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Circular motion subject to external alignment under active driving:
Nonlinear dynamics and the circle map
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Hardly any real self-propelling or actively driven object is perfect. Thus, undisturbed motion will generally
not follow straight lines but rather bent or circular trajectories. We here address self-propelled or actively driven
objects that move in discrete steps and additionally tend to migrate towards a certain direction by discrete angular
adjustment. Overreaction in the angular alignment is possible. This competition implies pronounced nonlinear
dynamics including period doubling and chaotic behavior in a broad parameter regime. Such behavior directly
affects the appearance of the trajectories. Furthermore, we address collective motion and effects of spatial self-
concentration.
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I. INTRODUCTION

Most theoretical studies on self-propelled or actively
driven objects consider idealized entities that migrate along
straight lines when undisturbed [1–10]. However, this ide-
alization generally does not meet reality. During two-
dimensional motion, for instance, on a substrate or near a
surface, persistent imperfections of otherwise undisturbed
objects can lead to circular trajectories. To study and
emphasize the resulting effects, artificial so-called circle
swimmers that show extreme deviations from axially symmet-
ric shapes [11–13] or nonsymmetric vibrated hoppers [14,15]
were generated and investigated. Similarly, several biologi-
cal objects show circle swimming—for example, alga cells
that feature a defect in one of their usually two driving
arms [16,17]. If motion is achieved by rotational effects, such
as the rotation of flagella in Escherichia coli bacteria, hydro-
dynamic coupling to nearby substrates and surfaces can lead
to circular trajectories [18–23]. Besides, spontaneous symme-
try breaking can induce persistently bent trajectories [24,25].
While the spontaneous emergence of curved paths of propaga-
tion is an important topic [26], here we concentrate on objects
featuring an inherent, permanent tendency of circular motion.
Thus, spontaneously emerging chiral motion is only covered
by our consideration as long as it is sufficiently persistent over
the time of observation.

The dynamics of such active objects propagating along
circular trajectories have been analyzed theoretically in quite
some detail [27–37]. It is common to implement in a minimal
approach the tendency of circular motion using a constant
torque or angular frequency that affects angular orientation. In
the mentioned theoretical studies [27–37], the dynamics was
considered as continuous in time.

Another aspect is that many active objects move by succes-
sive discrete steps or other events of propulsion. Obviously,
this applies to humans and animals performing discrete steps
or jumps, but to some degree also to birds and fish that
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flap with their wings and fins [38–41]. On smaller scales,
actively driven hoppers on vibrating plates move by discrete
bounces [42–44]. To some extent, the run-and-tumble motion
of microscopic self-driven swimming objects like the bac-
terium Escherichia coli [45] can be interpreted as discrete
stepwise motion between individual tumbling events, as can
the stop-shock-run dynamics of the marine alga Pyramimonas
octopus [46]. The famous theoretical Vicsek model was for-
mulated for discrete steps of motion [1,47]. Variants of this
model are still under intense investigation, concerning, for in-
stance, the recent discovery of additional dynamic phases [48]
or collective behavior in the presence of obstacles [49]. It has
been demonstrated that finite step size can lead to unexpected
types of behavior such as unidirectional laning and migrating
cluster crystals [50]. These phenomena result from the over-
reaction that becomes possible from performing discrete and
finite steps.

As a third ingredient, self-propelled objects frequently do
not just migrate without any goal. Often, they tend to head to-
wards a certain direction—for instance, when microorganisms
turn towards or away from light [51] or humans follow escape
routes [52].

Here, we combine the above ingredients. That is, we an-
alyze the dynamics of individual self-propelled or actively
driven objects that move in discrete steps and would generally
follow circle-like trajectories, if undisturbed, but simultane-
ously tend to migrate towards a certain direction, for instance,
to reach a (remote) target. We are interested in the various
modes of behavior that result from such a combination. It
turns out that this specific combination of the mentioned
aspects of behavior as addressed in the following, already
for simple individual objects, leads to complex dynamics.
Specifically, intermediate period doubling and chaotic motion
emerges, depending on the strength of alignment.

II. EQUATIONS OF MOTION

We consider the two-dimensional motion of a self-
propelled or actively driven object, for instance, when moving
on a substrate. The present direction of motion is parameter-
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FIG. 1. Trajectories for two extreme cases. (a) Vanishing ten-
dency of alignment A = 0 for angular frequency ω = π/5 (darker
polygon-shaped line). We observe a closed regular trajectory of
discrete steps. Superimposing many cycles for ω = π/

√
26, a cir-

cular shape of finite thickness emerges (brighter, thicker line in the
background). (b) Vanishing angular frequency ω = 0 for alignment
tendency A = 0.1. In our case, the driven object tends to orient its
migration direction along −x̂, corresponding to ϕ = π . Triangles
indicate the direction of motion.

ized by an angle ϕ that we measure from the x axis of our
Cartesian coordinate frame. ϕ is updated from each time step
n to the next one according to

ϕn+1 = ϕn + ω + A sin ϕn. (1)

Once ϕ leaves the interval [0, 2π [, we map it back by adding
±2π . In this description, ω determines the angular frequency
by which ϕ changes in a discrete way, scaled by the duration
of the time step. This is consistent with setting a constant
torque in previous time-continuous models of circular self-
propulsion [27–29,31–37]. To illustrate our results in the
following, we mostly select one specific value of ω = π/5,
leading to closed kinked trajectories of the shape of a regu-
lar polygon, see Fig. 1(a), in analogy to the smooth circles
appearing in the continuous case. In fact, polygon-shaped
trajectories have recently been triggered for certain light-
sensitive microswimmers [53]. Testing other commensurate
values of ω, we generally recovered the qualitative signature
of our results. When incommensurate values of ω are consid-
ered, particularly irrational multiples of π , the regular polygon
in Fig. 1(a) appears smeared to a circle of finite thickness
when the trajectory over many cycles overlays itself. We il-
lustrate an example of ω = π/

√
26 by the brighter curve in

the background of Fig. 1(a). In the following cases, the curves
for the two values of ω appear qualitatively similar, apart from
quantitative deviations due to the slightly shifted magnitude
of ω from π/5 to π/

√
26. Depending on the magnitude of

the tendency of alignment A, these quantitative deviations can,
however, become quite significant, as illustrated below.

Most importantly, the parameter A heading the last term
in Eq. (1) is associated with the strength of external align-
ment tendency. For straight-moving objects, that is, for ω = 0,
A > 0 in the continuous case will generally induce a heading
towards the negative x direction −x̂ given by ϕ = π . Such
an alignment could be induced, for example, magnetically
for magnetic self-propelled Janus particles [54–56] or mag-
netotactic bacteria [57–59]. Another situation corresponds to
a remote target far away in the direction −x̂ that the self-
propelled or actively driven object tries to reach. This could be

a source of nutrient or the only exit from a confinement. In our
discretized consideration, this tendency of alignment along
the direction −x̂ becomes apparent for ω = 0 at small values
of A, see Fig. 1(b). For larger magnitudes of A, overreactions
in alignment towards −x̂ can occur in our discretized de-
scription. Qualitative effects on the dynamics of self-propelled
particles caused by such overreactions can be substantial, as
outlined before in a different context [50]. We remark that, in
the continuous case, variants of Eq. (1) have been studied, for
instance, in the context of flagellar synchronization [60] and
of the transition to upstream swimming of sperm cells [61]
and bacteria [62] near surfaces.

The actual motion of our object follows from a propulsive
step

xn+1 = xn + cos ϕn, (2)

yn+1 = yn + sin ϕn. (3)

In these relations, we have scaled the spatial positioning by
the duration of the time step and the migration speed. Both
are assumed to be constant [1].

We solve Eqs. (1)–(3) by direct numerical iteration. As an
initial condition, we start from a heading towards +x̂ (ϕ0 =
0), unless mentioned otherwise. We note that Eq. (1) basically
represents an overdamped type of dynamics for the angu-
lar variable, which sets the velocity orientation. Thus, this
approach cannot reproduce phenomena that originate when
inertial effects associated with angular momentum become
important, as described, for instance, in the context of the
turning dynamics of flocks of birds [63,64] or so-called “mi-
croflyers” [36,65].

III. DIFFERENT TYPES OF TRAJECTORIES

When evaluating Eqs. (1)–(3), we made an unanticipated
observation. We expected on the basis of Figs. 1(a) and 1(b) a
combination of cyclic motion with superimposed drift, that is,
a discrete version of a cycloidal-like trajectory. In fact, such
types of trajectory are found for various parameter combi-
nations, see Fig. 2(a). Yet, further types of trajectory result,
such as straight lines, although oblique to the direction of
preferred alignment, see Fig. 2(b). Moreover, regular zigzag-
like trajectories appear, see Fig. 2(c), besides trajectories of
more complex zigs and zags, see Figs. 2(d) and 2(e). In many
parameter regimes, we found very irregular types of trajectory,
see Fig. 2(f), although we are working with a very simple
deterministic system.

How can we understand these observations? In fact, it
turns out that Eq. (1) corresponds to a famous minimal model
studied in the context of nonlinear dynamics. It is the so-
called Arnol’d circle map [66]. Aspects of its properties—for
example, the resulting bifurcations and transitions to chaotic
behavior—have been analyzed in detail [67–71]. In our situ-
ation, the equation, instead of being formulated as a purely
mathematical model, arises naturally from a physical context
when combining circular motion and the tendency of mov-
ing towards a preferred direction. While the circle map does
feature periodic intervals, phenomena of period doubling and
chaotic behavior emerge as well. We include an evaluation of
Eq. (1) for the interval 0 � A � 4π in Fig. 3(a) for illustration.
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FIG. 2. Trajectories according to Eqs. (1)–(3) for combina-
tions of nonvanishing angular frequency ω = π/5 and tendency of
alignment A �= 0 (darker lines). (a) Cycloidal-like trajectories are
observed for small but nonvanishing A, here A = 0.05. (b) For A =
1.5 we find straight motion with a constant angle of deviation from
−x̂. (c) From there, for increasing A, regular zigzag-like trajectories
appear, as depicted for A = 2.5. We observe nonbinary zigs and zags
with further increasing A, here for (d) A = 2.8 and (e) A = 2.945.
(f) Chaotic motion emerges, for example, for A = 5. The triangular
arrows next to each panel label indicate whether the top or bottom
abscissa scale applies. Brighter lines in the background show, for
comparison, results for ω = π/

√
26.

In our context, these results get transformed into trajectories
in the two-dimensional plane as described in the following.

At precisely A = 0, periodic behavior is found, which leads
to the regular polygon-like trajectory in Fig. 1(a) for ω = π/5.
For slightly larger values A � 0, the distance between the
cyclic values of ϕ starts to deviate from exactly ω = π/5.
Consequently, the spectrum of ϕ values in Fig. 3(a) gets
broadened, corresponding to cycloidal-like trajectories as in
Fig. 2(a).

The map in Fig. 3(a) illustratively explains the remaining
behavior observed in Fig. 2. Intermediate A intervals are char-
acterized by a single recurrent value of the angle ϕ. These
intervals indicate a fixed angular orientation, yet generally
oblique to the preferred direction −x̂, see Fig. 2(b). Appar-
ently, the tendencies of rotation set by ω and of alignment
set by A here balance each other, compromising to an offset
angle ϕ �= π . Such intervals are with increasing A followed in
Fig. 3(a) by events of period doubling. After the first doubling,
two alternating angles are associated with zigzag-type motion,
see Fig. 2(c). More complex trajectories result after further
period doubling, which translates into different zigs and zags,

FIG. 3. Overview of the circle map. (a) Numerical evaluation
of Eq. (1) for ω = π/5 in the interval 0 � A � 4π . While periodic
behavior exists at A = 0 and in several additional intervals of A, we
observe period doubling and pronounced intervals of chaotic motion
as well. This map was obtained by plotting the result of 104 iterations
of Eq. (1) for each value of A, after previous 104 steps of iteration.
(b) Order parameters p and p−x̂ according to Eqs. (4) and (5) for
Nstep = 104. We mark by the cut square the relatively low value of
the order parameter p ≈ 0.0066 at A = 9.940441 used in Fig. 5 and
further below.

see Figs. 2(d) and 2(e). Finally, the broad intervals of obvi-
ously chaotic behavior in Fig. 3(a) are reflected by the rather
irregular appearance of associated trajectories, see Fig. 2(f).

Mainly, we focus on the values of the angular frequency
ω as indicated above and in the captions of Figs. 1–3. Yet,
to briefly demonstrate how the different dynamic regimes as
illustrated in Figs. 2 and 3 are affected when varying ω, we
include Fig. 4. There, we test for the dynamic behavior for
which Eq. (1) in the steady state evaluates to one, two, three,
four, five, six, seven, eight, or more different values of ϕ upon
iteration. To our resolution, the latter case may predominantly
be ascribed to chaotic behavior.

IV. CHARACTERIZING THE TRAJECTORIES AND TYPES
OF MOTION

As a first step of quantifying the observed types of motion,
we define an order parameter

p = 1

Nstep

⎡
⎢⎣

⎛
⎝Nstep∑

n=1

cos ϕn

⎞
⎠

2

+
⎛
⎝Nstep∑

n=1

sin ϕn

⎞
⎠

2
⎤
⎥⎦

1/2

, (4)

where the sums run over Nstep subsequent time steps. This
parameter vanishes, p = 0, in the absence of any persistent
net drift towards a preferred direction. Conversely, p = 1 sig-
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FIG. 4. Overview on the different dynamic regimes in the steady
state observed when varying the angular frequency ω and the ten-
dency of alignment A. We distinguish between types of behavior for
which repeated evaluations of Eq. (1) lead to one [see Fig. 2(b)],
two [see Fig. 2(c)], three, four [see Fig. 2(d)], five, six, seven, eight
[see Fig. 2(e)], or more different values of ϕ. The latter case is
predominantly associated with chaotic behavior [see Fig. 2(f)] in
our resolution. We set the tolerance when testing whether angles are
identical to ±π/1000.

nals persistent and fully directed motion towards a certain
direction. Therefore, the drift parameter p measures how ef-
fectively the object moves forward.

In Fig. 3(b), p is plotted as the darker line. It starts from
p = 0 at A = 0, in agreement with the closed trajectory that
does not imply any average displacement. With increasing
tendency of alignment, the object starts to drift towards a cer-
tain direction and p increases with increasing A. The motion
is most effective and fully directed along one axis in intervals
of only one angle in Fig. 3(a), where p = 1. Period doubling
reduces p, while chaotic motion can push it to very low values.
Still, we always found p > 0 in these intervals, implying that
a net drift motion is associated with the irregularly shaped
trajectories.

To demonstrate this aspect, we concentrate on A =
9.940441, for which p ≈ 0.0066 is very low. Here, significant
amounts of overreaction occur in individual steps of angular
alignment already for weak deviations from the heading to-
wards −x̂. We plot the corresponding trajectory in Fig. 5(a)
on a shorter time scale. Previous studies focusing on variants
of Eq. (1) have reported diffusive behavior of the angular
variable ϕ for ω = 0 [72,73]. Considering here in addition
the spatial variables, a net drift becomes obvious when we
increase the time interval. Zooming out, the trajectory more
and more resembles again a straight line, see Fig. 5(b). Aver-
aging as a test over 1000 different initializations of ϕ0 in the
interval of [0, 2π [, we still obtain 〈p〉 ≈ 0.0086, which agrees
with the order of magnitude mentioned above.

Eventually, the order parameter p does not quantify
whether the motion is headed towards the requested direction
−x̂. For this reason, we introduce a second order parameter

p−x̂ = 1

2Nstep

Nstep∑
n=1

(1 − cos ϕn). (5)

We obtain p−x̂ = 1 when the motion is fully directed towards
−x̂ during each time step, while p−x̂ vanishes for straight
motion into the opposite direction +x̂. In between, p−x̂ = 0.5
signals that there is no net motion along x̂. p−x̂ is indicated in

FIG. 5. Trajectory of chaotic motion for a tendency of alignment
A = 9.940441 for an angular frequency ω = π/5 (darker lines). The
order parameter in Eq. (4) assumes a very low value of p ≈ 0.0066,
see also the square in Fig. 3(b). (a) An irregular shape appears on
shorter time and length scales. (b) Conversely, the net motion to-
wards one direction is visible on large time and length scales, where
the trajectory appears rather straight. For comparison, evaluations
for ω = π/

√
26 are included as well (brighter lines). Although the

curves appear qualitatively similar in shape, the small change in
ω leads for the chosen magnitude of A to significant quantitative
deviations, particularly concerning the overall drift angle in (b).

Fig. 3(b) by the brighter line. Apparently, completely directed
motion along a straight line does not necessarily imply an
effective motion towards the target direction −x̂. In our sit-
uation, we address actively driven objects of given persistent
bends in their trajectories and given strengths of alignment
tendency as quantified by a set magnitude of ω and A, respec-
tively. We thus conclude that, to achieve for such prescribed
values a most effective requested propagation towards a target,
it may be reasonable to work with an angular offset for the
heading direction.

V. COLLECTIVE DYNAMICS

Finally, we investigate how mutual interactions support
collective and rectified motion, particularly in the chaotic
regime. To this end, we consider orientational interactions
of the Vicsek type [1] between N self-propelled or actively
driven objects, labeled by i = 1, ..., N . At each time step, the
angle ϕi of the ith object is set equal to the averaged heading
of all objects within a distance d from it. Obvious example
systems concerning discrete collective alignment interactions
are robotic swarms or otherwise artificial, programed realiza-
tions of actively driven objects that suffer from finite refresh
rates of their sensors [74]. If monitored or steered through a
common, central unit [75,76], the update may become rather
simultaneous, or at least be based on simultaneously gathered
information.

To obtain our results, we begin by considering only the
deterministic contributions described so far. We evaluate the
mentioned Vicsek-type alignment interactions before Eq. (1).
Yet, we have checked that our results are qualitatively identi-
cal when switching this order. As an initialization, we iterate
ϕi for the ith object iN times according to Eq. (1). Only
then are mutual angular interactions and transport introduced.
The N objects are initially distributed at random. They are
confined to a square-like box of side length L under periodic
boundary conditions. We here set ω = π/5, A = 9.940441,
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d = 1 identical for all objects, and L = 10. Increasing the
number of objects N up to 1000, we have not identified quali-
tative variations in the collective behavior.

For quantification, we denote by ϕi,n the angular orienta-
tion of the ith object at the nth time step and evaluate the order
parameters

Pstep = 1

NNstep

Nstep∑
n=1

⎡
⎣(

N∑
i=1

cos ϕi,n

)2

+
(

N∑
i=1

sin ϕi,n

)2
⎤
⎦

1/2

, (6)

P = 1

NNstep

⎡
⎢⎣

⎛
⎝Nstep∑

n=1

N∑
i=1

cos ϕi,n

⎞
⎠

2

+
⎛
⎝Nstep∑

n=1

N∑
i=1

sin ϕi,n

⎞
⎠

2
⎤
⎥⎦

1/2

,

(7)

and

P−x̂ = 1

2 NNstep

Nstep∑
n=1

N∑
i=1

(1 − cos ϕi,n). (8)

Pstep basically measures whether (solely) at each time step all
objects move into the same direction, no matter whether this
direction changes over the considered overall period. Con-
versely, P determines the degree of directed collective motion
not distinguishing between different objects and time steps.
It decreases when over time the direction of ordered collec-
tive motion changes. P−x̂ again quantifies the effectiveness of
motion along the preferred direction −x̂.

We generally observe that the initial diversification in an-
gular distribution does not survive the averaging procedure
when stochastic contributions are absent. In fact, the order
parameter Pstep approaches values close to one after an initial
period of ordering in all considered cases, see Fig. 6(a). That
is, at each time step (separately), all objects move basically
into the same direction. However, here for A = 9.940441,
this direction becomes uncorrelated in time, and P drops
towards zero. It appears as if the whole crowd synchronizes
and moves chaotically as one entity. Moreover, the overall
motion is hardly directed into the direction −x̂, as signaled
by P−x̂ ≈ 0.5, see Fig. 6(a).

Interestingly, orientational ordering for A = 9.940441 is
associated with spatial concentration of the objects. We found
this process of concentration independently of the number of
objects N , and in all cases we started from a random spatial
distribution throughout the periodic box. Thus, the spatial and
orientational dynamics are significantly coupled. An example
of initial distribution and subsequent spatial concentration in
one spot is depicted in Fig. 6(b). This spot basically moves as
one entity during further iteration, as illustrated in a video in
the Supplemental Material [77]. To quantify this localization
into one spot, we introduce another order parameter,

Ploc = 1

N2NstepL

Nstep∑
n=1

N∑
i=1

N∑
j=1

[(xi,n − x j,n)2

+ (yi,n − y j,n)2]1/2. (9)

For perfect concentration of all objects into one dot, we would
find Ploc = 0. Otherwise, the larger in magnitude Ploc is, the
more spatially distributed the particles are. During evaluation,

FIG. 6. Emergence of ordered collective motion in a crowd of
N = 1000 initially randomly arranged objects in the chaotic regime
for ω = π/5 and A = 9.940441, see also Fig. 5. Vicsek-type mutual
interactions of range d = 1 in a periodic box of length L = 10 are
included. (a) Time evolution of the order parameters Pstep, P, and
P−x̂, see Eqs. (6)–(8), indicates development of orientationally or-
dered collective motion (Pstep). Yet, the overall direction of collective
motion is not correlated over time (P) and not effectively oriented
into the desired direction (P−x̂). Here, Nstep always corresponds to
the total number of simulated time steps. The development of spatial
concentration of the objects is quantified by the order parameter Ploc,
see Eq. (9). (b) Positions of the objects after the amount of time
steps indicated in the legend. A concentration from initial random
distribution into a spot of approximate size d = 1 is obvious. This
spot basically moves as one entity during the further course of the
dynamics [77].

we take into account the periodic boundary conditions and
always use the minimal distance between any two objects,
which, depending on the situation, may be measured across
the periodic boundaries.

So far, we have regarded the Vicsek-type alignment
interactions as completely deterministic. In reality and gen-
erally, fluctuations and errors occur. Similarly to the Vicsek
model [1], we therefore include a stochastic contribution �i,n

that is added to the angle ϕi,n after evaluating the alignment
interactions but before evaluating Eq. (1). It accounts, for
example, for the imperfections arising during the alignment
procedure. We assume �i,n to be uncorrelated in time, white,
Gaussian distributed, and uncorrelated between the objects,
so that 〈�i,n〉 = 0 and 〈�i,n � j,m〉 = 2Kδi jδnm. Here, δ denotes
the Kronecker delta and K sets the strength of the stochastic
contribution.

We numerically measured the time evolution of the order
parameters, choosing, for illustration, for ω = π/5 the same
values of A as in Figs. 1(a), 2, and 5. Corresponding results

064603-5



ANDREAS M. MENZEL PHYSICAL REVIEW E 106, 064603 (2022)

FIG. 7. Influence of additional stochastic contributions of
strength K to the angular alignment of each object, superimposed
before evaluating Eq. (1), on the magnitude of the resulting order
parameter Pstep in a crowd of N = 1000 objects and ω = π/5. For
illustration, the values of A are set to (a) 0 and 0.05; (b) 1.5, 2.5,
2.8, and 2.945; (c) 5; and (d) 9.940441, as in Figs. 1(a), 2, and 5.
Apparently, the sensitivity with respect to stochastic contributions
significantly increases in the chaotic regime. Standard deviations in
the main plots are indicated by light shaded areas in the background
and were obtained by sampling over Nstep = 5 × 104 iterative steps.
The inset in (c) magnifies the drop of the order parameter Pstep with
increasing low magnitude of K at constant density but varying total
number of objects N .

for the magnitude of the order parameter Pstep, see Eq. (6), as
a function of the stochastic strength K are depicted in Fig. 7
for one stochastic realization for each value of K , yet after
averaging over at least the last Nstep = 5 × 104 time steps of
each simulated realization.

For vanishing and low tendency of alignment A, see
Fig. 7(a), we observe what might be expected from the Vicsek
model. The whole crowd synchronizes for smaller stochastic
strengths K . With growing values of K , this ordering breaks
down.

Raising the tendency of alignment A into the regime of
the first bifurcations in Fig. 3(a), see Fig. 7(b), the sensitivity
with respect to the stochastic contributions increases when
we increase A from 1.5 to 2.945. In principle, the stochastic
influence on an object can push its angular orientation to an-
other bifurcated branch. Overall, ordering is then affected. For
the depicted values of K , the order parameter Pstep remains at
finite, nonvanishing magnitude, because in our consideration
the stochastic contributions �i,n are predominantly considered
to arise from the mutual Vicsek-type alignment interactions
between the objects. The stochastic terms are thus included
before evaluating Eq. (1), as mentioned above. Therefore,
the actual individual tendency of alignment due to A �= 0 in
Eq. (1) remains and tends to drive all objects individually
towards the preferred direction. As a result, nonvanishing
overall orientational order Pstep arises, despite the stochas-

tic fluctuations in mutual alignment between the objects.
Switching this order and adding the stochastic contributions
only after evaluating Eq. (1), the curves, for instance, in
Fig. 7(b) drop further towards zero with increasing K .

The trend of decaying order parameter Pstep naturally be-
comes still more pronounced for tendencies of alignment A
in the chaotic regime, see Figs. 7(c) and 7(d). Even if only
weak deviations in the angular orientation of an individual
object are caused by the stochastic contributions, they here
according to Eq. (1) can result in significant angular deviations
during subsequent time steps. A bias of this type strongly
counteracts overall synchronization. Consequently, very weak
stochastic influences can already induce a breakdown in over-
all alignment. The inset in Fig. 7(c) demonstrates that the
drop in the order parameter Pstep is still continuous at the
considered system sizes at small magnitudes of the strength of
stochastic contributions K . Yet, with increasing system size,
that is, for increasing total number of objects N at identical
overall density, the drop becomes steeper. At this point, we
cannot exclude that an actual transition occurs from K = 0 to
K > 0 for infinitely extended systems.

Interestingly, we observe a nonmonotonic curve in
Fig. 7(d). After a steep decrease of the order parameter at
very small amplitudes of fluctuations, it slightly recovers
when we continue to increase the magnitude of fluctuations.
Accordingly, in this chaotic example with significant overre-
action, the presence of weak fluctuations can actually support
ordering. Afterwards, with further increasing magnitude of
fluctuations, the order parameter continues to decrease. Our
analysis revealed that this nonmonotonic behavior is sta-
ble against moderate variations in the number of objects N
and in the angular frequency ω, see Figs. 8(a) and 8(b),
respectively. However, the effect is significantly more sen-
sitive with respect to changes in the strength of alignment
tendency A, see Fig. 8(c). In Fig. 8(d), we confirm that the
phenomenon is not associated with an insufficient amount of
steps of iteration before evaluating the order parameter.

Briefly, we address the consequences of stochastic fluctu-
ations during mutual alignment on the spatial concentration
process indicated in Fig. 6(b). In that case, we observe a
reduced trend of spatial concentration into one spot and of its
correlated motion, as illustrated in the videos in the Supple-
mental Material [77]. Quantitatively, we have measured these
trends using the order parameter Ploc as defined in Eq. (9).
The results are illustrated in Fig. 9 in the chaotic regime for
A = 5 and A = 9.940441. Here, the increase (decrease) in Ploc

is approximately correlated with the decrease (increase) in
Pstep. At K = 0, the low magnitude of Ploc indicates significant
spatial concentration, which we have not observed for the
other values of A studied in Fig. 7. At elevated values of K ,
the order parameter Ploc approaches the magnitude expected
for approximately equally spatially distributed objects in our
system. An interesting question for future investigations con-
cerns the relation between this spatial concentration and the
propagating structures of high density emerging in regular
Vicsek models [5,78–80].

Finally, we consider the polydispersity of the actively
driven objects as a source of disorder, instead of fluctuations
in mutual alignment interactions. To this end, we concentrate
on the tendency of alignment along −x̂, parameterized by
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FIG. 8. Stability of the results in Fig. 7(d) against variations
(a) in the number of objects N , (b) in the angular frequency ω, (c) in
the strength of alignment tendency A, and (d) in the number of steps
of iteration before the order parameter Pstep was recorded. Here, we
set the number of sampling steps to Nstep = 5 × 104, and in (d) the
legend displays the overall number of iterative steps in that panel.
Standard deviations are omitted for better visibility.

A. Specifically, before the angular and spatial initialization,
we assign to each object a value Ai = A + �A,i that is kept
constant during the numerical iteration (i = 1, ..., N). �A,i

is drawn from a Gaussian distribution and uncorrelated be-
tween different objects, implying 〈�A,i〉 = 0 and 〈�A,i �A, j〉 =
2 KA δi j .

To evaluate the influence of polydispersity on our results,
we increase KA for the same values of A studied before in
Figs. 1(a), 2, 5, and 7–9. Plotting the order parameter Pstep

as a function of increasing magnitude of polydispersity KA,
here for one different realization for each value of KA, we
infer from Fig. 10 similar qualitative trends as for increasing
strengths of fluctuations in mutual angular alignment in Fig. 7,
except for the nonmonotonic behavior in Fig. 7(d). However,

FIG. 9. Same as Figs. 7(c) and 7(d), but now amended by the
magnitude of spatial concentration quantified by the order parameter
Ploc, see Eq. (9). As in Figs. 7(c) and 7(d), the values of A are set
to (a) 5 and (b) 9.940441, respectively. Standard deviations were
obtained in the same way as indicated in the caption of Fig. 7 and
here for Ploc at maximum are of the order of the line thickness.

FIG. 10. Influence of the magnitude KA of polydispersity in the
tendency of alignment A on the resulting order parameter Pstep in a
crowd of N = 1000 objects and ω = π/5. One specific realization
of polydispersity is addressed for each value of KA. Again, for com-
parison, the values of A are set to (a) 0 and 0.05; (b) 1.5, 2.5, 2.8,
and 2.945; (c) 5; and (d) 9.940441, as in Figs. 1(a), 2, 5, and 7–9.
The sensitivity with respect to polydispersity apparently is more
pronounced in the chaotic regime. Standard deviations obtained by
averaging over five different realizations of the systems are mostly
of the order of the line thickness or smaller.

quantitatively, the decrease in Fig. 10(b) is more substantially
towards zero than in Fig. 7(b). Specifically, when varying the
tendency of alignment A for the individual objects in Fig. 10,
different preferred individual angles of alignment result, see
Fig. 3. In effect, this naturally reduces their overall orien-
tational ordering as well, and Pstep is reduced. Our example
systems become particularly sensitive concerning polydisper-
sity in the chaotic regime.

VI. CONCLUSIONS

Summarizing, we have investigated the motion of self-
propelled particles or actively driven objects that, when
undisturbed, move in discrete steps along regular kinked
trajectories. Rich nonlinear dynamics emerges when an addi-
tional tendency of alignment along a specified direction comes
into play. We have observed discrete versions of cycloidal-like
trajectories, straight motion under an oblique drift angle, vari-
ous zigzag-like modes of migration, as well as chaotic motion
in broad parameter intervals.

In fact, we found that this generic type of migration is asso-
ciated with one of the most basic minimal models of nonlinear
dynamics, namely, the Arnol’d circle map [66]. Through ac-
tive transport, this nonlinear dynamics gets laid out into the
two-dimensional plane in the form of the resulting trajectories.
We always observe a net drift along a certain direction, even
if comparatively weak and not necessarily along the requested
orientation. Consequently, to reach a target at a certain remote
location in combination with a set tendency towards circular
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trajectories, it generally becomes reasonable to work with an
angular offset. Besides, the tendency of alignment must be
tuned carefully.

This simple example demonstrates the richness that
nonequilibrium and actively driven systems feature already
in a very basic context. To observe the described effects in
reality, nonsymmetric chiral hoppers driven through vibrating
substrates can be biased towards one direction by gravity
when inclining the vibrating plate [81,82].

As a final remark, we mention that the picture of a drunk
person trying to get home or to the next pub is frequently
used to motivate the concept of a random walk. One may

argue about whether this comparison is generally reasonable.
After all, the person has a remote target and tries to reach it.
Therefore, in view of our results, it may be more appropriate
to reinterpret this type of motion of a person having the spins,
performing discrete steps, and trying to reach a target as
chaotic rather than random.
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