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Noise-induced swarming of active particles
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We report on the effect of spatially correlated noise on the velocities of self-propelled particles. Correlations in
the random forces acting on self-propelled particles can induce directed collective motion, i.e., swarming. Even
with repulsive coupling in the velocity directions, which favors a disordered state, strong correlations in the
fluctuations can align the velocities locally leading to a macroscopic, turbulent velocity field. On the other hand,
while spatially correlated noise is aligning the velocities locally, the swarming transition to globally directed
motion is inhibited when the correlation length of the noise is nonzero, but smaller than the system size. We
analyze the swarming transition in d-dimensional space in a mean field model of globally coupled velocity
vectors.
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I. INTRODUCTION

It seems surprising that certain forms of order can arise in
randomly forced systems. Yet noise and heterogeneity from
different sources and at different scales are ubiquitous in
nature where such synergetic effects as stochastic resonance
[1,2], coherence resonance [3–5], and noise-induced synchro-
nization [6–9] can explain regularity despite an inherently
random environment. Even in linear systems correlations in
the noise can cause correlations in the system response, which
is famously known as Moran’s theorem in ecology [10]. In
this report we study the alignment of vectors evolving on the
surface of a d-dimensional sphere subject to polar attractive or
repulsive interaction and to white noise which may be corre-
lated between individual vectors or globally. When the vectors
are interpreted as velocity vectors of self-propelled active
particles, for instance, in the paradigmatic Vicsek model [11],
alignment can be observed as a macroscopic nonzero flow,
resulting in an effective transport of matter and momentum.
We show that a global random forcing can lead to a complete
alignment of velocities, even for moderately small repulsive
interaction. In d = 2 dimensions the vectors are characterized
by a single angle, and noise-induced swarming is really an
expression of noise-induced synchronization. Our mean field
analysis in the second half of this paper generalizes this ef-
fect to higher dimensions. In the absence of coupling, and
in the limit of large d , the restriction to the surface of the
unit sphere becomes irrelevant. This is in direct analogy to
the distinction between the microcanonical and the canonical
ensemble in thermodynamics and the restriction to a surface
of constant energy. We find that in this limit the vector compo-
nents become independent linear processes and alignment of
the vectors by correlated white noise is explained by Moran’s
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theorem. In the first part of this paper, after an introduc-
tion to the Moran effect, noise-induced synchronization, the
similarities between the Vicsek model of active particles,
the Kuramoto model, and its higher dimensional generaliza-
tions, we study the effect of spatially correlated noise in a
Vicsek-like dry model [12] of active particles numerically. We
observe local alignment of velocities due to the correlations in
the noise, i.e., noise-induced swarming. While we argue that
this effect is intimately related to already known mechanisms,
it has only recently been put forward as an explanation for
the stabilization of small schools of fish [13]. The statistical
physics of the swarming transition in the Vicsek model has
been an active field of research for a long time (see [12,14]
and references therein). It is not the goal of this paper to shed
light on the spatiotemporal scaling properties of the transition.
Instead we demonstrate the effect of noise-induced swarming
by calculating velocity distributions and exact order parame-
ters in the mean field approximation.

The coefficient of correlation between two linear stochastic
processes subject to additive, correlated Gaussian white noise
is equal to the correlation between the two noise forces. This
mathematically trivial theorem is known in ecology as the
Moran effect [10] offering an explanation for correlations in
equilibrium fluctuations of species populations over large dis-
tances which are not coupled through migration. The source
of correlated noise can be thought of as external perturbations,
e.g., a top predator, fluctuations in a common resource, or
extreme weather events, acting over long distances directly
or on a fast convective or diffusive timescale. The effect has
also been studied in nonlinear and nonequilibrium processes
[15], e.g., for cyclic population dynamics [16]. Indeed, nonlin-
ear self-sustained oscillators may synchronize when they are
subjected to correlated fluctuations. This somewhat counter-
intuitive behavior is known as noise-induced synchronization
[6–9] and can even be observed in chaotic oscillators sub-
ject to common noise [17]. The Kuramoto model of coupled
oscillators [18,19] and the Vicsek model of self-propelled
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particles [11] are paradigmatic in their respective fields:
synchronization and active matter. Recently, efforts have
been made to exploit similarities, to generalize the respective
models, and to transfer results [20–31]. Oscillations in the
Kuramoto model are naturally related to vortices in active
matter flows and to helical motion [30–32]. The Vicsek model,
on the other hand, is easily formulated in three-dimensional
space, and higher dimensional generalizations of the Ku-
ramoto model have been proposed recently.

Statistical thermodynamics of active particles, elucidating
the origin and the often dominating role of fluctuations in
microscopic nonequilibrium systems, is another active field
of research [33–36]. However, in the Langevin description
of microscopic stochastic dynamics the fluctuations are often
assumed to be independent Gaussian white noise. Allowing
the noise to be autocorrelated in time can give rise to novel ef-
fects [36–38]. Here we study the effect of spatial correlations,
which has not been considered so far. In two dimensions the
analysis of noise-induced synchronization can directly be ap-
plied to the Vicsek model where it manifests as noise-induced
swarming, as we refer to the emergent alignment of velocity
vectors under the influence of common or correlated noise.
Indeed, common multiplicative noise in the form of finite-size
fluctuations has recently been identified as a mechanism to
stabilize coherent swarming in small schools of fish [13].

In Sec. II we will introduce Langevin equations for a
Vicsek-like dry model of active particles [12], i.e., polar
particles without hydrodynamic equations for the medium
through which the particles interact. We study noise-induced
swarming in this model with polar interaction in two and
three dimensions numerically and find that spatial correlations
in the noise lead to an increase in the local alignment of
velocities at the scale of the correlation length but inhibits
global synchronization. In Sec. III we analyze the model in
the mean field approximation and find the distributions of
order parameters for arbitrary dimensions d . The alignment of
high-dimensional vectors confined to the surface of a hyper-
sphere is of interest in opinion dynamics and consensus-based
optimization [39,40]. It is in the limit of high dimensions that
the formal connection between noise-induced swarming and
Moran’s theorem becomes apparent.

II. SPATIALLY EXTENDED MODEL

The original Vicsek model of self-propelled particles [11]
defines a time-discrete map for the positions �xn ∈ Rd and
unit length velocities �vn ∈ Sd−1, vn = |�vn| = 1 of particles
n = 1, . . . , N in a d = 2 two-dimensional system. In each
time step the positions change according to the velocities and
the velocities assume the direction of the average velocity
within a coupling range R plus a uniformly distributed individ-
ual random angle. Here we adopt a more mechanical model
[41], where so-called vectorial noise acts in the same way
as the coupling forces. The dynamics of the self-propelled
particles is given by Langevin stochastic differential equa-
tions, i.e., continuous in time and subject to Gaussian white
noise. Forces, including the random fluctuations, act only in
the orthogonal directions on the velocities, thus changing the
direction but not the speed of the particles. In units of time and

space where v = 1 the equations of motion are

�̇xn = �vn, (1)

�̇vn = �Fn − ( �Fn · �vn)�vn, (2)

i.e., �̇v · �v = 0. Any common component in the forces �Fn, in-
cluding a common noise source, will contract all velocities on
the surface of the sphere into that direction, may overcome
independent noise and heterogeneity in the forces, and lead
to an emergent collective swarming state. The assumption
of a constant velocity, identical for all particles, is a strong
simplification, implying low heterogeneity of the particles
and a fast relaxation to the terminal velocity where friction
and propulsion forces are balanced. The force acting on a
particle is aligning it to the local velocity field with a coupling
strength K and has a stochastic component which we model
as a Gaussian white noise field �η(�x, t ) of strength D:

�Fn = K〈�vn〉R +
√

2D�η(�xn, t ). (3)

The term 〈�vn〉R denotes the average velocity of particles within
the coupling distance R to the position �xn.

The projection in (2) makes the noise multiplicative. The
stochastic differential equation (2) has therefore to be inter-
preted in the sense of Stratonovich to ensure the constant
velocity amplitude. Unlike the contraction into the direction
�F (t ) in (2), a random but common rotation, so-called angu-
lar noise, would not change the angles between velocities.
Only correlations of the vectorial noise in �F will lead to
noise-induced swarming. Let us define the set of neighbors
Un(R) = {m : |�xm − �xn| � R} including particle n, the number
of neighbors kn(R) = |Un(R)|, the local velocity field

�Vn = 〈�vn〉R = 1

kn(R)

∑
m∈Un (R)

�vm, (4)

as well as the global order parameter V = 1
N | ∑n �vn| and

the average local order parameter VR = 1
N

∑
n | �Vn|. Spatially

correlated but not necessarily identical noise introduces an-
other time and length scale into the model, i.e., the coefficient
of correlation 0 � q � 1 (we do not consider anticorrelated
noise) and a correlation length �. In our numerical simulation
we create spatially correlated noise by averaging distributed
independent white noise sources. Indeed, assigning an in-
dependent white noise source �ξn = (ξni ) with n = 1, . . . , N ,
i = 1, . . . , d and 〈ξmi(t )ξn j (t ′)〉 = δmnδi jδ(t − t ′) to each par-
ticle, and defining

�η(�xn, t ) =
√

kn(�)〈�ξn〉� = 1√
kn(�)

∑
m∈Un (�)

�ξm, (5)

we obtain spatially correlated white noise �η(�xn, t ) = �ηn =
(ηni) with

〈ηmi(t )ηn j (t
′)〉 = q(�xm, �xn)δi jδ(t − t ′) (6)

and with a spatial correlation function of characteristic length
scale �,

q(�xm, �xn) = |Um(�) ∩ Un(�)|√
km(�)kn(�)

. (7)
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FIG. 1. The local order VR is increasing when the noise corre-
lation length � is increased, while global alignment V is inhibited.
(a) Local and global order parameters VR and V in the third model
of N = 16 384 self-propelled particles in a periodic domain of side
length L = 8, with coupling distance R = 0.5 and different noise
correlation lengths �. Solid lines are median values and dashed
lines ±25% percentiles. Red and blue lines for coupling strength
K = 1.0 and noise strength D = 0.2. Yellow and black lines for
uncoupled particles with K = 0.0 and D = 0.5. (b) Turbulent noise-
induced swarming state. Velocity vectors of N = 16 384 particles in
a 2D periodic domain of side length L = 16, zero coupling strength
K = 0 over a coupling radius R = 0.5 (solid black circles) and noise
strength D = 0.5 with noise averaging over circles of radius � = 2
(dashed circles). The shades of the vectors indicate the direction. In
(c) and (d) we show the velocity vectors of N = 16 384 particles
[only 4000 are shown in (c)] in a periodic 3D medium with L = 8.
Coupling radius is R = 0.5, coupling strength and noise strength are
K = 1.0 and D = 0.2 with correlation lengths (c) � = 10−4 and
(d) � = 1.0. Globally directed swarming state with V ≈ 0.66 in
(c) and turbulent velocity field due to correlated noise in (d). Velocity
directions are also indicated by color.

The specific source of the correlations and shape of the
correlation function is not essential for the effect of noise-
induced swarming but may affect the statistics of turbulent
states. Power-law correlations in the noise would lead to
power-law correlations in the velocity field and vanishing
difference in the noise at small spatial distances may lead
to the formation of separated clusters in the long time limit.
Note that uncorrelated noise will, in the thermodynamic limit
of large N , affect macroscopic observables smoothly on dif-
fusive time and length scales. On the other hand, spatial
correlations in the noise are macroscopic forces, leading to
macroscopic fluctuations of observables at the scale of the
correlation length, even in the thermodynamic limit. In Fig. 1
we demonstrate the emergence of a macroscopic irregular
velocity field, characterized by high local order and low global
order, through noise-induced swarming. We call a velocity

field turbulent in this sense. We have simulated N = 16 384
particles in two- and three-dimensional domains with periodic
boundary conditions and side lengths L = 16 and L = 8, re-
spectively. The particle velocity is v = 1, and the coupling
radius is R = 0.5 . We use the Euler-Maruyama method with
additional renormalization of the velocity vectors after each
step (dt = 0.01) to integrate the Langevin equations (1)–(6).
In Fig. 1(a) the local and global order parameters in d = 3
dimensions are shown as a function of the correlation length
scale �/R. Without coupling, i.e., K = 0 [Fig. 1(a) black and
yellow curves] and for spatially uncorrelated noise � → 0,
the velocities are independent and uniformly distributed on
the unit sphere resulting in a low global order parameter
V = 1/

√
N ≈ 0.008 and a moderate local order parameter

VR = 1/
√

k(R) ≈ 0.24. Increasing the correlation length the
particle velocities at distances O(�) become correlated but are
uncorrelated over longer distances. The local order parameter
VR increases, while the global order parameter V remains
low. When K is large enough to force velocity alignment
in the Vicsek model with uncorrelated noise of strength D
[Fig. 1(a) blue and red curves and Fig. (c)], increasing the
correlation length but keeping the noise strength constant can
destroy the state of globally directed motion [Figs. 1(a) and
1(d)]. Figure 1(b) shows the turbulent d = 2 velocity field
for uncoupled particles (K = 0) subject to white noise of
strength D = 0.5 and noise correlation length scale � = 2.
Figures 1(b) and 1(d) show states of active matter turbulence,
in Fig. 1(b) without coupling (pure noise-induced swarming)
and in Fig. 1(d) with attractive coupling. Repulsive coupling
will only further decrease the average local order parameter.

III. MEAN FIELD ANALYSIS

If R is larger than the system size and the correlation
function is approximately constant, the global order parameter
is described by mean field theory [42,43]. For finite coupling
radius, if the timescale of the local alignment is faster than the
timescale of the motion, only the local velocity fields may be
described by mean field theory. It is noteworthy that there is
no explicit density dependent interaction in this model, such
as volume excluding repulsive forces or cohesive interaction.
Fluctuations in the density larger than the expected finite-size
fluctuations are an emergent effect. Large flocks of particles
going in the same direction at the same speed stay together
longer and grow through assimilation, while they also may
break through scattering. Such coherent structures play an
important role in the propagation and eventual divergence of
velocity correlations through coupling [41]. Since mean field
analysis assumes high particle densities we simulate rather
small spatial domains and moderately high densities (N/L3 =
32 in three dimensions and N/L2 ≈ 64 in two). However,
mean field analysis can only locally predict noise-induced
swarming and makes no prediction for the transition to global
alignment in spatially extended systems. If the particle veloc-
ities are subject to a global mean field force and noise

�Fn = K〈�v〉 +
√

2D�ηn(t ) (8)

with correlated Gaussian white noise 〈ηmi(t )ηn j (t ′)〉 =
[q(1 − δnm) + δnm]δi jδ(t − t ′), then the order parameter V of
the system depends only on the relative coupling strength
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FIG. 2. Average order parameters in the mean field model.
(a) Average order parameter V in simulations of globally coupled
3D velocity vectors with coupling-to-noise ratio κ subject to cor-
related noise with coefficient of correlation q. Two second-order
transitions occur, at q = 0, κcr = 3 and at q = 1, κcr = −2 (dashed
vertical lines). These transitions are shown in (b) for q = 0 and in
(c) for q = 1 for different dimensions d (solid lines) and compared
to simulations (markers). The crossover of the square root of the
velocity correlation 〈C〉 = 〈V 2〉t as a function of q from 〈C〉 = 0
at q = 0 to 〈C〉 = 1 at q = 1 is shown in (d) with solid lines and
compared to simulations (markers). The theoretical distribution of C
over the interval [−1, 1] for noise correlation q = 0.5 and increasing
dimensions d is shown in (e). The velocity correlations become
narrowly distributed around q for d → ∞, an expression of Moran’s
theorem in our model.

κ = K/D and the coefficient of correlation 0 � q � 1
[Fig. 2(a)]. In the following we present exact expressions for
the order parameter V with purely uncorrelated noise (q = 0)
and with identical noise (q = 1) and for the velocity correla-
tion C = �v · �v′ in uncoupled oscillators (κ = 0) but arbitrary
noise correlation q.

The first case of uncorrelated noise results in a Boltzmann-
type stationary distribution [31,44]

p(�v) = 1

Z
eκ �V ·�v (9)

with a normalization constant Z , where the order parameter
is implicitly given [44] (see also the Appendix) as a ratio of

modified Bessel functions of the first kind

V = Id/2(κV )

Id/2−1(κV )
. (10)

The bifurcation curve V = V (κ ), shown in Fig. 2(b) and
compared to simulations of the Langevin equations, has
the parametric form V (x) = Id/2(x)/Id/2−1(x), κ (x) = x/V (x)
and x � 0. At the critical coupling κcr = d , where x → 0, the
order parameter becomes zero with square root scaling [31].
Interestingly a similar second-order transition is observed in
active Ornstein-Uhlenbeck processes with nonlinear direc-
tional coupling [45].

With only common noise, i.e., q = 1, all velocities are
subject to the same force �Fn(t ) = �F (t ). In analogy to the
invariant Ott-Antonsen manifold for phase oscillators forced
in the first harmonics [46] a family of continuous distributions
on higher dimensional unit spheres given by the hyperbolic
Poisson kernel [47]

p(�v) = 1

Z

(
1 − a2

|�v − �a|2
)d−1

(11)

exists, which includes a uniform initial distribution (a = 0)
and, under common forcing, is invariant under the flow de-
fined by (2). The ensemble mean velocity is a function of the
parameter �a with |�a| = a � 1,

〈�v〉 = �d (a)�a, (12)

0 < �d (a) � 1 and �d (1) = 1. Only for d = 2 do we have
�2(a) = 1, and the mean velocity is equal to �a. The functions
�d (a) are related through recurrences and have expressions
which increase in complexity with the dimension d [23,48].
However, the parameter �a follows a simple dynamics inside
the d-dimensional unit sphere [47]

�̇a = 1
2 (1 + a2) �F − ( �F · �a)�a. (13)

After calculating the drift and diffusion coefficients in the
Fokker-Planck equation of a = |�a| for this Stratonovich
Langevin equation, we can formally write the stationary dis-
tribution (see the Appendix)

p(a) = 1

Z
(1 − a2)−d a1−d exp

[ ∫ a 2κ�d (s)s

(1 − s2)
ds

]
. (14)

The time average of the ensemble mean velocity 〈V 〉t =
〈�d (a)a〉 can be calculated either numerically or, for d = 2
and d = 4, as a ratio of special functions (see the Appendix).
For d = 2

〈V 〉t = 1

2
B

(
1

2
,−κ

)
(15)

with the beta function B(a, b), and for d = 4

〈V 〉t = − 3

2κ

Z4(3, 3; κ ) + 2Z4(5, 4; κ )

Z4(4, 4; κ )
(16)

with

Z4(a, b; κ ) = M

(
a

2
, 1 − b + a

2
− κ;

κ

2

)
B

(
a

2
, 1 − b − κ

)

(17)
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and Kummer’s confluent hypergeometric function M(a, b; z).
We plot the analytic expressions (15)–(17) for d =2 and d = 4,
as well as the numerical evaluation of the mean velocity
from (14) for d = 3, together with the data obtained in the
simulation of the Langevin equations in Fig. 2(c). We observe
that with lima→1 �d (a) = 1 the density (14) is normalizable at
the pole a = 1 only if κ < 1 − d , i.e., κcr = 1 − d . For larger
values the common noise leads to a complete alignment even
for negative coupling 1 − d < κ < 0. For repulsive coupling
in the range −d < κ < 1 − d the probability density is nor-
malizable but divergent at a = 1. This regime is characterized
by intermittent strong synchronization and desynchronization.

The case of purely noise-induced swarming with K = 0
can be analyzed in a similar way. The square of the mean
velocity is given by the ensemble average of the velocity
correlation C = �v · �v ′,

V 2 = 1

N2

∑
n,m

�vm · �vn. (18)

With correlated noise this ensemble average is fluctuating in
time but the time average is given by the expected value of C
with respect to the stationary distribution (see the Appendix)

p(C) = 1

Z

(1 − C2)
d−3

2

(1 − qC)d−1
. (19)

The normalizing factor Z and the average squared order
parameter 〈V 2〉t = 〈C〉 have expressions in terms of the Gauss
hypergeometric function 2F1(a, b; c; z) and the beta function.
We write

Z (a, b; q) =
∫ 1

−1
(1 − C2)b−1(1 − qC)−a dC

= 22b−1

(1 + q)a
B(b, b) 2F

1

(
a, b, 2b;

2q

1 + q

)
. (20)

Then 〈C〉 follows from

〈1 − qC〉 = 1 − q〈C〉 = Z
(
d, d−1

2 ; q
)

Z
(
d − 1, d−1

2 ; q
) . (21)

We note that C is distributed on the interval −1 � C � 1 but
〈C〉 � 0 for q � 0. The square root of 〈C〉 = 〈V 2〉t is shown in
Fig. 2(d) for d = 2, 3, and 4 and compared to simulations of
the Langevin equations. At this point we can draw the parallel
to the Moran effect. In high dimensions the components of the
velocity vectors become independent linear processes. Due
to entropic forces, manifested as a linear, noise-induced drift
to smaller values (the Appendix), the components of �v are
approximately Gaussian normal of variance 1/d . The stochas-
tic quantity C = �v · �v′ is equal to the ensemble coefficient of
correlation in d realizations of two linear stochastic processes
vi(t ) and v′

i (t ) with i = 1, . . . , d subject to correlated white
noise. The distribution of C for d pairs of Ornstein-Uhlenbeck
processes with correlated noise was found in [49]. For large d
it is similar to (19). From the law of large numbers follows
Moran’s theorem that p(C) = δ(C − q) for d → ∞, i.e., the
ensemble coefficient of correlation for d → ∞ is exactly
equal to the correlation of the noise. In Fig. 2(e) we plot
the distribution (19) and observe that it converges to a delta
distribution at C = q.

We have calculated exact distributions for the mean
velocity V = 〈�v〉 and for the velocity correlation C = �v ·
�v ′, describing the alignment of mean-field-coupled velocity
vectors subject to purely uncorrelated noise q = 0, purely
identical noise q = 1, and in the absence of coupling K = 0,
respectively. In the first two cases there exist critical coupling-
to-noise ratios κcr where transitions from an isotropic velocity
distribution to partial alignment (q = 0) and from intermittent
synchronization to permanent, complete alignment (q = 1)
occur. In the uncoupled case K = 0 the noise correlation q
parameterizes a crossover between zero order at q = 0 and
complete alignment at q = 1. We call the resulting directed
movement in self-propelled particles subject to correlated
noise, noise-induced swarming. For 0 < q < 1 a crossover
from low to high order is observed [Figs. 2(a) and 2(d)] but no
critical transition when the coupling strength κ is changed. In
the light of our mean field results it is surprising that increas-
ing the correlation length of the noise in spatially extended
systems of self-propelled particles, without changing the noise
strength, can increase the velocity alignment locally but at the
same time inhibit the transition to global directed motion. This
effect could have important implications for decentralized
control of crowds or for swarms of artificial agents in random
environments.

APPENDIX: STOCHASTIC DIFFERENTIAL EQUATIONS
FOR THE ORDER PARAMETERS

Let

dXi = μi( �X )dt +
∑

j

σik ( �X ) ◦ dWk (A1)

be Stratonovich stochastic differential equations (SDEs) with
uncorrelated Wiener processes, i.e., dWidWj = δi jdt . The
equivalent Itô SDEs are obtained by adding the Stratonovich
shift

dXi =
⎛
⎝μi + 1

2

∑
jk

σ jk∂ jσik

⎞
⎠dt +

∑
k

σikdWk . (A2)

The Itô SDE for a function f = f ( �X ) is obtained using Itô’s
lemma

df =
∑

i

∂i f dXi + 1

2

∑
i j

∂2
i j f dXidXj (A3)

and together with (23)

df =
∑

i

∂i f

⎡
⎣

⎛
⎝μi + 1

2

∑
jk

σ jk∂ jσik

⎞
⎠dt +

∑
k

σikdWk

⎤
⎦

+1

2

∑
i j

∂2
i j f

∑
k

σikσ jk dt . (A4)

The sum of the increments of the uncorrelated Wiener pro-
cesses can be cast as the increment of a single Wiener process
W̃ : ∑

i

∂i f
∑

k

σikdWk = σ̃dW̃ . (A5)
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With noise strength

σ̃ 2 =
∑

i j

∂i f ∂ j f
∑

k

σikσ jk (A6)

and the drift term

μ̃ =
∑

i

⎡
⎣∂i f

⎛
⎝μi + 1

2

∑
jk

σ jk∂ jσik

⎞
⎠ +

∑
jk

∂2
i j f σikσ jk

⎤
⎦

(A7)

the Itô SDE for a function f is

df = μ̃dt + σ̃dW̃ . (A8)

The order of a velocity field is quantified by the alignment
of vectors. Under rotational symmetry of a distribution the
order parameter in the system becomes a one-dimensional
stochastic process with μ̃ = μ̃( f ) and σ̃ = σ̃ ( f ) where the
stationary probability density p( f ) is current free:

μ̃p = 1
2∂ f (σ̃ 2 p). (A9)

This equation is solved by

p( f ) = 1

Z

1

σ̃ 2
e
∫ f 2μ̃(s)

σ̃2 (s)
ds

, (A10)

where Z is a normalization constant.

1. Case of uncorrelated noise

Given a force on the velocities �vn

�Fn = κV0�ez +
√

2�ξn (A11)

with a fixed deterministic part, here without loss of generality
in the z direction, and uncorrelated Gaussian white noise �ξn

the Stratonovich SDEs (22) for �v are

dvi = κV0(δiz − vzvi )dt +
√

2
∑

j

(δi j − viv j ) ◦ dWj .(A12)

It follows

μi = κV0(δiz − vzvi ), (A13)

σ jk =
√

2(δ jk − v jvk ). (A14)

The Itô SDEs (23) for the velocity components are

dvi = (κV0(δiz − vzvi ) − (d − 1)vi )dt

+
√

2

(
dWi − vi

∑
j

v jdWj

)
. (A15)

Here we note the linear entropic force or noise-induced drift
of strength d − 1 towards zero. The Itô SDE (29) for f = vz

follows with Eq. (27) and (28) as

dvz = [
κV0

(
1 − v2

z

) − vz(d − 1)
]
dt +

√
2
(
1 − v2

z

)
dW̃ ,

(A16)
and we calculate the stationary distribution (31)

p(vz ) = 1

Z

(
1 − v2

z

) d−3
2 eκV0vz . (A17)

The normalization constant is a modified Bessel function of
the first kind and the first moment is given by the ratio

V = 〈vz〉 = Id/2(κV0)

Id/2−1(κV0)
. (A18)

In the stationary state V0 must be equal to the average of vz

leading to the self-consistency condition given in the main
text.

2. Case of purely identical forcing

The force on all velocity vectors is

�F = κ〈�v〉 +
√

2�η. (A19)

The parameter �a of the invariant family of velocity distribu-
tions is subject to the Stratonovich SDE

�̇a = 1

2
(1 + a2) �F − ( �F · �a

)
�a. (A20)

With 〈�v〉 = 〈�d (a)�a〉 [23,47,48] we find the Itô SDE for a =
|�a| observing

μi = ai

2
(1 − a2)κ�d (a), (A21)

σik =
√

2

(
1

2
(1 + a2)δik − aiak

)
, (A22)

and after calculating the Itô drift and diffusion terms (27) and
(28)

da = 1 − a2

2a

(
κ�d (a)a2 + (d − 3)(1 + a2)

2
+ 1

)
dt

+
√

2
1

2
(1 − a2)dW̃ . (A23)

The stationary distribution (31) for f = a is

p(a) = 1

Z
ad−1(1 − a2)−d exp

[ ∫ a

0

2κ�d (s)s

(1 − s2)
ds

]
. (A24)

The time-averaged order parameter 〈V 〉t = 〈�d (a)a〉 is ex-
pressed in terms of

Zd (b, c; κ ) =
∫ 1

0
ab−1(1 − a2)−c exp

[ ∫ a

0

2κ�d (s)s

(1 − s2)
ds

]
da.

(A25)

Note that the derivative of the exponential function with re-
spect to a results in a factor �d (a)a to the probability density.
By partial integration we therefore obtain

〈V 〉t = (1 − d )

2κ

Zd (d − 1, d − 1; κ ) + 2Zd (d + 1, d; κ )

Zd (d, d; κ )
.

(A26)

For d = 2 we have �2(s) = 1 [23,48] and therefore

Z2(b, c; κ ) =
∫ 1

0
ab−1(1 − a2)−c−κda=1

2
B

(
b

2
, 1 − c − κ

)
.

(A27)

For d = 4 we have �4(s) = (3 − s2)/2 [23,48] and with

exp

[ ∫ a

0

2κ�4(s)s

(1 − s2)
ds

]
= (1 − a2)−κe

1
2 κa2

(A28)
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we obtain

Z4(b, c; κ ) =
∫ 1

0
ab−1(1 − a2)−κ−ce

1
2 κa2

da

=1

2
M

(
b

2
, 1 − c − κ + b

2
;
κ

2

)
B

(
b

2
, 1 − c − κ

)
,

(A29)

where M(a, b; z) is Kummer’s confluent hypergeometric func-
tion.

3. Uncoupled case

Finally we calculate the velocity correlation C = �v · �v ′ for
two unit length velocity vectors diffusing on a sphere under
correlated noise �η(t ) and �η ′(t ) and without mean field cou-
pling, i.e., κ = 0. The velocity correlation C = C(�v, �v ′) =
�v · �v ′ is bilinear so that the Itô SDEs for the stochastic process

f = C(t ) are obtained as

dC = �v · d�v ′ + d�v · �v ′ + d�v · d�v ′. (A30)

We use (36) with κ = 0, (51) together with dWidWj
′ =

qδi jdt , calculate the combined diffusion coefficient for a sin-
gle Wiener process W̃ , and find

dC = (−2(d − 1)C + 2q(d − 2 + C2))dt

+2
√

(1 − C2)(1 − qC) dW̃ . (A31)

With this one-dimensional Itô SDE and Eq. (31) we find the
stationary distribution

p(C) = 1

Z

(1 − C2)
d−3

2

(1 − qC)d−1
. (A32)

The normalization constant and 〈C〉 are expressed in terms of
the Gauss hypergeometric function 2F1(a, b; c; z) and the beta
function (20) and (21).
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