the help of the saturation magnetization Msat = nμ, the re-
duced magnetization m is defined by M = Msatm. Finally, I
denotes the three-dimensional unit matrix. For the special case
of spherical particles, r = 1 such that Tpot = 0 and Tvis =
2ηs[1 + 5φ/2]D reduces to the well-known expression for a
dilute suspension of hard spheres.

Having specified the stress tensor σhyd, a constitutive
model for the magnetization dynamics and corresponding
higher-order alignment tensors is still needed to close the sys-
tem of Eqs. (1)–(5). Within the chain model, this is done via a
stochastic description for the rotational motion d

dt u = ω × u
of the orientation u of the ellipsoidal aggregates. Thanks to
the rigid-dipole approximation, u coincides with the direc-
tion of the magnetic moment of the aggregate. Therefore,
the magnetization and higher-order moments can be derived
as expectation values, m = 〈u〉. The angular velocity ω of
the ellipsoidal aggregate can be obtained from the balance of
hydrodynamic, magnetic, and Brownian torques,

ω = � + Bu × D · u + μ

ξ
u × H + R, (6)

where � = (1/2)∇ × v denotes the local vorticity of the flow
and ξ the rotational friction coefficient of the ellipsoidal ag-
gregate. The Gaussian random torques R vanish on average,
〈R〉 = 0, and satisfy 〈R(t )R(t ′)〉 = 2kBT

ξ
δ(t − t ′)I [44].

It should be noted that the original chain model consid-
ers a distribution of chain lengths. For simplicity, we here
consider a single aspect ratio only that can be interpreted
as representing a typical chain length [43]. Since chains are
assumed to be noninteracting [15], it is straightforward to
extend the present paper by including a distribution of aspect
ratios. Furthermore, we mention that the chain model in the
form presented here disregards flow-induced changes in chain
lengths. Therefore, we consider in the following relatively
weak flows and moderate chain lengths where these effects
are known to be weak [22,38]. This paper can be extended
by including phenomenological relations for a reduction of
mean chain lengths in flow (see, e.g., [16,39] and references
therein).

III. FERROHYDRODYNAMIC MPC MODEL

We now describe the hybrid model combining MPC and
Brownian dynamics to simulate fluctuating ferrohydrodynam-
ics of interacting ferrofluids. While the original MPC method
was designed for simple liquids [30,31], recent years have
seen several extensions of the method to complex fluids
[32] such as polymer solutions [34] and nematics [35]. Very
recently, we have proposed to model fluctuating ferrohydro-
dynamics with the help of MPC [29]. In this model, each
MPC particle represents a small fluid element, carrying its
individual magnetic moment. The particles’ magnetic mo-
ments perform stochastic rotational dynamics in the presence
of local magnetic fields and velocity gradients. The additional
Kelvin-Helmholtz force entering the fluid momentum balance
equation leads to backflow effects. This model and its imple-
mentation have been validated in Ref. [29] for two dimensions
and for a constitutive model that is appropriate for ultradilute

(noninteracting) ferrofluids only. Here we want to extend the
model proposed in Ref. [29] to three spatial dimensions and
also generalize the constitutive model used there to include
also interacting ferrofluids, which show a richer anisotropic
behavior and enhanced viscoelastic effects compared to their
noninteracting counterparts [16].

Within the MPC method, the fluid is represented as a col-
lection of N particles at positions ri with velocities vi and
masses mi = m with i = 1, . . . , N . In a coarse-grained de-
scription, each particle represents a small volume of fluid with
magnetic moment μui, where ui is a three-dimensional unit
vector and μ the magnitude of the magnetic moment, assumed
to be identical for all particles. The basic idea behind the
MPC method is that relatively simple dynamic rules for these
particles are sufficient to reproduce hydrodynamic behavior
on slightly larger length and longer time scales, provided that
mass, momentum and energy is conserved locally.

In particular, the MPC method splits the dynamics into a
streaming and a collision step that we describe next. In the
streaming step, particle positions and velocities are updated
over a time interval �t according to [45]

ri(t + �t ) = ri(t ) + �t vi(t ) + �t2

2m
Fi(t ), (7)

v′
i(t ) = vi(t ) + �t

m
Fi(t ), (8)

with Fi(t ) the total force acting on particle i at time t . In
view of Eq. (1) and modeling an applied pressure gradient
as external force, fext = −ρ−1∇p, we can identify the force
acting on the MPC particles as

Fi = fext + fM(ri ) + 1
ρ
∇ · σhyd(ri ). (9)

To exchange momentum between particles, the streaming
step is followed by a collision step. Different collision rules
for MPC algorithms have been proposed that conserve mass
and momentum. Here, since we are interested in the rota-
tional dynamics, we choose the so-called Andersen-AR+a
thermostat, which performs collisions that additional preserve
angular momentum [46]. A peculiarity of MPC schemes is
that they do not resolve individual collisions between par-
ticles but perform collisions simultaneously on all particles
currently residing in the same collision cell. To this end, we
divide the total system into Nx × Ny × Nz cubic collisions
cells of linear size a. We denote with v′

i the velocity of particle
i at time t after the streaming step (8). The center-of-mass
velocity of cell Ci to which particle i belongs at this instance is
VCi = N−1

Ci

∑
j∈Ci

v′
j . Collisions and thermostatting are done

simultaneously in the Andersen-AT+a algorithm by assigning
new velocities to all particles in the same collision cell Ci

according to

vi(t + �t ) = VCi + v̂MB
i + OCi × ri,c, (10)

where v̂MB
i = vMB

i − N−1
Ci

∑
j∈Ci

vMB
j and vMB

i is a random
velocity vector drawn from the three-dimensional Maxwell-
Boltzmann distribution with zero mean and standard deviation√

kBT/m. The last term in Eq (10) removes angular momen-
tum introduced by the random velocities,

LCi = m
∑
j∈Ci

r j,c × (
v′

j − vMB
j

)
, (11)
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with OCi = I−1
Ci

· LCi and ICi the moment of inertia tensor of
this collision cell, ICi = m

∑
j∈Ci

[r2
j,cI − r j,cr j,c], where ri,c =

ri − rcm the position of particle i relative to the center of mass
of its collision cell. Note that the positions ri in Eqs. (10) and
(11) are understood to denote the current positions ri(t + �t )
after the streaming step Eq (7). In order to avoid problems
due to the violation of Galilean invariance arising from using
a fixed grid of collision cells, we follow common practice [31]
and shift the grid by a three-dimensional vector, where each
component is randomly drawn from a uniform distribution in
[−a/2, a/2].

In addition to the translational motion (7), (8), and (10), we
also need to specify the rotational motion associated with the
magnetic moment of the particles. As mentioned in Sec. II,
we here employ the so-called chain model of ferrofluids [15],
where interactions between MNPs are assumed to lead to
rigid, chainlike aggregates that can be represented as rigid el-
lipsoids of revolution with axis ratio r. Assuming furthermore
that the magnetic moments are rigidly fixed within the par-
ticles, the magnetization dynamics is slaved to the rotational
dynamics of the aggregate. For the latter, a weak first-order
scheme to integrate Eq. (6) reads �ui = �ωi × ui(t ) with

�ωi =
[
�Ci + Bui × DCi · ui + 1

2τB
uCi × hi

]
�tBD + �Wi,

(12)
where �Wi denotes a three-dimensional Wiener increment
over the time interval �tBD, while �Ci , DCi and hCi denote
the vorticity �, the symmetric velocity gradient D, and the di-
mensionless local field h, respectively, evaluated at the center
of the collision cell to which particle i belongs to. In Eq. (12),
we have also introduced the Brownian rotational relaxation
time τB = ξ/(2kBT ).

The time step �tBD for the Brownian dynamics scheme
(12) does not need to be identical to the time step �t of the
MPC steps (7)–(10). In MPC, the time step �t can typically
be chosen rather large, while stochastic algorithms such as
Eq. (12) require �tBD/τB to be small. Here, we use �tBD =
�t/nBD and perform nBD steps of Brownian dynamics simu-
lations (12) for fixed values of �Ci , DCi , and hCi for every step
of MPC. In practice, we use a second-order stochastic Heun
scheme with (12) as a predictor step, which allows us to use
larger time steps �tBD, leading to moderate values of nBD and
consequently a rather efficient scheme.

The velocity gradients needed to calculate �Ci and DCi we
compute from finite-difference schemes of the velocity field
v(r, t ). The latter we obtain from the particles’ velocities vi

via kernel smoothing, v(r, t ) = K̄−1 ∑N
i=1 vi(t )K (|r − ri(t )|)

with K̄ = ∑N
j=1 K (|r − r j (t )|) and K the Epanechnikov ker-

nel. More details can be found in Ref. [29]. Finally, we
need to calculate the additional magnetic driving forces in
the momentum balance, i.e., the Kelvin-Helmholtz force (2)
and the divergence of the extra stress tensor, Eqs. (4) and (5).
Also for these quantities, we use kernel smoothing methods
to compute the fields m, h, A(k) and finite-difference schemes
to calculate their spatial gradients. The simulations discussed
below employ periodic as well as no-slip boundary conditions.
In the flow and vorticity direction, we use periodic boundary
conditions, while no-slip conditions are employed at channel

and obstacle walls. In MPC, no-slip boundary conditions are
conveniently implemented by the bounce-back rule for par-
ticle’s positions and velocities. We also add temporary ghost
particles for the collisions in underpopulated boundary cells
[45]. An overview of the resulting algorithm is given in Ap-
pendix B.

IV. VALIDATION AND RESULTS FOR CHANNEL FLOW

We have implemented and tested the ferrohydrodynamic
MPC model described in Sec. III for systems of different sizes
Lx × Ly × Lz, ranging from 20 × 20 × 20 to 50 × 50 × 10
and 100 × 25 × 5. Following common practice, we choose
the linear size a of the collision cell as unit length, a = 1.
Therefore, the lengths Lx, Ly, Lz are equal to the number of
collision cells in these directions, Nx, Ny, Nz, respectively.
With Q = 〈NCi〉 the average number of particles per collision
cell, each simulation contains a total number of N = QNxNyNz

MPC particles.
First, we check the correct implementation of the

Andersen-AT+a thermostat. We verified that the angular mo-
mentum is indeed conserved in each collision cell. Next,
using a system of size 203 and applying periodic boundary
conditions in all three dimensions, we study the self-diffusion
coefficient Ds of the pure MPC fluid. The pure MPC fluid
is obtained in this scheme for the special case of setting the
number density n = 0, thereby switching off magnetic con-
tributions to hydrodynamics since in this case Tpot = fM =
0 and Tvis = 2ηsD. Analyzing the particles’ mean-squared
displacements 〈�r2

i (t )〉, we find a linear relation 〈r2
i (t )〉 =

6Dst from which we determine Ds. Good agreement of
our simulation results with the theoretical prediction Ds =
(kBT �t/m)[Q/(Q − 2) − 1/2] is seen in Fig. 1(a) for large
enough Q, for which the theoretical result was derived [46].

We also checked the viscosity coefficients of the pure MPC
fluid. To extract viscosity coefficients, we simulate Poiseuille
flow in a three-dimensional planar channel for given constant
external force fext driving the flow. No-slip boundary condi-
tions on the channel wall and periodic boundary conditions
in the flow and vorticity direction are employed. From the
resulting parabolic velocity profile,

vx(y) = fext

2ν
y(Ly − y), (13)

where Ly denotes the channel height, we determine the kine-
matic viscosity ν. We perform simulations for a range of
different parameter values. Typically, for each of the chosen
set of parameters, we employ 105 MPC time steps and use
the second half to extract average quantities such as the mean
velocity profile vx(y). We fit the numerically determined flow
profiles to Eq. (13) to determine the kinematic viscosity ν.
Some results for the kinematic viscosity obtained from these
fits are shown in Fig. 1(b) versus the time step �t for two
different temperatures T . Different channel geometries were
found to lead to the same results within numerical accuracy.
The average number of MPC particles per collision cell was
chosen as Q = 20, which is large enough so the theoretical
result [46]

νs = kBT �t

m

(
Q

Q − 5/4
− 1

2

)
+ a2

24�t

Q − 7/5

Q
(14)
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FIG. 1. Transport coefficients of the pure MPC fluid (n = 0). (a) Self-diffusion coefficient Ds as a function of mean number of particles per
collision cell Q. Lower data correspond to �t = 0.1, upper to �t = 1.0. Symbols denote the results of MPC simulations, while dashed lines
show the theoretical result mentioned in the text. (b) Kinematic viscosity ν∗

s as a function of time step �t for Q = 20 and T = 0.1 (lower) and
T = 0.5 (upper) for the MPC fluid. Dashed lines show the theoretical result Eq. (14).

should apply. Indeed, we find from Fig. 1(b) a good agreement
of Eq. (14) with our numerical results. The dimensionless
kinematic viscosity is defined as ν∗

s = (�t/a2)νs. Further-
more, we observe that our numerical results for νs are
independent of the value fext of the driving force up to fext =
0.005. For values fext = 0.005 and larger, we find that the
kinematic temperature is slightly higher than the one imposed
by the thermostat. Therefore, if not stated explicitly otherwise,
we use the value fext = 0.002, for which this problem is reme-
died.

Having tested the pure MPC fluid, we now consider finite
concentrations of MNPs, modeled by nonzero values of the
number density n. In the absence of an external magnetic
field, we expect a viscosity increase known from the theory
of rigid suspensions, η0 = (1 + crφ)ηs, where ηs denotes the
viscosity of the solvent fluid, φ the volume fraction, and cr

a geometric coefficient given by cr = 5Q1 + 2Q3 − Q2 [42].
The corresponding dimensionless zero-field kinematic viscos-
ity ν∗

0 = �t/(ρa2)η0 can be expressed as

ν∗
0 = ν∗

s + n∗τ ∗
B

cr

3ϕr
, (15)

where ν∗
s denotes the dimensionless kinematic viscosity of the

pure MPC fluid, given by Eq. (14). In Eq. (15), we introduced
the quantity ϕr = 5Q0/(3B), which equals 1 for spheres. For
spherical particles, r = 1, the expression for η0 reduces to
Einstein’s famous result with c1 = 5/2. Figure 2 shows the
kinematic viscosity in the absence of external fields, obtained
from fits of the velocity profile in Poiseuille flow to Eq. (13)
for Q = 30, τ ∗

B = 10, �t = 0.2. Very good agreement with
the theoretical expression Eq. (15) is found.

Having checked that we find the correct model behavior
in the absence of externally applied magnetic fields, we now
investigate the magnetoviscous effect, i.e., the field-induced
changes of the effective viscosity due to external magnetic
fields [16]. We consider dimensionless external fields h0 =
μH0/kBT that are oriented either in flow (x), gradient (y),

or vorticity (z) direction. We first disregard demagnetization
effects such that the internal field H is identical to H0 and
thus h = h0. Since we consider planar channel geometries,
we expect spatially uniform behavior in flow and vorticity
directions and therefore report flow, magnetization and stress
profiles in gradient direction only.

Figure 3 shows flow and stress profiles for Poiseuille flow
with uniform external force fext = 0.002 and applied mag-
netic fields with strengths h = 0, 2, 5, respectively, applied in
the gradient direction. The axis ratio was chosen as r = 2
and the remaining model parameters are Q = 30, T = 0.1,
n∗ = 0.01, and τ ∗

B = 10. Error bars are no larger than the
symbol size. Data are shown for a channel with dimensions

0 0.005 0.01 0.015
0.2

0.25

0.3

0.35

FIG. 2. Kinematic zero-field viscosity ν∗
0 as a function of re-

duced number density n∗. Black, blue, and green symbols correspond
to simulation results for axis ratios r = 1.0, 2.0, and 5.0, respectively.
Dashed lines show the theoretical result (15).
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FIG. 3. Profiles of the scaled flow velocity vx/vmax in (a) and the hydrodynamic stress σ hyd
yx in (b) across the channel height y. A magnetic

field was applied in gradient direction of the flow. Square, circles, and diamonds correspond to a magnitude h = 0, 2, 5 of the field, respectively.

50 × 50 × 10, but results for other dimensions were found
identical within statistical uncertainties. For all parameter val-
ues investigated, we find nicely parabolic velocity profiles
without wall slip. For the parameters used here, the maximum
shear rate is around 0.1, corresponding to Peclet numbers
of order 1, so shear thinning effects should be weak. The
hydrodynamic stress σ

hyd
yx shows a linear variation across the

channel, as expected for laminar flow. We note some deviation
from the linear profile very close to the wall.

Fitting again the velocity profiles to Eq. (13), we determine
effective, field-dependent viscosity coefficient ν∗

i (h). For h →
0, we recover the zero-field viscosity ν∗

0 obtained earlier.
We observe that the effective viscosity coefficients change
as the strength and orientation of the applied field changes.
This phenomenon is known as the magnetoviscous effect [9].
Figure 4 shows the result of the simulations, where we find
ν2 > ν1 > ν3, the expected ordering for elongated particle
suspensions [44]. For convenience, we show the viscosity
changes �ν∗

i = ν∗
i (h) − ν∗

0 relative to their zero-field value.
Within the so-called effective-field approximation (EFA),

the viscosity coefficients νi, i = 1, 2, 3 can be calculated
analytically [43]. Their explicit expressions are given in
Eqs. (A3)–(A5) in Appendix A and are shown in Fig. 4 as
dashed lines for the corresponding parameters. We find
very good agreement between the numerically determined
viscosities and the theoretical results based on the EFA ap-
proximation. The agreement is of similar quality as found in
planar shear flow [43], once again verifying the implementa-
tion and indicating negligible wall slip in the Poiseuille flow
considered here.

We now revisit the study of the magnetoviscous effect,
this time taking into account demagnetization effects. We
apply a spatially homogeneous external magnetic field H0

outside the channel. Inside the channel, the magnetostatic
Maxwell equations (3) require that the internal field H sat-
isfies ∇ · H = −∇ · M. Due to translational invariance of the
channel geometry in x and z directions, this relation simpli-
fies to ∂Hy/∂y = −∂My/∂y. Using, in addition the continuity

conditions of the fields at the channel walls, we find that
the internal field is given by Hx = H0,x, Hy = H0,y − My,
and Hz = H0,z. In terms of the dimensionless magnetic field
h, this relation can be written as hy = h0,y − 3χLmy, where
χL = nμ2/(3kBT ) denotes the Langevin susceptibility. Disre-
garding demagnetization effects is therefore justified for small
χL. In principle, χL is not an additional model parameter. If
we interpret the axis ratio r of the ellipsoidal aggregate as
a proxy for the mean number 〈nch〉 of MNPs in a chainlike
aggregate, χL can approximately be inferred for given r and
concentration n (or volume fraction φ) via theoretical esti-
mates or from detailed, particle-based computer simulations
[16]. Since these estimates come with considerable uncertain-
ties, we here choose values of χL = 1 and χL = 2 to illustrate

0 2 4 6 8 10
-0.02

0

0.02

0.04

0.06

0.08

0.1

FIG. 4. Dimensionless viscosity change �ν∗
i as function of mag-

netic field strength h for r = 2.0. From top to bottom, the ordering
is i = 2, 1, 3, i.e., the field is oriented in gradient, flow, and vorticity
directions, respectively. The same parameters as in Fig. 3 are chosen.

064605-6



SIMULATING THE FLOW OF INTERACTING … PHYSICAL REVIEW E 106, 064605 (2022)

0 1 2 3 4 5

0.02

0.04

0.06

0.08

0 1 2 3 4 5

0    

0.005

0.01 

0.015

FIG. 5. Dimensionless viscosity change �ν∗
i as function of externally applied magnetic field of strength h0 oriented in flow [(a), i = 1]

and gradient [(b), i = 2] directions, respectively. The square symbols correspond to the conditions in Fig. 4 with h = h0, whereas circles and
diamonds show the results when demagnetization effects are taken into account using χL = 1 and χL = 2, respectively.

demagnetization effects for moderate chain-forming ferroflu-
ids with r = 2. As can be seen from Fig. 5, demagnetization
effects do significantly alter the values of the effective viscosi-
ties. In particular, at intermediate field strengths, we find that
the value of ν2 is significantly reduced. Note that the result
shown in Fig. 4 still holds in this case, since results are shown
as a function of the internal field h, not the externally applied
field h0. We note that the simulation results obtained here are
also in qualitative agreement with recent experiments on a
magnetite-based commercial ferrofluid in parallel-plate and
capillary viscosimeter [39]. Although the model parameters
used here are not adequate for the ferrofluid used in these
experiments, qualitatively similar behavior is found, such as
�ν∗

2 being much larger than �ν∗
1 and increasing over a range

of moderate field strengths, whereas �ν∗
1 was found to level

off.

V. STOKES SECOND PROBLEM FOR FERROFLUIDS

We now investigate the MPC method for ferrofluids subject
to an unsteady, periodic flow. Here, the flow is driven by an
infinite planar plate that oscillates harmonically with angular
frequency ω in its plane (defined by y = 0). Determining the
resulting flow profile vx(y, t ) of the unbounded fluid above the
plate is known as Stokes second problem [41].

The momentum balance Eq. (1) for the one-dimensional
velocity profile reads

∂vx

∂t
= 1

ρ

∂σ
hyd
yx

∂y
+ fM,x, (16)

with the hydrodynamic stress tensor σ
hyd
yx = T vis

yx + T pot
yx .

Explicit expressions for these quantities are provided in Ap-
pendix C. In the absence of an external magnetic field,
Eq. (16) can be rewritten in the familiar form

∂vx

∂t
= νeff

∂2vx

∂y2
, (17)

with an effective kinematic viscosity coefficient νeff . When
external magnetic fields are applied, additional spatial gra-
dient terms appear, see Appendix C. For the special case
of spatially homogeneous magnetic fields and resulting ho-
mogeneous magnetization, Eq. (16) can again be written in
the form (17), this time with an effective, frequency- and
field-dependent viscosity coefficient νeff . For zero frequency,
explicit expressions for the viscosity coefficients for the chain
model are given in Appendix A. Approximate expressions for
the corresponding frequency-dependent viscosity coefficients
can be found in Ref. [43].

The analytical solution to Stokes second flow problem (17)
for the boundary condition vx(0, t ) = U0 cos(ωt ) reads

vx(y, t ) = U0e−ky cos(ωt − ky), (18)

with the effective damping parameter k = √
ω/2νeff . For

Newtonian fluids, it has been verified [41] that the MPC
method recovers the exact solution (18) rather well for not
too high frequencies (ω � 0.1).

Here we use the MPC method proposed above to study
Stokes second flow problem for ferrofluids. Although the
flow is two-dimensional, we have solved the problem in a
three-dimensional domain of size 30 × 30 × 5 with periodic
boundary conditions applied in x and z directions. For com-
putational convenience, we use a fixed height Ly = 30a with
reflecting boundary conditions rather than an infinite size in
the perpendicular direction. At the moving plate (i.e., for
y = 0), we use no-slip boundary conditions via the bounce-
back rule as described in Sec. III. To remain within the weak
perturbation regime, we follow Ref. [41] and choose the
velocity amplitude U0 = 0.1. Further model parameters are
chosen as Q = 30, T = 0.1, n∗ = 0.05, τ ∗

B = 10, r = 5 and
�t = 0.2. With an applied frequency of ω = 0.0209 and kine-
matic viscosities in the range νeff ≈ 0.4 . . . 0.8, this translates
to Ly ≈ 3.5 . . . 5k−1. To investigate possible finite-size effects,
we additionally performed several simulations with Ly = 50a.
Only minor differences were found. The frequency ω of the
oscillating plate is small enough for the MPC method to
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FIG. 6. (a) Flow profile vx (y, t ) for second Stokes problem at times t = nTω (black) and t = (n + 1/4)Tω (blue symbols) for an applied
field in the vertical direction of strength h = 0 (filled) and h = 5 (open symbols). Dashed lines show the analytical solution (18), where the
damping parameter k is calculated with the corresponding viscosities (A5) for the chain model. (b) Effective damping parameter k as a function
of applied field strength h for the same conditions as in (a). Symbols denote results of fits of the profiles from simulations to Eq. (18), dashed
line shows the analytical result within the EFA for the chain model.

reproduce the hydrodynamic solution [41]. The velocity pro-
file is averaged over times t j = (n + j/4)Tω with j = 0, 1, 2
fixed, where the oscillation period is given by Tω = 2π/ω ≈
300.6. Averages are accumulated only after t > 3Tω to ensure
that initial transients have decayed. To reduce statistical uncer-
tainties, we average the profiles over more than 100 oscillation
periods.

Figure 6(a) shows the resulting velocity profile vx(y, t j ),
decaying as the distance to the oscillating plate increases.
A magnetic field of strength h was applied perpendicular to
the oscillating plate. Two time points t j within the oscillating
period, j = 0 and j = 1, are shown. Also shown in Fig. 6(a)
are the analytical profiles (18), where the effective damping
parameter k is calculated using the expression (A5) for the
steady-state viscosity of the chain model. Very good agree-
ment between MPC simulations and the theoretical results is
found.

The pronounced viscosity increases when a magnetic field
of dimensionless strength h = 5 is applied in the gradient di-
rection compared to the field-free case that we saw in Fig. 4 is
mirrored here in a decrease of the effective damping param-
eter k. We determine the damping parameter k from fits of
the simulated velocity profile in Fig. 6(a) to the analytical
expression (18). In Fig. 6(b), we show the resulting damping
parameter versus the strength of the applied field h in the
perpendicular direction. As expected, the effective damping
parameter k decreases with increasing field strength h. We also
plot the theoretical prediction for k calculated with the result
(A5) for the chain model. Again, we find very good agreement
between the numerical results and the prediction based on the
EFA of the chain model.

In the presence of an applied field perpendicular to the
plate, the periodic shearing motion induces a nonequilibrium
magnetization component in flow direction. Figure 7 shows
the profiles of the magnetization component in flow direction,
Mx, normalized with the saturation magnetization Msat. The

same conditions as in Fig. 6 are chosen. Since the induced
velocity decays strongly with the distance to the oscillating
plate, also the nonequilibrium magnetization component Mx

quickly decays to zero for large enough distances. We can
rationalize the nonequilibrium magnetization profiles using
again the EFA for the chain model. Since the oscillating fre-
quency ω is low, we can use the result for the steady-state
nonequilibrium magnetization (C6) and evaluate the expres-
sion for the instantaneous local shear rate ∂vx/∂y. Dashed
lines in Fig. 7 show that these assumptions give a good ap-
proximation to the numerical data. We note that numerical

0 5 10 15 20 25 30
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

FIG. 7. The relative magnetization component in flow direction
is shown as a function of distance to the oscillating plate. A magnetic
field of strength h = 5 was applied perpendicular to the wall. Other
parameters are chosen identically as in Fig. 6, as are symbols and
color codes.
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FIG. 8. Shear flow over obstacle with white arrows indicating the flow field. Color codes (in units 10−3) indicate the local nonequilibrium
magnetization component Mx/Msat and My/Msat when an external field of strength h0 = 2 is applied in gradient (left panel) and flow direction
(right panel), respectively.

errors for Mx are more pronounced than for the velocity
field, probably due to the smallness of the nonequilibrium
magnetization component and numerical uncertainties due the
moderate number Q = 30 of particles per cell.

VI. SHEAR FLOW OVER ROUGH WALLS

As a last application of the MPC model for ferrofluids, we
consider shear flow over rough surfaces. Considering a planar
channel geometry, shear flow is induced by the top plate
moving in the x direction with a constant prescribed velocity
Vwall. On the resting bottom plate, a rectangular ridge of width
�x, height �y, and depth Lz is placed that acts as an obstacle
to fluid flow, where we apply the same (no-slip) bounce back
conditions on the surface of the ridge as we do on the top
and bottom plate. We consider the full three-dimensional flow
problem and apply periodic boundary conditions in flow (x)
and neutral (z) direction. This geometry resembles patterned
surfaces that are used, e.g., in microfluidic devices [47].

We simulated different channel geometries, but results will
be shown for channels of size Lx = 100, Ly = 25, Lz = 5.
The dimension of the obstacle are �x = 20, �y = 5. For wall
velocity Vwall = 0.01 and time step �t = 0.1, we run the
simulations for 1000 integration steps to reach steady state
and collect averages over the subsequent 5 × 104 steps. White
arrows in Fig. 8 show the time-averaged flow field in the xy
plane. For this simulation, parameters were chosen as Q =
100, τ ∗

B = 10, T = 0.02, n∗ = 0.005, and χL = 2. An exter-
nal magnetic field of strength h0 = 2 was applied in gradient
and flow direction, respectively. Far above the obstacle, we
observe a linear flow profile that is characteristic of planar
Couette flow. Distortions of the flow field remain located near
the obstacle and do not propagate significantly into the upper
half of the channel. Such laminar flow is expected since the
Reynolds number for this flow is low, Re = VwallLy/ν ≈ 0.8.

Although the flow fields are very similar when the ex-
ternal field is oriented in flow and gradient directions, the
local nonequilibrium magnetization components are rather

different, as can be seen from Fig. 8. Note that in the nonequi-
librium steady state for planar shear flow, the perpendicular
magnetization component is proportional to the shear rate.
It is interesting to note that the presence of obstacles and
fluctuations lead to nonuniform and fluctuating perpendicular
magnetization components, that are typically stronger when
the field is oriented in gradient—compared to the flow direc-
tion.

VII. CONCLUSIONS

We here presented an implementation of fluctuating fer-
rohydrodynamics in terms of a hybrid simulation scheme,
combining angular momentum-conserving MPC algorithm
and Brownian dynamics simulations of the chain model of fer-
rofluids. Thereby, we modeled ferrofluids on a coarse-grained
level, where each MPC particle corresponds to a small volume
of fluid containing several MNPs. While previous studies
[29] were restricted to the ultradilute regime, the present
paper is more general and applies also to real, interacting
ferrofluids with a finite concentration of MNPs. Similar to
the CONNFFESSIT approach, no closed-form constitutive
equations are needed here, since the Brownian dynamics sim-
ulations directly solve the stochastic magnetization dynamics,
thereby avoiding closure approximations. Due to the finite
ensemble size, the numerical scheme naturally includes fluc-
tuations in the magnetization and resulting stresses. Gradients
of the stress tensor act as additional forcing terms in the
hydrodynamic momentum balance, whereas gradients in the
velocity fields enter the magnetization dynamics. This two-
way coupling of both methods ensures backflow effects are
fully accounted for.

We tested and verified the implementation in several ways,
successfully comparing the numerical results with theoreti-
cal predictions. The shear viscosity inferred from Poiseuille
flow is very well described by the EFA for the chain model
for different strengths and directions of the applied field. As
an application involving nonsteady flows, we studied Stokes
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second flow problem for ferrofluids. For weak amplitudes of
oscillation and low enough frequencies, the resulting oscil-
lating flow profile is well described by the theoretical result
for Newtonian fluids when evaluated with the corresponding,
field-dependent viscosity. We also find that the profiles of the
flow-induced nonequilibrium magnetization component can
be predicted rather accurately by the nonequilibrium steady-
state values, when evaluated with the instantaneous local
velocity gradient.

The simulation method for ferrofluids proposed here ben-
efits from all the advantages of the MPC approach as a
flexible, mesoscale simulation scheme that includes thermal
fluctuations. Therefore, it is very natural to combine MPC
with Brownian dynamics simulations of ferrofluid dynamics,
which also includes fluctuations in the local magnetization
and resulting stresses. As a solver for fluctuating ferrohydro-
dynamics, the hybrid scheme scheme can be applied to a wide
range of flow problems. As a mesoscale method, the proposed
hybrid scheme is particularly promising to study nano- and
microfluidic flow problems. Similarly, small-scale boundary
layer effects can be investigated with this method that are
found to be relevant in blood flow [48] and presumably also
in a range of biomedical applications. This approach might
also be extended to explicitly include the fluid spin angular
momentum balance, which would allow to study the spin-up
flow in rotating magnetic fields.
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APPENDIX A: CHAIN MODEL

The nth order alignment tensors are defined as the
expectation value of the n-fold dyadic product of the three-
dimensional unit vector u representing the orientation of the
magnetic moment. Thus, the lowest order tensors are given by
A(2) = 〈uu〉, A(3) = 〈uuu〉, A(4) = 〈uuuu〉 with A(1) = 〈u〉 =
m the reduced magnetization.

The geometry factors Qi used in Sec. II depend only on the
axis ratio r of the ellipsoidal aggregate. Their explicit expres-
sions can be found in Refs. [43,44]. For ease of notation, we
additionally defined the combinations

Q4 = 2Q3 − BQ0, (A1)

Q5 = Q23 − 2BQ0. (A2)

Define the change of the dimensionless kinematic viscosity
due to an applied field as �ν∗

i (h) = ν∗
i (h) − ν∗

0 . When the
magnetic field is oriented in the z direction, the viscosity
change can be expressed as [43]

�ν∗
3 (h) = ν∗

s φ

{
Q2

[
1 − 15

L2(h)

h2

]
+ 2Q3

[
5

L1(h)

h

− 10
L2(h)

h2
− 1

]}
. (A3)

It is easily verified that �ν∗
3 (h = 0) = 0. If the magnetic field

is oriented in flow direction, we get

�ν∗
1 (h) =�ν∗

3 (h)+5ν∗
s φ

{
Q3

[
L2(h)−4

L3(h)

h

]
−3Q2

L3(h)

h

− 1

2
Q0L2(h)

}
+ 3

2
ν∗

s φ
hL2

1 (h)

h − L1(h)
(1 − Bα(h)),

(A4)

while for the case that the field is oriented in the gradient (y)
direction,

�ν∗
2 (h) =�ν∗

3 (h) + 5ν∗
s φ

{
Q3

[
L2(h) − 4

L3(h)

h

]
−3Q2

L3(h)

h

+ 1

2
Q0L2(h)

}
+ 3

2
ν∗

s φ
hL2

1 (h)

h − L1(h)
(1 + Bα(h)),

(A5)

where α(h) = 1 − 2L2(h)/[hL1(h)]. These expressions can
also be inferred from Ref. [44].

In the limit of spherical particles, r = 1 leading to B =
Q0 = Q2 = Q3 = 0, and we recover ν1 = ν2 and �ν3 = 0
valid for noninteracting ferrofluids. The difference between
ν1 and ν2 as well as the field dependence of the viscosity
coefficient ν3 are hallmarks of interacting ferrofluids that are
captured by the chain model (r 
= 1).

APPENDIX B: FERROHYDRODYNAMIC MPC
ALGORITHM

Here, we summarize the algorithm to implement the hybrid
ferrohydrodynamic MPC model described in Sec. III. Inte-
grating this model over the time interval �t involves steps
1–7 shown in Table I.

APPENDIX C: STOKES SECOND FLOW PROBLEM
FOR FERROFLUIDS

Using the ansatz v = (vx(y, t ), 0, 0) for the laminar veloc-
ity profile, the momentum balance Eq. (1) becomes

∂vx

∂t
= 1

ρ

∂σ
hyd
yx

∂y
+ fM,x. (C1)

The stress contributions (4) and (5) to σ
hyd
yx become

T vis
yx =

(
1 + 5

2
φ
[
2Q1 + Q4(A(2)

xx + A(2)
yy ) − 2Q5A(4)

xxyy

])
ηs

∂vx

∂y

(C2)

and

T pot
yx = 1

2 nkBT B
[
6A(2)

xy − (mxhy + myhx ) + A(3)
xxyhx + A(3)

xyyhy
]
.

(C3)

In the last term, we assumed hz = 0, i.e., the magnetic field
has no component in the z direction. Finally, for the Kelvin-
Helmholtz force density (2), we find

ρ fM,x = 1

2
nkBT

(
hy

∂mx

∂y
− hx

∂my

∂y
+ mx

∂hy

∂y

)
. (C4)
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TABLE I. Algorithm to implement the hybrid MPC–Brownian dynamics algorithm for fluctuating ferrohydrodynamics.

Hybrid MPC–Brownian dynamics algorithm

1: Cell-level calculation of the magnetization mCi and local magnetic field hCi as well as A(k)
Ci

for k = 2, 3, 4.
2: Use finite-difference approximations to calculate the force (9) from (2) and the divergence of (4) and (5).
3: Streaming step: Update particle positions and velocities according to Eqs. (7) and (8) for a time step �t .
4: Apply (periodic or bounce-back) boundary conditions.
5: Use finite-difference approximation to calculate the cell-level vorticity �Ci and symmetric velocity gradient DCi .
6: Perform nBD time steps Brownian dynamics simulation of Eq. (12) with time step �t/nBD.
7: Collisions: Apply the Andersen-AT+a thermostat (10).

In first-order perturbation for weak velocity gradients, the
coefficients A(2) and A(4) in (C2) can be replaced by their
equilibrium values,

A(2)
xx,eq = 〈

u2
x

〉
eq = L2(h)ĥ2

x + L1(h)

h
, (C5)

where ĥ denotes the unit vector in the direction of the
magnetic field and L2(h) = 1 − 3L1(h)/h. The corresponding
expression for A(4) can, e.g., be found in Ref. [44].

In the absence of an external field, we find A(2)
xx,eq =

A(2)
xx,eq = 1/3 and A(4)

xxyy,eq = 1/15. In this case, the contribution
(C4) vanishes and (C3) simplifies to 3nkBT BA(2)

xy . Calculating
this quantity to first order in the velocity gradient [43], we find
from (C2) the resulting zero-field viscosity η0 = (1 + crφ)ηs

with cr = 5Q1 + 2Q3 − Q2 given in Sec. IV. Evaluating the
expressions (C2)–(C4) in the presence of an external field
is more involved. The corresponding calculations within the
EFA can be found in Refs. [43,44]. In the special case of spa-

tially homogeneous magnetic field and magnetization, we find
that Eq. (16) reduces to (17) with the viscosity coefficients
(A3)–(A5).

Within the EFA, the magnetization component in flow
direction for a field applied in the gradient direction was
obtained in Ref. [43] as

Mx/Msat = τBγ̇
L2

1 (h)

h − L1(h)
(1 + Bα(h)), (C6)

where α(h) is defined in Appendix A.
Assuming that the amplitude U0 of the oscillating plate

is small enough to remain in the linear flow regime and the
frequency ω to be low enough to be considered as quasistatic,
we can approximate the profile Mx(y, t ) by Eq. (C6) with the
instantaneous local shear rate γ̇ = γ̇ (y, t ):

γ̇ (y, t ) = ∂vx(y, t )

∂y
= −

√
2 kU0e−ky cos(ωt − ky + π/4).

(C7)
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