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Quantum uncertainty effects in the dynamics of supercooled liquids: A molecular dynamics study
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Dynamics of density fluctuations in quantum supercooled liquids is analyzed using molecular dynamics
simulations. In contrast to the classical case, the uncertainty in the particle position (delocalization of quantum
particle in space) leads to significant differences in the dynamics of quantum liquids, both in the short- and
long-time limits. The effect of uncertainty is found to be significant for length scales smaller than the uncertainty
itself, and diminishes as the length scale grows. The dynamic heterogeneity of the system at short times is
enhanced due to uncertainty. In the intermediate (β-relaxation) time regime, the heterogeneity tends to get
suppressed due to quantum uncertainty. The probability distribution of particle displacements shows highly
nonclassical behavior with double-peak structure at short timescales.
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I. INTRODUCTION

In recent years, it has been realized that quantum ef-
fects may influence caging in supercooled liquids [1]. Indeed,
quantum effects are important in understanding the anoma-
lous temperature dependence of the specific heat (∝T ) and
the thermal conductivity (∝T 2) of glasses at low tem-
peratures [2–4]. Quantum mode-coupling theory has been
proposed to study the quantum effects in the dynamics
of supercooled liquids [1,5–7]. Recent studies show that
a crossover from fragile to strong behavior in relaxation
dynamics of supercooled water can be explained by tak-
ing quantum effects into account [8–10]. The observed
deviation of glass-transition temperatures in light molecu-
lar and hydrogen-bonded glass formers from the generally
observed value of (2/3)Tm, where Tm is the melting temper-
ature has been successfully explained by invoking quantum
effects [8].

Tunneling and position uncertainty are two hallmarks
of a quantum system. Ring-polymer molecular dynamics
(RPMD), which uses the isomorphism of a quantum particle
with a classical ring polymer, has been used to calculate the
transport properties [11,12] and neutron scattering [13] in
systems which have significant quantum effects, like parahy-
drogen and water. RPMD has been recently implemented to
show that tunneling can lead to reentrant glassy behavior
in supercooled liquids by varying the strength of quantum
effects [1,7]. It has also been shown that the degree of
particle delocalization leads to an additional nonclassical
diffusion process and significant changes in the vibrational
density of states [14]. Several works have also pointed
out the effect of uncertainty in the structure of quantum
liquids [1,15,16].

Here we implement RPMD to study the effects of quan-
tum uncertainty in the dynamics of the supercooled liquid.
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Using simulation and semianalytic results, we show that the
so-called nonlinear effect is dependent on the quantumness
of the system. The uncertainty in the position of the particle
sets a length-scale cutoff beyond which such nonlinear effects
are not significant. We show that the two methods give essen-
tially the same time dependence for length scales larger than
the position uncertainty quantified in terms of the radius of
gyration (Rg) [11,17] of the ring polymer, thus giving a clear
physical interpretation to the dynamics observed in Kubo cor-
relations. Quantum uncertainty leads to nonclassical features
in dynamic heterogeneity in the liquid which are signficant at
short times.

II. METHOD

We employ RPMD [18,19] simulations to study the
dynamics in a three-dimensional binary glass-forming quan-
tum liquid consisting of two types of particles: A and B
in the ratio 80 : 20. The interaction between two parti-
cles, α and β, is given by the Lennard-Jones potential,
Vαβ (r) = 4εαβ [( σαβ

r )
12 − ( σαβ

r )
6
], where r is the distance be-

tween the two particles, σαβ is the effective particle size,
and εαβ is the interaction energy. The parameters used are
εAA = 1.0, εAB = 1.5, εBB = 0.5, σAA = 1.0, σBB = 0.88, and
σAB = 0.80. The system consists of 1000 particles, and the
density is 1.206. This mixture is known to exhibit dynamics
of fragile glass-forming systems [20–22]. In the following,
distance and time are in the units of σAA and τ =

√
mσ 2

AA/εAA ,
respectively, where m is the mass of a particle which is equal
for both the species.

Path integral molecular dynamics (NVT) [23,24] simu-
lation was carried out to equilibrate the system at a given
temperature. From an equilibrated initial configuration, mi-
crocanonical RPMD simulation is carried out. RPMD is based
on the isomorphism of a quantum particle to a classical ring
polymer of P beads. This allows us to compute Kubo trans-
formed correlation functions defined as [18,19,25] c̃AB(t ) =
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1
(2π h̄)3NPZP

∫
d3NP p

∫
d3NPre−βPHP AP(r)BP(r, t ), where

HP= ∑N
n=1

∑P
j=1

p2
n j

2m + 1
2 mω2

P(rn j − rn j+1)2+ 1
PV (rn j ) is the

Hamiltonian for a ring polymer containing P number of
identical beads, rn j is the position of the jth bead in the
polymer corresponding to the nth particle, ωP = 1/βPh̄, and
ZP = 1

(2π h̄)3NP

∫
d3NP p

∫
d3NPre−βPHP is the partition function

with βP = β/P, where β = (kbT )−1. The observables AP(rn)
and BP(rn) for the n-th particle are defined by averaging
over beads of the ring polymer, AP(rn) = 1

P

∑P
i=1 A(rni ) and

BP(rn) = 1
P

∑P
i=1 B(rni ). In the classical case, as h̄ → 0, P →

1. For the quantum case (h̄ �= 0), ideally P → ∞, however, in
the simulation, we fix P large enough to ensure convergence
of the results with respect to P for a given quantumness 	 (de

Broglie wavelength
√

h̄2β

m ), which is manipulated by varying
h̄.

III. RESULTS

We present the results for a fixed temperature, T = 1.0,
and varying 	∗ = 	/σAA. Although classically, T = 1.0 cor-
responds to the normal liquid regime, it is possible to push
the system to supercooled state by varying 	∗, as shown in
Ref. [1] and discussed below. Dynamics of liquids is com-
monly studied in terms of the relaxation of density fluctuations
in the system [26–28]. A two-point density correlation func-
tion carries the essential dynamical information. The self-part
of the density-correlation function is related to the dynamics
of a tagged particle which shows ballistic motion in short
timescales and diffusive behavior at long times [29]. The self-
correlation function, F̃s(k, t ), which characterizes relaxation
of a tagged particle, is defined as (we consider an A-type
tagged particle)

F̃s(k, t ) = 1

NA

NA∑
n=1

〈ρn(k, t )ρn(−k, 0)〉, (1)

where ρn(k, t ) = 1
P

∑P
i=1 eik·rni (t ) is the Fourier component of

the nth tagged (A-type) particle density in the liquid.
Thus, F̃s(k, t ) in the quantum case can be expressed in

terms of the polymer beads, which is the Kubo correlation
function [13] defined as

F̃s(k, t ) = 1

NAP2

NA∑
n=1

P∑
i, j=1

〈eik·[rni (t )−rn j (0)]〉, (2)

where n is the particle index. We compare the dynamics in
supercooled liquid described in terms of the Kubo correla-
tion and the the center-of-mass (COM) correlation. We define
the self-correlation function for the center of mass of the
polymer as F̃ c

s (k, t ) = 1
NA

∑NA
n=1〈eik·[Rn(t )−Rn(0)]〉, where Rn =

1
P

∑P
i=1 rni is the COM of the nth ring polymer. Note that

the COM is a “classical” degree of freedom which represents
the (quantum mechanical) average position of the particle.
The dynamics of the Kubo correlation function obtained from
RPMD may differ from the dynamics of the COM correla-
tion function. This difference in dynamical behavior has been
attributed to the nonlinearity of the density operator in Kubo
correlation. However, we find that both the quantities give the

same dynamics when normalized properly, although the nor-
malization constant depends on the length scale. For k �= 0,
the initial value F̃s(k, t = 0) �= 1. We therefore reexpress the
self-correlation function as

F̃s(k, t ) = F̃ (k)Q̃(k, t ), (3)

where F̃ (k) = F̃s(k, 0) and Q̃(k, t ) = F̃s(k, t )/F̃ (k) is the nor-
malized correlation function.

The relaxation dynamics of the correlation functions is
shown in Fig. 1(a) for different values of quantumness. Sim-
ilar to the classical case [20,22], the dynamics slows down
and, due to caging of the particles, the typical two-step re-
laxation scenario develops as 	∗ is increased in the moderate
(0 < 	∗ � 0.4) quantum regime, consistent with the previous
observations [1,7]. This slowdown of dynamics is attributed
to the increased effective size of the quantum particle, quan-
tified by Rg [see inset of Fig. 1(a)]. Interestingly, the COM
relaxation, F̃ c

s (k, t ), follows exactly the tagged particle dy-
namics, Q̃(k, t ), indicating that both quantities have the same
dynamical information at this length scale. For larger k values,
however, the two quantities show different dynamical behav-
ior. This comparison is shown in Fig. 1(b). The k range up to
which Q̃(k, t ) and F̃ c

s (k, t ) show the same dynamics is set by
the position uncertainty in the system. It can be shown that
for length scales larger than the order of position uncertainty,
the relaxation of COM is captured well by Q̃(k, t ). For large
length scales (small k) where only terms up to the leading
order in k are important, the COM and tagged-particle dy-
namics are identical (see the Appendix). However, we observe
that the dynamical difference between the two quantities is
only up to a k-dependent factor, ω(k). We show this scaling
in Fig. 1(b). The solid and dashed curves show Q̃(k, t ) and
F̃ c

s (k, t ) at k = 17.5. The brown curve denotes Q̃ after scaling
with ω(k). The scaled dynamics of Q̃ is identical to F̃ c

s beyond
the ballistic regime. We compare F̃ (k) and ω(k) in the inset
of Fig. 1(b). At small k, both F̃ (k) and ω(k) are equal, and
as k increases, they show small differences, which leads to
the differences in the two scaled dynamics at short times,
as shown in the main figure. These observations indicate
that the long-time dynamics is mostly dictated by the large
length scales (
R−1

g ), where the position uncertainty does
not play a significant role. However, the short-time dynamics
is dominated by the smaller length-scale properties which are
influenced by the position uncertainty. For length scales less
than that of the uncertainty itself, the effect of uncertainty is
evident in the tagged-particle dynamics.

In order to explore further dynamical effects of position
uncertainty, we consider moments of particle displacements
using COM and Kubo correlations. F̃s(k, t ) is the genera-
tor of the distribution of particle displacements in time t ,
and therefore contains information about all moments of the
displacement. The mean square displacement (MSD) of the
tagged particle is obtained as [18]

〈�r2(t )〉 = −3
d2F̃s(k, t )

dk2

∣∣∣∣
k=0

= 1

NAP2

NA∑
n=1

P∑
i, j=1

〈[rni(0) − rn j (t )]2〉, (4)
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FIG. 1. (a) Q̃(k, t ) (solid) and F̃ c
s (k, t ) (dashed) at k = 7.21 (the first peak in the structure factor) for (left to right) 	∗ = 0.05, 0.2, 0.3, 0.4

at T = 1.0. Inset in (a) shows the Rg as a function of 	∗. (b) Comparison of Q̃(k, t ) and F̃ c
s (k, t ) for k = 17.5 (black) for 	∗ = 0.4. The quantity

R−1
g = 7.103 for this 	∗ (see text). The brown solid line shows the scaling of F̃s(k, t ) to match F̃ c

s (k, t ) at long times. Inset in (b) shows the
comparison of the k-dependent factors F̃ (k) and ω(k) (see text for definitions).

and the next higher moment (odd moments vanish at equilib-
rium due to spatial homogeneity in the liquid),

〈�r4(t )〉 = −5
d4F̃s(k, t )

dk4

∣∣∣∣
k=0

= 1

NAP2

NA∑
n=1

P∑
i, j=1

[rni(0) − rn j (t )]4. (5)

Similarly, F̃ c
s (k, t ) generates moments for the COM displace-

ments.
In Fig. 2 we present a comparison of MSDs for the clas-

sical and the quantum liquids. We also show the MSD for
the COM of the ring polymer (〈�R2(t )〉, blue dashed lines).
Interestingly, in contrast to the classical case, 〈�r2(0)〉 has a

10-6
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10-2

100

102

10-3 10-2 10-1 100 101 102 103 104

M
SD

t

FIG. 2. Comparison of mean square displacements of the particle
(blue solid line) and COM (blue dashed line) at T = 1.0 for 	∗ =
0.4. Black solid line is the classical result.

nonzero value, and is related to the Rg of the ring polymer,
〈�r2(0)〉 = 2R2

g, which is the manifestation of uncertainty in
the position of the quantum particle [7,16]. The MSD for the
COM is the same as that of the classical particle in the ballistic
regime, but changes over to the quantum MSD at the longest
timescale, which is qualitatively different from the classical
case, resulting in a lower diffusion coefficient. We show in the
Appendix that the MSD of the COM can be expressed in terms
of the tagged-particle MSD as 〈�R2(t )〉 = 〈�r2(t )〉 − 2R2

g.
Thus the two MSDs differ by a constant determined by the
position uncertainty of the tagged particle. In the classical
liquid, diffusive dynamics sets in much earlier, while the
quantum liquid exhibits subdiffusive dynamics in the inter-
mediate times due to caging resulting from increased effective
size (∼Rg) of the quantum particle.

Using these moments, we compute dynamic hetero-
geneities in the relaxation dynamics of the tagged particle and
the COM motion, which is quantified by the non-Gaussian
(heterogeneity) parameter, α2(t ), defined as [30] α2(t ) =
3〈�r4(t )〉
5〈�r2(t )〉2 − 1.α2(t ) = 0 when the distribution is a Gaussian,
and is nonzero otherwise. Dynamic heterogeneity has been
well studied in simple models as well as real systems, like
water, using simulation methods [31–33]. It typically grows
from zero as time evolves, reaches a maximum in the in-
termediate timescale of caging, and decays to zero at long,
diffusive timescales. This is depicted in Fig. 3. The hetero-
geneities are clearly very different for the tagged particle
and the COM dynamics. The COM shows a classical-like
dynamic heterogeneity with a peak in the intermediate (β-
relaxation) timescale and decays to zero at the longest times
where the dynamics becomes diffusive. On the other hand,
the tagged-particle dynamics exhibits qualitative differences:
it starts from a nonzero value and decays to a small value in the
ballistic time regime, before it starts to increase again. Similar
nonzero 〈�r2(0)〉 and qualitative behavior of the Kubo-
transformed tagged-particle dynamics has been observed in

064604-3



GOPIKA KRISHNAN AND UPENDRA HARBOLA PHYSICAL REVIEW E 106, 064604 (2022)

 0

 0.1

 0.2

10-3 10-2 10-1 100 101 102

α 2
(t)

t

 0

 0.5

 1

 1.5

 2

10-2 100 102 104

α 2
(t)

t

 0

 0.05

 0.1

 0.15

 0.2

10-3 10-2 10-1

α 2
(t)

t

Λ*=0.05
Λ*=0.4

(a) (b)

FIG. 3. Non-Gaussian parameter [α2(t )] of tagged particle (solid lines) and COM (dashed lines) for two different values of quantumness
(a) 	∗ = 0.05, (b) 	∗ = 0.4 at T = 1.0. Inset in (b) shows a comparison of α2(t ) in the ballistic regime for the two cases.

hard-sphere systems using quantum mode-coupling formula-
tion [34].

Beyond the ballistic regime, for smaller 	∗, hetero-
geneities in the COM and the tagged-particle dynamics are
almost identical [Fig. 3(a)]. At higher 	∗ [Fig. 3(b)], hetero-
geneity in the COM and the particle motion shows expected
behavior at longer times: its amplitude grows and the peaks
shift to higher times, indicating that the caging is more robust
and remains for longer times. More interestingly, however,
the tagged-particle and the COM dynamics now exhibit very
different behavior even at longer times. The COM motion
is more heterogeneous and attains the maximum earlier than
the heterogeneity in the tagged-particle dynamics. Thus for
higher quantumness, the tagged particle shows more hetero-
geneous dynamics over shorter times [see inset of Fig. 3(b)]
as compared to the COM, while the COM motion is more
heterogenous over the longer times. As we discuss in the Ap-
pendix, this behavior can be attributed to the quantum effects
arising due to the initial uncertainty in the tagged-particle
position. The distribution of tagged-particle displacements in
time t , Gs(r, t ), can be obtained by taking Fourier transform
of Eq. (3). This gives Gs(r, t ) = ∫

dr′Gs(r′)G(|r − r′|, t ),
where G(r, t ) is the Fourier transform of Q̃(k, t ). This shows
how the tagged-particle dynamics at time t is correlated
to its initial distribution (position uncertainty), while for
the COM dynamics no such correlation exists as the ini-
tial distribution Gs(r) = δ(r), just like the classical case. As
discussed in the Appendix, as a result of this dependence
on the initial distribution, the tagged-particle heterogeneity
is suppressed below the (classical-like) COM heterogene-
ity at longer times, while it is enhanced at shorter, ballistic
times.

The distribution functions for the COM and the tagged-
particle displacements are depicted in Fig. 4. At short times,
the distribution function shows double-peak structure: a sharp
peak at small r [top inset in Fig. 4(a)] and a broader peak
at larger r. This indicates that quantum nature tends to delo-
calize the particle, and its position over smaller times cannot

be assigned to the displacement of COM which exhibits a
Gaussian-like distribution (dashed curve), well described by
∼

√
3

2π〈r2(t )〉 e−3r2/2〈r2(t )〉 (not shown) in the ballistic regime.
As time increases, the weight of the first peak in the particle
distribution decreases and it becomes similar to the COM dis-
tribution [lower inset in Fig. 4(a)] in the timescale beyond the
ballistic regime. However, at larger quantumness [Fig. 4(b)],
although the first peak in particle distribution diminishes, the
distribution remains distinct from the COM distribution even
at longer times.

IV. CONCLUSIONS

The results presented here clearly demonstrate the ef-
fects of quantum uncertainty in the dynamics of supercooled
liquids. The relaxation dynamics of the COM and the tagged-
particle density correlation functions show similar behavior
over length scales larger than the position uncertainty of quan-
tum particles in the system (∼Rg). However, at shorter length
scales, the two quantities differ significantly. This results in
their dynamical heterogeneities being different. The COM
motion shows classical-like dynamic heterogeneity, while the
heterogeneity associated with the tagged-particle dynamics
exhibits nonclassical features. The nonclassical behavior at
smaller times is enhanced due to stronger dynamical corre-
lations between quantum uncertainty in the particle positions
at the initial time and that at time t . These quantum effects
lead to highly non-Gaussian and nonclassical features in the
distribution of the tagged-particle displacements. At short
times, the COM position is distributed classically according
to a Gaussian distribution, but the tagged-particle position
follows a double-peak distribution which becomes classical-
like at longer timescales. The short-time features discussed
here are not specific to the supercooled state, but is expected
in any system with significant quantum effects. Quantum
uncertainty also affects the magnitude of the tagged-particle
dynamic heterogeneity at the β-relaxation timescales, and
tends to suppress it. Thus, the quantum uncertainty not only
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FIG. 4. (a) Probability distribution of displacements [Gs(r, t ), solid lines] for 	∗ = 0.05 for times t = 10−3 (black), 10−2 (green), and 10−1

(blue, bottom inset). The top inset shows the first peak for t = 10−3. (b) Same as (a) but for higher quantumness, 	∗ = 0.4 at T = 1.0. Dashed
curves represent the results for the COM and, for visual clarity, have been divided by 20 (black) and 2 (green) for 	∗ = 0.05, and 100 (black)
and 2 (blue) for 	∗ = 0.4.

affects the short-time, but also the long-time dynamics of the
system.

Although the beads in a ring polymer do not have a physi-
cal meaning, nevertheless, the two-peak structure in particle
distribution can be assigned to the correlations among the
beads in the tagged-particle ring polymer. The sharper peak at
smaller times is due to the self-correlation of beads while the
broader peak at longer times is caused by the cross correlation
among the beads, representing the quantum uncertainty in the
particle position.
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APPENDIX

1. Comparison of the tagged-particle and COM dynamics

We can define the COM self-correlation, as in the
main text, F̃ c

s (k, t ) = 1
NA

∑NA
n=1〈eik·[Rn(t )−Rn(0)]〉, where Rn =

1
P

∑P
i=1 rni is the COM of the nth ring polymer. The center-

of-mass MSD is defined as

〈�R2(t )〉 = 1

NA

NA∑
n=1

〈[Rn(0) − Rn(t )]2〉

= 1

NAP2

NA∑
n=1

P∑
i, j=1

〈[rni(0) − rni(t )][rn j (0) − rn j (t )]〉.

(A1)

This gives

〈�R2(t )〉 = 〈�r2(t )〉 − 2R2
g, (A2)

where 〈�r2(t )〉 is the tagged-particle MSD, as defined in
Eq. (4). Thus the MSD of the COM and the tagged particle are
trivially related though the uncertainty in the particle position.

The normalized Kubo-transformed tagged-particle dynam-
ics, Q̃(k, t ) = F̃s(k, t )/F̃ (k). Using small k expansion, and
retaining terms up to k2 order, we have

Q̃(k, t ) = 1 − k2

3!

(〈�r2(t )〉 − 2R2
g

)
= 1 − k2

3!
〈�R2(t )〉

≈ F̃ c
s (k, t ). (A3)

Thus, from Eqs. (2) and (A2), we see that for small k,
Q̃(k, t ) = F̃ c

s (k, t ). For higher k (
1/Rg) values, the two
quantities show differences. This can be understood observing
the fact that for k > 1/Rg the dynamics is being probed at
the microscopic length scales, where the spread of the ring
polymer affects the dynamics. The COM, on the other hand,
being a single degree of freedom, is not affected by this.

2. Comparison of α2(t ) of the tagged particle and COM

Moments of the tagged-particle displacement at time t can
be obtained by taking derivatives of the function F̃s(k, t ) de-
fined in Eq. (3) in the main text. The first two moments given
in Eqs. (4) and (5) in the main text can be rewritten as

〈�r2(t )〉 = −3 F̃ (2)
s (k, t )

∣∣
k=0 = −3(Q̃(2) + F̃ (2) ), (A4)

〈�r4(t )〉 = 5 F̃ (4)
s (k, t )

∣∣
k=0 = 5(F̃ (4) + 6F̃ (2)Q̃(2) + Q̃(4) ),

(A5)

where the nth derivative with respect to k at k = 0 is de-
noted by superscript “(n)′′ and we have used F̃ (0) = 1, and
F̃ (1)(0) = F̃ (3)(0) = 0, because of the spatial homogeneity in
the system, and the dependence on time of the function Q̃(n)(t )
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is suppressed for brevity. Using this, α2(t ) can be written as

α2(t ) = 1

3

Q̃(4)

(Q̃(2) )2

[
1 + 6 F̃ (2)

Q̃(2) + F̃ (4)

Q̃(4)

]
[
1 + 2F̃ (2)

Q̃(2) + (F̃ (2) )2

(Q̃(2) )2

] − 1. (A6)

Note that Q̃(2) = −(1/3)〈�R2(t )〉 [see Eq. (A3)], which de-
creases monotonously with time, while F̃ (2) = −(2/3)R2

g. In
the timescale of β relaxation, |Q̃(2)| 
 |F̃ (2)|, hence the ratio
F̃ (2)

Q̃(2) � 1, and α2(t ) can be approximated as

α2(t ) = αc
2(t ) − c(t ),

c(t ) = 1

3

(
F̃ (2)

Q̃(2)

)2[
12 + 2

F̃ (4)

F̃ (2)Q̃(2)
+ 6

F̃ (2)

Q̃(2)
+ F̃ (4)

(Q̃(2) )2

]

= 4

27

(
R2

g

Q̃(2)

)2[
12 − 3

F̃ (4)

R2
gQ̃(2)

− 4
R2

g

Q̃(2)
+ F̃ (4)

(Q̃(2) )2

]
.

(A7)

Here αc
2(t ) = 1

3
Q̃(4)

(Q̃(2) )2 − 1 is the dynamic heterogeneity of a
classical-like system. If Rg = 0, which is the case for a classi-
cal system, this gives c(t ) = 0 and α2(t ) = αc

2(t ). Thus, the
term c(t ) represents the effects of uncertainty on the dy-
namical heterogeneity. Since Q̃(2) � 0, F̃ (2) � 0 and Q̃(4) �
0, c(t ) � 0, this implies that the quantum uncertainty tends
to suppress dynamical heterogeneity in (β-relaxation) longer
times, as discussed in the main text.

In the short (ballistic) timescale, the position of the ith
bead of particle n at time t can be approximated as rni(t ) ≈
rni(0) + tvni(0), where vni(0) is the initial velocity of the
particle. Substituting this in Eq. (2) of the main text, we can
write

F̃s(k, t ) = 1

NAP2

NA∑
n=1

P∑
i, j=1

〈exp (ik · [rni(0) − rn j (0)])

× exp (ik · vni(0)t )〉. (A8)

Here it is to be noted that once we have mapped the quantum
particle onto a ring polymer, the polymer beads are to be
treated classically and rni commutes with vni at the same time,
as they are not operators anymore. As the initial positions and
velocities of beads are uncorrelated, we can write

F̃s(k, t ) = 1

NAP2

NA∑
n=1

P∑
i, j=1

〈exp (ik · [rni(0) − rn j (0)])〉

× 〈exp (ik · vni(0)t )〉. (A9)

Since the system is isotropic, vni(0) is distributed according
to the Boltzmann distribution such that 〈v2

ni〉 = 〈v2〉 for all n
and i, determined by the temperature alone. This allows us to
write

F̃s(k, t ) = 1

NAP2

NA∑
n=1

P∑
i, j=1

〈exp (ik · [rni(0) − rn j (0)])〉

× exp

(
−k2

6
〈v2〉t2

)

= F̃ (k)Q̃(k, t ), (A10)

where we identify Q̃(k, t ) = exp (− k2

6 〈v2〉t2). Using the
above relation in Eq. (A6), we obtain

α2(t ) = 3〈�r4(0)〉 − 5〈�r2(0)〉2

45〈v2〉2t4 + 30〈v2〉t2〈�r2(0)〉 + 5〈�r2(0)〉2
.

(A11)

In the classical case (also true for the COM mo-
tion), 〈�r2(0)〉 = 〈�r4(0)〉 = 0 and α2(t ) = 0 in the ballistic
regime. However, for a quantum particle |α2(t )| �= 0, as re-
ported in the main text. Although, from the above Eq. (A11),
α2(t ) can be positive or negative, in our simulation we find that
quantum effects always give α2(t ) > 0 in the short timescale,
that is, 〈�r4(0)〉

(〈�r2(0)〉)2 > 5
3 .
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