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Rate of environmental variation impacts the predictability in evolution
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In the two last decades, we have improved our understanding of the adaptive evolution of natural populations
under constant and stable environments. For instance, experimental methods from evolutionary biology have
allowed us to explore the structure of fitness landscapes and survey how the landscape properties can constrain
the adaptation process. However, understanding how environmental changes can affect adaptation remains
challenging. Very little progress has been made with respect to time-varying fitness landscapes. Using the
adaptive-walk approximation, we survey the evolutionary process of populations under a scenario of environ-
mental variation. In particular, we investigate how the rate of environmental variation influences the predictability
in evolution. We observe that the rate of environmental variation not only changes the duration of adaptive walks
towards fitness peaks of the fitness landscape, but also affects the degree of repeatability of both outcomes
and evolutionary paths. In general, slower environmental variation increases the predictability in evolution. The
accessibility of endpoints is greatly influenced by the ecological dynamics. The dependence of these quantities
on the genome size and number of traits is also addressed. To our knowledge, this contribution is the first to use
the predictive approach to quantify and understand the impact of the speed of environmental variation on the
degree of parallelism of the evolutionary process.
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I. INTRODUCTION

The concept of fitness landscapes is widely used in
evolutionary biology, combinatorial optimization, and the
physics of disordered systems [1,2]. First proposed by Se-
wall Wright at the beginning of the nineteenth century [3],
fitness landscapes establish a relationship between an indi-
vidual’s genotype and its reproductive success. The concept
of the fitness landscape is analogous to that of energy land-
scapes in physics, relating possible states of a system and
their corresponding energy levels [4]. While from a biological
perspective, evolution is portrayed as a hill-climbing process
toward higher peaks of the fitness landscape, physical systems
are driven to states of low energy [5].

Experimental methods from evolutionary biology have
allowed us to explore the structure of fitness landscapes
in microbial species and address how the topography of
those landscapes can constrain the adaptation process [6].
The typical experimental approach consists of characterizing
the topography of empirical fitness landscapes by analyzing
the interactions among a small subset of mutations and re-
constructing all possible genotypes from the wild type to
the evolved [7]. Genotypic fitness landscape models, those
directly mapping from genotypes to fitness, have been widely
used to explain experimental data [8,9]. One important class
of genotypic fitness landscape models is the NK landscape
model. Accordingly, the fitness of a given genotype configura-
tion follows from the contribution of L loci. The contribution
of each locus to fitness depends not only on the state of the
focal locus, but also on the states of K other loci [10]. We
can create a broad spectrum of scenarios by changing the

epistatic parameter K . When K = 0, a smooth, single-peaked
fitness landscape is obtained, whereas, in the other extreme
K = L − 1, a completely uncorrelated fitness landscape is
generated. The increase of K results in a larger number of
local optima, induced by the presence of sign epistasis [11].
Indeed, the NK model can be seen as a biological version of
the p-spin spin-glass model [12–14].

Another relevant class of fitness landscape models is re-
ferred to as phenotypic fitness landscapes [15]. Instead of
mapping genetic states to fitness, phenotypic landscapes map
a phenotypic domain to fitness. The most prominent instance
of phenotypic landscapes is Fisher’s geometric model (FGM),
proposed by Fisher in the 1930s [16]. In the FGM, selection
and mutation act on quantitative traits. A point in a multidi-
mensional phenotypic space represents a phenotype in which
each dimension corresponds to a trait. In a given environment,
each trait has an optimal value, and the overall fitness de-
creases with the distance to the optimum phenotype [17]. In
the model, variations resulting from mutations will alter trait
values, and so the mutant offspring will lie at a different posi-
tion in the phenotypic space. If such change moves the mutant
offspring to a position closer to the location of the optimum
phenotype, the mutation is said to be beneficial, otherwise, the
mutation will have a detrimental effect on fitness [18]. The
model predicts that deleterious mutations are more frequent,
in agreement with the findings of experimental evolutionary
biology [19,20], and those mutations are even more likely as
one approaches the optimum phenotype. The number of traits,
used as a proxy for phenotypic complexity, plays a role by
affecting both the rate of beneficial mutations as well as the
distribution of mutation effects [21–23].
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An important and useful extension of original Fisher’s
formulation is the one in which mutation effects on the pheno-
types are assumed to be additive. So deviations from additivity
on the genotype-fitness map are a direct consequence of the
nonlinear mapping from phenotype to fitness [24]. Epistasis
emerges due to this nonlinearity of the phenotype to fitness
map and is particularly important around the optimum pheno-
type, where the curvature is larger. The level of epistasis and
ruggedness of the fitness landscape are fundamental features
of the process of adaptation [11,25,26], influencing its degree
of repeatability and predictability [27–29].

FGM has also been successfully employed to interpret
experimental data, such as the distribution of fitness effects
of random mutations [23], distributions of epistasis [30,31],
and dynamics of fitness growth in microbial populations [32],
to mention just a few. A genotypic landscape under FGM has
recently been proposed and used to study the properties of
selected mutations from experimental data of bacterial pop-
ulations [26]. The genotypic landscape under Fisher’s model
provides a map genotype → phenotype → fitness, in which an
additional layer is considered relative to genotypic landscape
models. The discrete nature of the genotypic space is respon-
sible for the emergence of interesting features of the resulting
fitness landscape. Despite the smoothness of the phenotypic
landscape, the resulting fitness landscape displays fitness op-
tima, and its number grows exponentially with the genome
size, as commonly found in genotypic fitness landscapes [24].

The FGM has been a valuable tool in the study of the
impact of environmental variations on many processes found
in both evolutionary and ecological contexts [33–35], includ-
ing those leading to ecological diversification and speciation
events [36,37]. A common approach for the FGM in the study
of environmental variation is to assume that the population or
community adapts to a dynamic optimum phenotype [33,34].
The effect of the environment on reshaping the landscape
has analogous to physical systems, such as the effect of tem-
perature in changing the energy landscape associated with
protein folding, RNA macromolecules, and amorphous solids
[38–40]. The influence of the rate of environmental variation
is a quite controversial issue, especially in the face of the
debate about the role of climatic and ecological changes in
shaping biodiversity [41]. Within an evolutionary perspective,
a previous study shows that the rate of environmental variation
strongly influences the distribution of adaptive substitutions
[35]. On the other hand, another study demonstrated that,
at least under the perspective of the FGM, the pattern of
diversification and speciation is dependent not on the rate
of environmental changes but on the net magnitude of those
changes over a given time interval [37]. In the current con-
tribution, we use the framework of the FGM equipped with
a genetic basis to survey the consequences of environmental
variations on the predictability of evolution. The limitations
in predicting evolution mainly arise because of the random
nature of processes such as point mutations and other sources
of genetic variability and the strength of stochasticity in finite
systems [42]. Our limited understanding of selection, i.e. the
knowledge of traits or features that would need to be adjusted
to increase organisms’ adaptation in a given environment, also
hinders our ability to predict [43,44]. Lastly, the environment
itself is dynamic, and so environmental variables such as

climatic conditions and predator abundance might fluctuate
and affect selective pressure [43,45].

Through an adaptive-walk approximation, we address the
role of environmental variations in shaping the evolutionary
process. Measurements of predictability and path divergence,
among others, quantify the degree of repeatability of the
evolutionary process upon environmental variation. In this
framework, one depicts the whole population as a single en-
tity that travels through the fitness landscape toward higher
fitness [46]. At each time step, the walker moves to one of
its fitter single-mutation neighbors. The adaptive walk ends
when the walker reaches a fitness peak [47]. The properties
of adaptive walks are intrinsically linked to the topography
of fitness landscapes. For instance, the distribution of walk
lengths relates to the size distribution of the basins and the
degree of the ruggedness of the fitness landscape [48–50]. The
framework of adaptive walks has been largely used in several
optimization problems, such as the study of searching strate-
gies in complex networks [51], in the exploration of protein
fitness landscapes [52], and other combinatorial optimization
problems [53].

The paper is organized as follows. Section II A describes in
detail the FGM, which here is provided with a genetic basis,
and how environmental variation is included in the modeling.
In Sec. II B we define the statistical measurements of our
interest: predictability and mean path divergence. In Sec. III
we present our simulation results. Finally, Sec. IV presents
our conclusions.

II. MATERIALS AND METHODS

A. The model

In the strong-selection weak-mutation regime, the evo-
lutionary dynamics of natural populations can be seen as
performing an uphill climbing on a fitness landscape, in which
beneficial mutations fix sequentially, up to reaching a local
fitness peak. Moreover, because the time of appearance of new
variants is much larger than the time to fixation of beneficial
mutations in such a limit, the population can thus be depicted
as a single entity (isogenic population) performing an adaptive
walk on this fitness landscape. Once a population has reached
a local fitness peak, adaptive dynamics may stall as further
adaptation requires crossing a valley. Because of the discrete
nature of the genotypic space, each genome is described as a
binary sequence of size L, S = (s(1), s(2), . . . , s(L) ) with s(α) ∈
{0, 1}, and so there are 2L possible genotype configurations.
The dichotomous nature of the locus state follows the usual
design of experimental setups based on the absence (0) or
presence (1) of point mutations [54]. At each time step of the
dynamics, the walker moves to one of its immediate neigh-
bors, i.e., those differing by a single digit, with higher fitness.
Here we use the so-called natural adaptation walk [48,55,56],
in which the chance of moving to a given neighbor is propor-
tional to the fitness advantage conferred by that neighbor.

Regarding the fitness landscape, we consider the FGM
but equipped with a genetic basis. To each genotype there
is a corresponding phenotype with N traits. As standard, the
phenotype vector �rS = (r (1)

S , r (2)
S , . . . , r (N )

S ) associated with an
individual carrying genome S rules its level of adaptation.
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The fitness landscape is simply built by ascribing a phenotype
to genotype S0 = (0, 0, . . . , 0), and then defining L displace-
ment vectors, {�ηk} with k = 1, . . . , L, each one related to a
mutation in locus k relative to the wildtype sequence S0 =
(0, 0, . . . , 0). In this manner, the phenotype of the antipode of
S0, which corresponds to the sequence S̄0 = (1, 1, . . . , 1), is
simply �rS̄0

= �rS0 + �η1 + �η2 + · · · + �ηL, where �rS0 is the phe-
notype vector associated with S0. Each component of each
vector �ηk is drawn from a Gaussian distribution of null mean
and standard deviation σ , so that mutations are supposed to
be isotropic and have no preferred direction, hence affecting
all traits similarly [18]. Furthermore, notice that mutation
in locus k always causes the same phenotypic displacement
regardless the state of any other locus, once �ηk is a constant
vector. In sum, mutations are combined additively.

Within the framework of the FGM, the fitness of an indi-
vidual with phenotype �r = (r (1), r (2), . . . , r (N ) ) is a function
of the distance of its phenotype to the optimum phenotype,
here denoted as �h. As usual, the fitness is estimated as

f (�r) = exp

(
− 1

2α2

N∑
�=1

(r (�) − h(�) )2

)
, (1)

where the parameter α determines the inverse of the strength
of selection. Here we set α = 1.

1. Moving optimum

As aforementioned, we are mainly interested in study-
ing the properties of evolutionary trajectories performed by
adaptive walks in a scenario of time-varying landscapes. In
phenotypic terms, the total amount of change brought about
by the event of environmental variation will end up the same.
However, the rate at which such event takes place is a key
parameter of our modeling. In all scenarios here studied, at
time t = 0 the optimum phenotype �h is set at �rS0 , the corre-
sponding phenotype of genotype S0. According to Eq. 1, such
initial condition corresponds to the original environment F0

(Notice that �rS0 plays no role in the dynamics). After τ time
steps, the phenotypic optimum ends up on �rS̄0

, the phenotype
of S0’s antipode, S̄0. Every time step, the optimum phenotype,
while �rS̄0

is not reached, will change by an amount �vh,

�vh = �rS̄0
− �rS0

τ
, (2)

which defines the rate of change of the optimum phenotype
in the transient time interval τ . Note that τ = 1 resembles
standard adaptive walk studies of static fitness landscapes,
i.e., the optimum phenotype is instantaneously placed at the
final location. Those variations of the optimum phenotype will
reshape the fitness landscape, generating a family of fitness
landscapes F0 → F1 → · · · → Fτ , where F0 denotes the fit-
ness landscape in which the phenotypic optimum is placed at
�rS0 , whereas for Fτ the phenotypic optimum is placed at �rS̄0

.
During the transient time t � τ , the adaptive walker moves

while the landscape is also being modified. Once the final
fitness landscape Fτ is reached, the adaptive walker will con-
tinue moving up to finding a fitness peak of Fτ . In short, the
adaptive walk is definitely concluded once the transient time
has elapsed and a local fitness peak of Fτ has been reached. It
may frequently happen, especially when the timescale of the

FIG. 1. Illustration of a hypothetical realization of the
phenotype-fitness map. One has genome size L = 2, number of
traits N = 2, and transient time τ = 3. We show the illustration
corresponding to two different times t = 0 and t = 1. The phenotype
displacement vectors {ηk} are also displayed. Phenotypes associated
with all combinations of genotype are marked in red, and their
distances to the optimum phenotype, which is represented by a blue
plus sign, are evinced by concentric circles centered on the latter.
Lower panels illustrate the corresponding genotype-fitness maps,
with arrows indicating the direction of ascending fitness, down and
up triangles denote minima and maxima local, respectively, and
circles otherwise. As shown, the ecological dynamics entails the
rearrangement of the fitness landscape. In this example, the fitness
landscape displays a single local maximum at t = 0 and two fitness
peaks at t = 1.

adaptive process is shorter than that of ecological changes,
that one temporarily reaches a given local fitness peak while
the fitness landscape is still under environmental variation. If,
by chance, the local fitness peak is no longer a local fitness
peak owing to subsequent changes in the fitness landscape,
we reestablish the dynamics of the adaptive walk. In Fig. 1
we present an illustration to help the understanding of the
modeling, and in Table I a pseudocode of the implementation
of the model.

2. Implementing adaptive walks

In the adaptive walks, the whole population is visualized as
a single entity traveling through a genotypic space. The walker
always moves toward a domain of higher fitness. When a local
optimum is achieved the process ends. There are different
versions of adaptive walks. The one considered here, dubbed
natural adaptive walks, chooses a fitter neighbor among all
those beneficial variants with a probability that is proportional
to the fitness advantage it confers [47,48]. Suppose that at a
given time, the state of the population is described by geno-
type S whose fitness is f , and let us denote the set of its
one-mutational step neighbor by {Sneigh}. For each genotype
Si in {Sneigh}, we calculate its selective effect as si = fi − f ,
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TABLE I. Pseudocode for the adaptive walk with environmental
variation.

Pseudocode

1: generation = 0
2: �h = �rS0

3: walker = S0

4: repeat
5: �h ← �h + �vh

6: if (walker �= local maximum)
7: adaptive step
8: generation ← generation + 1
9: until (generation = τ )
10: repeat
11: adaptive step
12: until (walker = local maximum)

where fi is the fitness of Si. Thus, the probability of moving
to state Si in the next step is given by

Pi(si ) = si∑
j s j

, (3)

where the sum in the denominator runs over all genotypes in
{Sneigh}, in which s > 0. Note, however, that in our model the
landscape is not static during a time interval τ , meaning that
the fitness values fi are themselves evolving. The process is
still Markovian, but the transition probabilities are updated
while the landscape is reshaped (t � τ ).

B. Quantifying the degree of repeatability in evolution

As defined above, our model presents stochasticity on two
levels. First, the generation of a family {F0,F1, . . . ,Fτ } of
fitness landscapes relies on assigning L displacement vectors
{�ηk}. The adaptive walker steps account for the second. We
perform Monte Carlo simulations on both levels. For a given
family {F0,F1, . . . ,Fτ }, after many independent trials, one
has an ensemble of evolutionary trajectories to proceed with
the statistical analysis. We consider different measurements
to quantify the degree of repeatability of the evolutionary
process. The first one is the predictability with respect to
the evolutionary trajectories (first defined and applied by
Ref. [57]), hereafter called Path Predictability, and calculated
as

Ppath
2 =

∑
{q}

O2(q), (4)

where O(q) is the probability of sampling the trajectory q, i.e,
its relative frequency over trials in the ensemble {q} of evolu-
tionary trajectories generated for a given time-varying fitness
landscape. This latter condition means that in the calculation
of Ppath

2 , as given by Eq. (4), we hold the same genotype-
phenotype-fitness mapping when producing the ensemble of
trajectories. Besides, the rate of change of the optimum pheno-
type is the same (i.e., the same time τ ). 1/Ppath

2 is an estimate
of the number of effective pathways exploited by the adaptive
walker [58]. Similarly, we may ask about the probability that
two randomly chosen paths terminate at the same local opti-
mum after the transient time τ has elapsed. In this case we are

dealing with the ensemble of endpoints instead of paths yet in
the very same fashion of Eq. (4).

A limitation of Ppath
2 is that it does not account for sim-

ilarities among evolutionary pathways. Two trajectories that
slightly differ equally contribute to Ppath

2 as two quite different
and divergent paths. A preferable quantity is the mean path
divergence to assess the similarity between evolutionary path-
ways [59]. The mean path divergence depends on the pairwise
divergence d (qα, qβ ) between two fixed and arbitrary paths
qα and qβ , and estimated as follows: For each sequence Sα

belonging to qα , we look for the minimum Hamming distance
between Sα and all sequences in qβ , h(Sα, qβ ). Only the min-
imum distance is stored. The same process is performed on
the opposite direction, switching the roles of qα and qβ . The
divergence between the two evolutionary paths, qα and qβ , is
finally taken as the mean value of those shortest Hamming
distances [60,61],

d (qα, qβ ) = 1

nα + nβ

⎛
⎝ ∑

Sα∈qα

h(Sα, qβ ) +
∑

Sβ∈qβ

h(Sβ, qα )

⎞
⎠,

(5)

where nα (nβ) stands for the length of trajectory qα (qβ). The
above definition for the divergence between two evolutionary
paths ensures that d (qα, qβ ) is symmetric. The mean path
divergence, estimated from an ensemble of evolutionary tra-
jectories {q}, is then calculated as

d̄ =
∑

qα∈{q}
O(qα )

∑
qβ∈{q}

O(qβ ) d (qα, qβ ). (6)

Here we emphasize that, unlike Ppath
2 , d̄ makes sense when

defined for an ensemble of paths sharing the same initial
and final sequences. Therefore, the definition of mean path
divergence, as given in Eq. (6), corresponds to the subset of
evolutionary paths that terminated at the same endpoint. Then
the average of the d̄’s weighted by the accessibility of the
endpoints is taken, which we denote D̄.

III. RESULTS

A. The mean walk length

One of the fundamental quantities in the study of properties
of fitness landscapes is the number of steps taken during the
adaptive walks up to meeting a local fitness peak [55], which
corresponds to the number of substitutions in the genome.
The mean walk length is dependent not only on the dynam-
ics chosen but also on the level of correlation of the fitness
landscape [48,55]. For example, for completely random and
uncorrelated fitness landscapes and upon greedy adaptation, in
which the fittest among the one-mutational neighboring sites
is always chosen, the mean number of steps is just L̄ = e − 1
[47,55], where e denotes the Euler’s constant. We are mainly
interested in checking the role of the key parameters, such as
the rate at which the environmental variation is implemented
and the number of traits on the evolutionary trajectories pro-
duced by adaptive walks.

In Fig. 2 we observe that the rate of the environmental
variation, 1/τ , influences the dynamics. The dependence on
the genome size and number of traits is also explored in the
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(a)

(c)

(b)

FIG. 2. Mean walk length as a function of the time interval τ of environmental changes. In panel (a), the number of traits is kept constant,
N = 12, while distinct curves correspond to different genome size L. In panel (b), the genome size is constant, L = 12, while distinct curves
correspond to different number of traits N . In both plots, σmut = 0.05. In panel (c), we show the mean walk length of the subset of adaptive
walks that ended up at the antipode S̄0. The error bars are standard error of the mean over 1000 independent fitness landscapes.

plot. Small values of τ , corresponding to abrupt changes in
the environment, are associated with shorter adaptive walks.
Therefore, there is an increased chance that the walker more
rapidly gets trapped in a local optimum of the fitness land-
scape. This observation occurs even though at the end of the
process of environmental change, the fitness landscape ends
up the same (Fτ ). When τ is very small, the dynamics of
ecological changes is faster than that of the adaptation pro-
cess. The adaptive walks take longer as the transient time τ

is augmented. The mean walk length faces a steep growth in
the range τ ∈ [10, 100]. Note that the onset of this domain
coincides with the timescale of the adaptation to a constant
environment, which is usually of the order of 10, as one can
infer when τ is small. In this limit, the dynamics of adaptation
is the primary mechanism determining the duration of the
adaptive walks. Therefore, the steep increase of the mean walk
length with τ might be related to a transition in which the
ecological dynamics start to influence the duration of adaptive
walks.

As expected, increased genome size results in longer adap-
tive walks, a fact not seen, for instance, in uncorrelated fitness
landscapes [47,55]. The reason underlying this observation is
that in the FGM sign epistasis becomes prevalent around the
optimum phenotype [24,26]. Thus, we expect that the local
optima of the fitness landscape will also settle in this domain.
After the transient time τ has elapsed, the optimum pheno-
type will be settled on the antipode of S0, S̄0 = (1, 1, . . . , 1).
Therefore, genotypic local optima of the landscape will likely
not be so dissimilar to S̄0. Thus, mutations might accumulate
and drive the population towards the genotypic domain around
S̄0. In Fig. 2(b), the genome size is kept constant at L = 12,
while the distinct curves denote different numbers of traits.
The dependence on the number of traits is less trivial. While
for small τ , in which the timescale of the ecological dynamics
is shorter than that of the evolutionary dynamics, the mean
walk length rises with N . Furthermore, at intermediate and
large τ we observe that the mean walk length becomes con-
siderably large for small N . Nonetheless, the scenario seems
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(a)

(c)

(b)

FIG. 3. Endpoint predictability, Pend
2 , as a function of the time interval τ of environmental changes (upper panels). In panel (a), the number

of traits is kept constant, L = 12, while distinct curves correspond to different genome size N . In panel (b), the genome size is kept constant,
N = 12, while distinct curves correspond to different number of traits L. In panel (c), we plot the number of local optima of the fitness
landscape at the end of ecological dynamics, which corresponds to Fτ , with the number of traits N . The genome sizes are indicated in the
legends. The error bars are standard error of the mean over 1000 independent fitness landscapes.

much simpler when we only look at the mean walk length
of the subset of trajectories that ended up at S̄0, as illustrated
in Fig. 2(c). Under this restriction, a smaller number of traits
means longer adaptive walks. This behavior can be understood
in the light of classical studies of elementary properties of the
FGM. We have learned that the fraction of beneficial muta-
tions is approximately equal to 1

2 er f c( x√
2

), with x = r
2d

√
N

and er f c is the complementary error function [18,21,62].
Here d is the phenotypic distance to the optimum and r is
the magnitude of the mutation vector. Thus, the fraction of
beneficial mutations decreases with both the number of traits
and the magnitude of the mutation. In this way, the decrease
of the mean walk length towards S̄0 with the number of traits
is probably a direct consequence of the reduced availability of
beneficial mutations with increased N , turning their route less
erratic.

B. Predictability

Predictability quantifies the level of uncertainty or entropy
of the evolutionary dynamics. The larger the predictability,

the lower the entropy or level of uncertainty concerning the
variable of interest. It is important to highlight that sequence
sizes L used in our simulations are consistent with those used
in empirical studies of predictability. Indeed, empirical studies
deal with a subset of the whole genome. For instance, in the
seminal work of Weinreich et al. a sequence of size L = 5 is
used to make predictions about predictability [63].

1. Predictability with respect to the endpoints

We start our analysis of predictability with respect to the
outcomes of the adaptive walks, i.e., the endpoints of the
evolutionary trajectories. As we know, the endpoints are lo-
cal optima of the fitness landscape. In general, they are not
equally accessible, and some of them can even be unreachable
by dynamics. In Fig. 3 the dependence of the predictability
with respect to the endpoints, Pend

2 , on the transient time
τ is shown. Its relation with the genome size, L, and the
number of traits, N , is also explored. We see that the rate
of environmental variation, 1/τ , strongly affect the outcome
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FIG. 4. Accessibility of the endpoints. Results are shown for two independent samples of the fitness landscape, and measures are made for
three distinct values of τ , as indicated in the subtitle of the plots. The parameter values are L = 12, N = 12 and σmut = 0.05. The local optima
are in the crescent ordering of fitness from left to right. The blue column denotes the global optimum.

of adaptive walks. Smoother environmental variations lead to
more predictable outcomes. The relation of the predictability
with L and N can be understood when looking at how the
number of local maxima of the fitness landscape scales with
both quantities. In Fig. 3(c) we see that while the number of
local optima grows with the genome size L, as expected, it
shrinks with the number of traits N . A smoother landscape
is expected to be more predictable concerning the outcomes,
whereas the endpoints of adaptation may be less predictable
on rugged landscapes [64], though it remains to understand
the relation of the predictability with τ . At this point, a more
microscopic analysis is needed. In Fig. 4 we show the acces-
sibility of the endpoints, the fraction of the adaptive walks
that terminated at a given local optimum, for two distinct
samples of fitness landscapes. For each sample of the fitness
landscape, we simulated 10 000 adaptive walks. The local
optima are in ascending order of fitness from left to right.
The blue column denotes the global optimum. A total of 13
local optima were accessed for the former landscape when
τ = 2, but just four of them were visited when τ = 200. The
second sample displays a similar qualitative scenario. These
results demonstrate that the rate at which the environmental
change is introduced is a key mechanism in determining the
outcome of the evolutionary process. The ecological dynam-
ics is, in fact, reshaping and altering the attraction basin of
the endpoints.

Alternatively, the entropy S = −∑
i pi ln pi is exhibited

in Fig. 5, where the sum is taken over all endpoints and pi

is the probability of the walk ending up at endpoint i, i.e.,
its accessibility. The results are in complete agreement with
those observed for the predictability. Just note that higher
predictability means lower entropy.

2. Predictability with respect to the evolutionary pathways

Now we turn our attention to the evolutionary trajectories
from the wild-type sequence S0 = (0, 0, . . . , 0) to the local
optima of the fitness landscape. The dependence of the pre-
dictability with respect to the evolutionary pathways, Ppath

2 ,
on τ is shown in Fig. 6. Except for small N , the predictability
behaves as a monotonic increasing function of τ . In Fig. 6(b),
we analyze the predictability of the evolutionary paths to-
wards S̄0 = (1, 1, . . . , 1). Once again, the behavior of the
predictability for small N is distinguished from those observed
for a larger number of traits N , and helps to explain the pattern
shown in the left panel.

3. Mean path divergence

As pointed out before, the mean path divergence provides
valuable insight into the evolutionary dynamics, allowing us
to assess the similarity between evolutionary pathways and
giving us an idea of the domain in the genotypic space
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(a)

(c)

(b)

FIG. 5. Entropy of endpoints, S = −∑
i pi ln pi, as function of the transient time τ . In panel (a), the number of traits is kept constant,

N = 12, while distinct curves correspond to different genome sizes L. In panel (b), the genome size is kept constant, L = 12, while distinct
curves correspond to different number of traits N . The error bars are standard error of the mean over 1000 independent fitness landscapes.

explored by the adaptive walks. As already mentioned be-
fore, in place of measuring the mean path divergence, the
initial and endpoints of the ensemble of trajectories must be
the same [59,60]. We will show results for the mean path
divergence over the set of endpoints, D̄, corresponding to an
average weighted by the accessibility of those endpoints, and
additionally DS̄0

, which is d̄ for the subset of paths concluded

at the antipode of S0, S̄0 (see Fig. 7). In all scenarios, we
see that the mean path divergence is a decreasing function of
the transient time τ , suggesting that smoother variation of the
environmental causes evolutionary pathways to remain more
condensed (less erratic and diffuse) over the genotypic space.
Nicely, the mean path divergence also displays an unequivocal
behavior concerning its dependence on the number of traits,

(a) (b)

FIG. 6. Predictability with respect to the evolutionary paths. In panel (a), Ppath
2 corresponds to an average over all endpoints, whereas panel

(b) shows results for the predictability for the a single endpoint, S̄0. In the panels, the genome size is L = 12, and distinct values for the number
of traits, N , are considered, as indicated in the legends. The error bars are standard error of the mean over 1000 independent fitness landscapes.
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(a) (b)

FIG. 7. Mean path divergence vs the transient time τ of environmental changes. In panel (a), the measure is taken over all endpoints,
whereas in panel (b), the measure refers to the collection of evolutionary paths towards the antipode S̄0. The parameter values are genome size
L = 12, standard deviation for the phenotypic effect of mutations, σmut = 0.05. The number of traits is indicated in the legends. The error bars
are standard error of the mean over 1000 independent fitness landscapes.

with the mean path divergence growing with the number of
traits. As τ becomes large, the influence of the number of traits
ceases, and the curves nearly collapse.

Predictability and mean path divergence are usually neg-
atively correlated, although recent statistical analyses have
revealed that single realizations of a fitness landscape is
likely to incorporate idiosyncratic features or misleading cor-
relations that disappear on examination of an ensemble of
landscapes [56]. Therefore, the results displayed by pre-
dictability and mean path divergence for intermediate and
large number of traits look consistent concerning their de-
pendence on the transient time τ . The anomalous behavior
observed when looking at the predictability for small N is
likely to be a result of the susceptibility to the existence
of a collection of evolutionary paths that are different, but
genetically quite similar, differing in one or a few sequences.
This certainly leads to spurious effects turning difficult to
unveil in a clear way its relation with the rate of environmental
variation.

4. Quasistatic approximation

In the quasistatic approximation, one ensures that the eco-
logical timescale of environmental changes is slower than the
timescale of adaptation. Here this is ensured by assuming that
while the walker is moving through the fitness landscape, the
latter remains static. In this case, changes in the landscape are
allowed only after the adaptive walker has attained a local
maximum of the fitness landscape. Variations in the fitness
landscape occur precisely in the same way as described by
Eq. (2), with the difference that now τ refers not to a transient
time but the number of moves performed by the optimum
phenotype before reaching the phenotype of S̄0, �rS̄0

.

In Fig. 8 we compare the results for the mean walk length
and endpoint predictability of the quasistatic approximation
with those of the original formulation. For τ = 1, the two
approaches are equivalent, corresponding to standard adaptive
walks in static landscapes. The lower panel plots the mean
walk length. In fact, the results for the quasistatic approxima-
tion provide an upper bound for the walk lengths. This occurs
because, under the quasistatic, the walker will face all possible
new arrangement of local fitness peaks. In contrast, in the
original formulation, some of those fitness peaks have a short
lifetime compared to the time required to reach a new fitness
peak under a dynamic scenario. Interestingly, we also observe
that the endpoint predictability is higher under the quasistatic
scheme for small τ . The same qualitative scenario holds for
the path predictability. At least concerning the degree of
repeatability of the evolutionary process, when τ ≈ 50, the
two formulations tend to become equivalent, and thereby the
changes in the fitness landscape over time the walker spends
from moving towards a fitness peak are not enough to change
the distribution of those fitness landscapes over the genotypic
space.

IV. CONCLUSIONS

In the past years, we have considerably enhanced our
understanding of adaptation in constant and stable environ-
ments, both theoretically and empirically [65–67]. However,
an understanding of how environmental changes can affect
adaptation remains challenging. Environmental variation trig-
gers organisms’ responses, which may improve their fitness
by modifying their traits. Phenotypic plasticity, the ability of
an organism to express different phenotypes from the same
genome in response to stimuli or inputs from the environment,
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(a)

(c)

(b)

FIG. 8. Quasistatic approximation: endpoint predictability (a), path predictability (b), and mean walk and length (c) vs τ . It is important to
highlight the for the quasistatic approximation τ represents the number of steps of the optimum phenotype up to reaching final state. Here we
compare the results of the original formulation (filled symbols) with those of the quasistatic approximation (empty symbols). The parameter
values are genome size L = 12, standard deviation for the phenotypic effect of mutations, σmut = 0.05. The number of traits are indicated in
the legends.

is an important mechanism of adaptation, being ubiquitous
[68,69]. Alternatively, evolutionary adaptation shaped by nat-
ural selection acting on genetic variation can also account for
such responses [70,71].

To date, only a few experimental studies have been con-
cerned with the role of environmental changes in microbial
populations, in which the evolution of niche width and the
maintenance of diversity is addressed [65,72]. In a recent
study, Boyer et al. outlined an experimental setup to in-
vestigate the dynamics of evolution of yeast populations
during adaptation to a changing environment and follow the
role of the rate of switching between environmental con-
ditions [71]. Their findings showed that different switching
dynamics could select for different phenotypic and genotypic
outcomes.

Our present study also aims to better characterize the dy-
namics of the evolution of populations under a scenario of
environmental variation. It is important to emphasize that as
opposed to the environmental dynamics used in Ref. [71], in
our formulation, the switching between the two ecological
conditions ensues from a series of temporary intermediate
states. In particular, we look for quantification of the adaptive
process itself by measuring not only the degree of repeatabil-
ity of outcomes but also evolutionary trajectories. Using an
adaptive walk approximation, expected to hold in a scenario
of strong-selection weak mutation, we have shown that the

rate of environmental variation influences the number of sub-
stitutions that occur during adaptive walks to a locally optimal
genotype. In general, slowly changing environments leads to
a greater number of substitutions.

According to our simulation results, abrupt environmental
variations lead to more unpredictable outcomes. The increase
of the predictability with the transient time τ can be under-
stood as a drastic reduction of accessibility of some of the
locally optimal genotypes. The rise of predictability with τ is
notably steeper when the timescale of ecological variation sur-
passes that of the timescale of adaptation. The results reveal
the role of the dynamics of environmental changes in shaping
the attraction basin of the locally optimal genotypes. This
occurs concomitantly with the constraint of the evolutionary
paths towards those local optima of the fitness landscape,
as clearly established by measures of the predictability
with respect to the evolutionary pathways and mean path
divergence.

A fundamental issue is understanding how predictable
and parallel evolution response is across replicated envi-
ronments [73]. To our knowledge, the current contribution
is the first to use the predictive approach to quantify and
understand the role of the speed of environmental vari-
ation on the degree of repeatability of the evolutionary
process. This problem is not only an important matter from
an evolutionary perspective but also closely related to the
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theory of speciation, as the degree of parallelism of the
evolutionary process can be used as a proxy for the likeli-
hood of population divergence and subsequent reproductive
isolation as a consequence of temporary or permanent ge-
ographic barriers [74]. The present results highlight the
impact of the speed of environmental change on the pro-
cess, which we believe sheds new light on future directions
for the ecological theory of speciation and evolutionary
biology.
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