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In this work, by considering superstatistics we investigate the short-range correlations (SRCs) and the
fluctuations in the distribution of lengths of strings of nucleotides. To this end, a stochastic model provides
the distributions of the size of the exons based on the q-Gamma and inverse q-Gamma distributions. Specifically,
we define a time series for exon sizes to investigate the SRC and the fluctuations through the superstatistics
distributions. To test the model’s viability, we use the Project Ensembl database of genes to extract the time
evolution of exon sizes, calculated in terms of the number of base pairs (bp) in these biological databases.
Our findings show that, depending on the chromosome, both distributions are suitable for describing the length
distribution of human DNA for lengths greater than 10 bp. In addition, we used Bayesian statistics to perform a
selection model approach, which revealed weak evidence for the inverse q-Gamma distribution for a considerable
number of chromosomes.
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I. INTRODUCTION

The growing amount of genomic data comes from various
DNA sequencing projects. In this regard, statistical physics
emerges as a tool that allows us to analyze the complexity
of the DNA structure. Various approaches were used, e.g.,
random walk [1–3], Ising model [4], and wavelet transforms
[5,6], to name a few. As a result, DNA is associated with an
aggregation phenomenon, resulting in a fractal cluster with
power-law correlations in space or time. Furthermore, long-
range [7] and short-range [8] correlations have been widely
discussed, especially in the context of the length distribution
of coding and noncoding sequences from many living organ-
isms, including human DNA [8–12].

The exon length distribution analysis has received atten-
tion since the 1980s. Hawkins [13] surveyed a broad class
of distinct phyla regarding the lengths of introns and ex-
ons. Soon after, Höglund et al. [14] reported a study of size
distributions of 411 mammalian exons which were selected
randomly. Long and Deutsch [15] analyzed the distribution of
intron-exon structures of eukaryotic genes, and their findings
suggested a causal relationship between intron content and
genome complexity. Melodelima et al. [16] proposed a sum
of geometric distributions with equal or different parame-
ters to describe the length distribution of exons and introns
of the human genome. The authors have also used hidden
Markov models to process the data in order to identify genes.
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Sakharkar et al. [17] reported a comparative analysis of hu-
man and mouse genome lengths regarding the differences and
similarities of exon-intron distributions. To reconcile various
hypotheses on the segmentation of eukaryotic genes, Gud-
laugsdottir and colleagues [18] presented mixed statistics of
exon lengths’ distributions, namely, a sum of pure exponential
and Weibull distributions. Finally, Li [19] demonstrated that
Menzerath’s law [20] could be applied to genes: the more
exons in a gene, the shorter the average exon size.

Regarding the dynamics of exon lengths, Wang and Stein
[21] proposed a stochastic model about the splitting of exons
by introns, and their model predicts that the chance for an exon
to obtain an intron is proportional to l3

e , where le is the exon’s
length. Also, Martignetti and Caselle [22] investigated the
(power-law-like) length distribution of the 5’ untranslated sec-
tions’ exons, a specific subclass of DNA sequences, through
a Markov chain modeling. Polychronopoulos and colleagues
[23] have also obtained a power-law behavior for the size dis-
tribution of noncoding elements for phylogenetically distinct
datasets.

Based on generalized entropies, some statistical ap-
proaches investigate several complex systems [24,25]. From
a molecular biology standpoint, the Tsallis and Kaniadakis
formalism was used to describe coding and noncoding sec-
tions of human DNA [26–31], and even plant DNA [32].
Another statistical approach providing a more general class
of distributions and containing the Tsallis one, in particular, is
a so-called superstatistics [33]. The core of this formalism is
to decompose the dynamics of the system into different scales
so that its statistical properties are given by a superposition
of statistics that have a Boltzmann factor e−βE , weighted
with a probability density P(β ) for which it has a fluctuating
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intensive parameter β. Also, one assumes local equilibrium
on each of these scales, which is achieved at distinct β val-
ues. Examples of such parameters are dissipation energy and
inverse temperature [33,34].

The superstatistics formalism successfully described sev-
eral systems, e.g., econophysics [35,36], geophysics [37,38],
turbulence [39–41], plasmas [42–44], and ultracold gases
[45,46] to high-energy scattering processes [47,48], spin sys-
tems [49,50], cosmology [51,52] and stellar systems [53].
In biophysics, there are already some special applications,
such as a superstatistical model (and its corresponding DNA
generation algorithm), which emulates the rules which dictate
the (empirical) nucleotide arrangement properties of some
DNA sequences [54,55]. Also, more recently, Itto and Beck
[56] reported an analysis of DNA-binding proteins that exhibit
highly heterogeneous diffusion processes in bacteria [57]. The
fractional Brownian motion is used as a possible local model,
and this model is, in turn, based on superstatistics with two
variables.

In contrast to using the empirical cumulative distribu-
tion function (ECDF) to calculate exon length distributions
[29–31] and the various approaches discussed above, in this
work the main goal is to investigate the short-range corre-
lations (SRCs) and the fluctuations in the distribution of the
lengths of strings of nucleotides through the superstatistics
framework. As a result, we developed a stochastic model to
provide the distributions of the size of the exons. Specifi-
cally, the stochastic model leads to the q-Gamma and inverse
q-Gamma distributions. Moreover, we performed a selection
model approach through Bayesian statistics, which revealed
a weak evidence for the inverse q-Gamma distribution, for a
considerable number of chromosomes.

This article is organized as follows. The next section de-
tails the stochastic model based on superstatistics that are
presented. In Sec. III we will apply the stochastic model
in the “time” series produced from the data collected from
the Ensembl Project. The main conclusions are presented in
Sec. IV.

II. THE METHOD

Let us introduce the fluctuations in the distribution of exon
size through the superstatistics framework. In this regard we
consider the superstatistics from a dynamical viewpoint by
using a Langevin equation of the form

ẋ = −γ F (x) + ζL(t ), (1)

where L(t ) is a white Gaussian noise, γ > 0 is a friction
constant, ζ describes the noise intensity, and F (x) is a drift
force, which is given by F (x) = −dV (x)/dx. Generally, we
can let the parameters γ and ζ fluctuate so that β = γ /ζ 2 has
the probability density f (β ) [33]. In this case the conditional
probability p(x|β ) is obtained,

p(x|β ) = 1

Z (β )
exp[−βV (x)], (2)

and for the marginal probability p(x),

p(x) =
∫

p(x|β ) f (β )dβ. (3)

The distribution for f (β ) is a central choice that defines the
concept of superstatistics. Initially, f (β ) can be any normal-
ized probability density. However, as β needs to be positive
[33], we use two types of superstatistics that best fit this case:
Gamma superstatistics and inverse Gamma superstatistics.

Here, we consider that the evolution of the size distribution
of exons obeys the following set of stochastic differential
equations:

dl = −γ (l − τ )dt +
(√

2

φ
τγ l

)
dWt , (4)

and

dl = −γ (l − τ )dt +
(√

2
γ

α
l

)
dWt , (5)

where Wt is the regular Wiener process that follows a normal
distribution with zero mean and unitary variance, l > 0, and
φ, α are adimensional constant characteristics of the system.
In Eqs. (4) and (5) the first term on the right-hand side is
associated with a deterministic process that aims to keep the
size of the exons around a characteristic value τ . However,
the second term on the right-hand side of the equations is
interpreted as a stochastic term. It represents a memory effect
on the evolution of the size of exons. Due to the random
signal, Wt increments (Wt > 0) or decrements (Wt < 0) the
size of l . The stochastic equations (4) and (5) are an example
of multiplicative noise, known as a Feller process [58]. Heston
initially proposed the process represented by Eq. (4) to de-
scribe the stochastic volatility in trading price returns [59]. In
the same way, Queirós describes sequences of volumes traded
in stocks in the financial markets [35]. Finally, Michas and
Vallianatos used the same process to describe the time series
of earthquakes [37]. However, Eq. (5) appears as a modifi-
cation of the Heston model proposed by de Sousa et al. to
consider a parabolic profile in the distribution in active trades
[36]. In the following sections we used the above results and
those obtained in Refs. [35,36], which were adjustable with
our scheme, to introduce fluctuations of exon size distribu-
tions.

A. Inverse Gamma superstatistics

Initially, to determine the “temporal” evolution, after some
discrete time t , given by the probability distribution f , we can
write the corresponding Fokker-Planck equation for Eq. (4),

∂ f

∂t
= ∂

∂l
[γ (l − τ ) f ] + ∂2

∂l2

[
lτ

γ

φ
f

]
, (6)

and determine the stationary solution,

f (l ) = φφ

τ	(φ)

(
l

τ

)φ−1

exp

(
−φ

τ
l

)
. (7)

In order to introduce the fluctuations in the local mean τ

of the exon sizes we assume the stationary inverse Gamma
distribution:

p(τ ) =
(

φ

λ

)δ

	(δ)
τ−δ−1 exp

(
− φ

τλ

)
. (8)
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FIG. 1. Time series representation and statistical evaluation method. (a) Time series for chromosome 01 was created using data from the
Ensembl Project [60]. The “spatial” series (l) represents the spatial displacement along the DNA sequence at “time” t . The coordinate position
(ti) is also linked to a “temporal” index, with i = 1, . . . , n. (b) The probability density derived from the chromosome 01 time series. (c) The
logarithmic box representation of probability density.

In this case Eq. (7) provides the conditional probability of l
given τ :

f (l ) −→ p(l|τ ) = φφ

τ	(φ)

(
l

τ

)φ−1

exp

(
−φ

τ
l

)
. (9)

Therefore the joint probability of getting certain values of l
and τ is P(l, τ ) = p(l|τ )P(τ ), and the marginal probability
of having some value l , independent of τ , is given by

p(l ) =
∫ ∞

0
p(l|τ )p(τ )dτ. (10)

Applying Eqs. (8) and (9) in Eq. (10) and performing the
integration, we have

p(l ) = λ	(φ + δ)

	(φ)	(δ)
(λl )φ−1(1 + λl )−φ−δ. (11)

Using the following variable changes,

λ = q − 1

σ
, δ = 1

q − 1
− φ, α = φ − 1, (12)

we can write Eq. (11) as pG(l ) in the form

PG(l ) =
(q − 1)α+1	

(
1

q−1

)
σ	

(
1

q−1 − α − 1
)
	(α + 1)

(
l

σ

)α

expq

(
− l

σ

)
,

(13)
which is the q-Gamma probability density function. It is worth
noting that

expq

(
− l

σ

)
=

[
1 + (1 − q)

(
− l

σ

)] 1
1−q

. (14)

B. Gamma superstatistics

By using the process described by Eq. (5), we can construct
the discrete-time “temporal” evolution for the size distribution
of the exons. Thus we can write the Fokker-Planck equation in
the form

∂ f

∂t
= ∂

∂l
[γ (l − τ ) f ] + ∂2

∂l2

[
γ

α
l2 f

]
, (15)
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FIG. 2. Superstatistical distribution of sizes for strings of exons from chromosomes: (a) 04, (b) 06, (c) 10, and (d) 15. The black, red, and
blue curves represent observational data, the q-Gamma distribution, and the inverse q-Gamma distribution, respectively.

with the stationary solution

f (l ) −→ p(l|τ ) = αα+1

ω	(α + 1)

(
l

τ

)−α−2

exp

(
− ατ

l

)
. (16)

Assuming that τ follows the Gamma distribution,

p(τ ) = 1

λ	(δ)

(
τ

δ

)δ−1

exp

(
−τ

δ

)
. (17)

Applying Eqs. (16) and (17) to the conditional probability
equation in the form of the Eq. (10), and performing the
integration of the conditional probability, we arrive at

PIG(l ) = AIG

(
l

σ

)−α−2

expq

(
−σ

l

)
, (18)

where PIG(l ) is the inverse q-Gamma probability density func-
tion, with

AIG =
	

(
1

q−1

)
σ (q − 1)	(α + 1)	

(
1

q−1 − α − 1
)(

1

q − 1

)−α−2

,

(19)

where

αλ = σ (q − 1), δ = 1

q − 1
− α − 1 (20)

are the changes of variables.

III. RESULTS AND DISCUSSIONS

A. Data and time series

In our analysis we used the Project Ensembl [60] database
of genes to extract the time evolution of exon sizes and
validate our stochastic model. The size of a coding region
sequence (exon), l , is given in terms of the number of base
pairs (bp) in these biological databases. The core of the whole
argument follows from the definition of time series for exon
sizes (see Fig. 1). Indeed, the time series is defined by the fact
that the x axis represents a discrete-time instant, ti. For the
occurrence of the ith exon, the y axis reflects exon sizes for
each event on the x axis. The time series for chromosome 01
is depicted in Fig. 1(a).

Now, let us obtain the time series’ statistical information.
To do so we compute the probability density, p(l ), for the
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TABLE I. The model parameters that best fit the chromosomal dataset. AG, αG, σG, and qG are free parameters for the q-Gamma distribution
as defined by Eq. (13).

CHR AG αG σG qG

01 9.9545 × 10
−7+2.7261×10−7

−2.7261×10−7 2.7835+0.3603
−0.3603 14.0062+1.7077

−1.7077 1.1841+0.0258
−0.0258

02 9.7191 × 10
−7+2.6782×10−7

−2.6782×10−7 2.7926+0.3594
−0.3594 14.1163+1.7382

−1.7382 1.1765+0.0260
−0.0260

03 9.9768 × 10
−7+2.7437×10−7

−2.7437×10−7 2.7984+0.3654
−0.3654 14.5449+1.7458

−1.7458 1.1684+0.0262
−0.0262

04 9.7814 × 10
−7+2.7357×10−7

−2.7357×10−7 2.7822+0.3610
−0.3610 14.5997+1.7189

−1.7189 1.1764+0.0256
−0.0256

05 9.9273 × 10
−7+2.7666×10−7

−2.7666×10−7 2.7938+0.3666
−0.3666 14.0016+1.7086

−1.7086 1.1796+0.0251
−0.0251

06 9.6979 × 10
−7+2.7431×10−7

−2.7431×10−7 2.7961+0.3649
−0.3649 14.0165+1.7257

−1.7257 1.1775+0.0255
−0.0255

07 9.8418 × 10
−7+2.7514×10−7

−2.7514×10−7 2.7532+0.3597
−0.3597 15.0927+1.6997

−1.6997 1.1745+0.0260
−0.0260

08 9.6790 × 10
−7+2.7912×10−7

−2.7912×10−7 2.7640+0.3550
−0.3550 14.4503+1.7384

−1.7384 1.1795+0.0260
−0.0260

09 9.9396 × 10
−7+2.7584×10−7

−2.7584×10−7 2.7574+0.3522
−0.3522 14.4355+1.7031

−1.7031 1.1813+0.0258
−0.0258

10 9.9837 × 10
−7+2.7615×10−7

−2.7615×10−7 2.7730+0.3535
−0.3535 14.2621+1.7198

−1.7198 1.1850+0.0266
−0.0266

11 9.8674 × 10
−7+2.7379×10−7

−2.7379×10−7 2.7805+0.3591
−0.3591 14.4021+1.7346

−1.7346 1.1793+0.0251
−0.0251

12 9.9750 × 10
−7+2.7174×10−7

−2.7174×10−7 2.8053+0.3638
−0.3638 14.1930+1.6999

−1.6999 1.1709+0.0220
−0.0220

13 9.9426 × 10
−7+2.7533×10−7

−2.7533×10−7 2.7976+0.3610
−0.3610 14.2487+1.7254

−1.7254 1.1761+0.0257
−0.0257

14 9.7344 × 10
−7+2.7584×10−7

−2.7584×10−7 2.7993+0.3627
−0.3627 14.1856+1.7176

−1.7176 1.1774+0.0258
−0.0258

15 9.5088 × 10
−7+2.7702×10−7

−2.7702×10−7 2.7919+0.3642
−0.3642 14.2550+1.7274

−1.7274 1.1790+0.0255
−0.0255

16 9.9821 × 10
−7+2.7678×10−7

−2.7678×10−7 2.7871+0.3584
−0.3584 14.0445+1.6988

−1.6988 1.1820+0.0263
−0.0263

17 9.8949 × 10
−7+2.7164×10−7

−2.7164×10−7 2.8599+0.3657
−0.3657 14.0375+1.7289

−1.7289 1.1616+0.0273
−0.0273

18 9.8306 × 10
−7+2.7561×10−7

−2.7561×10−7 2.7993+0.3554
−0.3554 14.1634+1.6934

−1.6934 1.1765+0.0246
−0.0246

19 9.9611 × 10
−7+2.7444×10−7

−2.7444×10−7 2.8681+0.3641
−0.3641 14.6810+1.7159

−1.7159 1.1521+0.0263
−0.0263

20 9.9927 × 10
−7+2.7521×10−7

−2.7521×10−7 2.7910+0.3571
−0.3571 14.1938+1.7368

−1.7368 1.1723+0.0262
−0.0262

21 9.7201 × 10
−7+2.7457×10−7

−2.7457×10−7 2.7543+0.3651
−0.3651 14.6779+1.6790

−1.6790 1.1798+0.0263
−0.0263

22 9.8672 × 10
−7+2.7129×10−7

−2.7129×10−7 2.8100+0.3645
−0.3645 14.1671+1.7168

−1.7168 1.1702+0.0256
−0.0256

X 9.7975 × 10
−7+2.7576×10−7

−2.7576×10−7 2.7912+0.3648
−0.3648 14.1710+1.7144

−1.7144 1.1756+0.0221
−0.0221

Y 9.8339 × 10
−7+2.7263×10−7

−2.7263×10−7 2.7578+0.3632
−0.3632 15.7309+1.7380

−1.7380 1.1673+0.0284
−0.0284

number of occurrences of exons of size l in Fig. 1(b). We
use the logarithmic bin scheme to pinpoint the mean value
of the exon sizes and to represent data fluctuations in the
tails, as shown in Fig. 1(c). Thus when increasing the bin
size with l , we have a better description of the form of the
probability density. We categorize the data using bi, where bi

is the bin size, and bi = exp(i), where i is the bin number,
i = 1, 2, . . ., n. Let us analyze if the q-Gamma probability
density function and inverse q-Gamma probability density
function can capture the SRC and fluctuations among the size
distribution of exon chains. Therefore the distributions will be
fitted to data distribution for the size of the exon chains [see
Fig. 1(c)].

In Fig. 2 we show the probability density for a sample
of human chromosomes 04, 06, 10, and 15. The remaining
chromosomes’ behavior is analogous to the behavior shown
in Fig. 2. To get the values for PG(l ) and PIG(l ), the functions
(13) and (18) were utilized to fit the dataset. Tables I and
II show the best-fit parameters. Moreover, for both distribu-
tions PG(l ) and PIG(l ), the fitting procedure was implemented

through the LM (Levenberg-Marquardt) numerical algorithm
[61] written in R [62], which calculates the best-fit parameters
for both distributions, adjusted to the chromosomic data. It
is worth noting that when l is less than 10 bp for some
chromosomes, we observe that the models deviate somewhat
from the data. On the other hand, the models can capture the
data in the region above 10 bp, which has the most significant
number of exons.

B. Bayesian analysis

Before continuing, let us discuss a few points about
the Bayesian inference, which is becoming a valuable tool
for tackling many problems in physics (for a review, see
Ref. [63]), ecology [64–66], and biophysics (for an excellent
primer, see Ref. [67]). The rationale behind this technique is
updating previous knowledge about some model parameters
based on learning new information. Indeed, this is a method
of statistical inference in which one uses Bayes’ theorem
to describe the relationship between models, data, and prior
information about model parameters. In a parameter estima-
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TABLE II. The same as Table I, but for free parameters AIG, αIG, σIG, and qIG from the inverse q-Gamma distribution, as defined by Eq. (18).

CHR AIG αIG σIG qIG

1 7809.203+1144.440
−1144.440 0.5518123+0.05768208

−0.05768208 379.7055+58.41313
−58.41313 1.199526+0.02806757

−0.02806757

2 7436.514+1138.926
−1138.926 0.5558285+0.05690273

−0.05690273 371.7458+57.64390
−57.64390 1.199960+0.03196373

−0.03196373

3 7997.262+1171.284
−1171.284 0.5946445+0.05728736

−0.05728736 357.6161+58.45881
−58.45881 1.199874+0.02560120

−0.02560120

4 7894.546+1152.681
−1152.681 0.5472515+0.05854799

−0.05854799 387.5022+58.21772
−58.21772 1.198991+0.03518453

−0.03518453

5 7742.633+1155.663
−1155.663 0.5767669+0.05798930

−0.05798930 364.1540+57.48912
−57.48912 1.199902+0.02662069

−0.02662069

6 7383.890+1143.651
−1143.651 0.5890860+0.05740581

−0.05740581 343.4822+57.08640
−57.08640 1.199539+0.02704803

−0.02704803

7 7972.993+1153.776
−1153.776 0.5752212+0.05716543

−0.05716543 372.3990+58.01888
−58.01888 1.199994+0.02743487

−0.02743487

8 7710.580+1147.006
−1147.006 0.5546483+0.05771361

−0.05771361 376.7511+56.99490
−56.99490 1.199383+0.03111394

−0.03111394

9 7004.210+1165.496
−1165.496 0.5592837+0.05856234

−0.05856234 358.7707+58.16187
−58.16187 1.199847+0.03031994

−0.03031994

10 7800.751+1136.923
−1136.923 0.5590480+0.05765129

−0.05765129 374.9343+57.18684
−57.18684 1.199946+0.02562836

−0.02562836

11 7689.615+1144.887
−1144.887 0.5747293+0.05786969

−0.05786969 359.8395+58.58723
−58.58723 1.199871+0.03518177

−0.03518177

12 7526.128+1168.163
−1168.163 0.5477628+0.05694147

−0.05694147 370.6415+57.05604
−57.05604 1.199685+0.03646363

−0.03646363

13 6780.360+1168.263
−1168.263 0.5910883+0.05727767

−0.05727767 333.5107+57.19265
−57.19265 1.199689+0.02387596

−0.02387596

14 6055.631+1144.057
−1144.057 0.5242399+0.05827816

−0.05827816 362.4286+57.17177
−57.17177 1.199968+0.02816265

−0.02816265

15 7803.435+1145.904
−1145.904 0.5393364+0.05846271

−0.05846271 392.1554+56.86825
−56.86825 1.199411+0.03267771

−0.03267771

16 7899.175+1153.793
−1153.793 0.5791303+0.05782361

−0.05782361 363.9262+57.97265
−57.97265 1.199695+0.03073250

−0.03073250

17 6869.810+1150.878
−1150.878 0.5908990+0.05826209

−0.05826209 325.5873+58.27176
−58.27176 1.199341+0.03048527

−0.03048527

18 7726.757+1147.334
−1147.334 0.5701726+0.05754791

−0.05754791 360.7312+58.53472
−58.53472 1.199895+0.02773004

−0.02773004

19 5610.925+1165.721
−1165.721 0.5815002+0.05822773

−0.05822773 303.6537+57.23584
−57.23584 1.199576+0.03374223

−0.03374223

20 7487.947+1150.926
−1150.926 0.5814504+0.05805905

−0.05805905 335.1194+57.48598
−57.48598 1.199572+0.02506806

−0.02506806

21 7084.840+1137.057
−1137.057 0.5461979+0.05879125

−0.05879125 376.4362+58.51314
−58.51314 1.199018+0.02712447

−0.02712447

22 7403.418+1154.598
−1154.598 0.5702446+0.05784792

−0.05784792 358.1559+57.49497
−57.49497 1.199587+0.02871884

−0.02871884

X 7364.109+1127.271
−1127.271 0.5535639+0.05841418

−0.05841418 374.7473+57.76424
−57.76424 1.199424+0.02947948

−0.02947948

Y 7783.303+1157.003
−1157.003 0.5262098+0.05778872

−0.05778872 379.3963+58.01137
−58.01137 1.198027+0.03682755

−0.03682755

tion problem, the starting point for Bayesian analysis is to
calculate the posterior distribution for a set � of free param-
eters given the data D and model M through Bayes’ theorem,

P(�|D, M ) = L(D|�, M )P(�|M )

ε(D|M )
, (21)

where P(�|D, M ) is the posterior distribution, L(D|�, M ) is
the likelihood function, P(�|M ) is the prior distribution, and
ε(D|M ) is the Bayesian evidence.

The Bayesian evidence ε(D|M ) is simply a normalization
constant regarding parameter constraints. Furthermore, be-
cause it is independent of the model parameters, it does not
affect the profile of the posterior distribution. Nonetheless,
when looking at Bayesian model comparisons, it turns out to
be a necessary component. In the continuous parameter space,
the Bayesian evidence of a model is given by

ε(D|M ) =
∫
L(D|�, M )P(�|M )d�. (22)

An interesting question here is to inspect which length-
distribution models of DNA chains should be viable from
the point of view of Bayesian inference. Therefore we com-
pare the distributions (13) and (18) through the calculation of
Bayesian evidence. As a result, we compute the ratio of the
posterior probabilities, which is given by

P(M1|D)

P(M2|D)
= B12

P(M1)

P(M2)
, (23)

where B12 is known as the Bayes factor, defined as

B12 = ε1(D|M1)

ε2(D|M2)
, (24)

where ε1(D|M1) is the evidence of model 01, which in our
case is the q-Gamma distribution, and ε2(D|M2), model 02, is
the evidence of the inverse q-Gamma distribution.

Furthermore, we describe the likelihood function pattern
for the entire human genome as follows:

χ2 = (pobs(l ) − pthe(l ))2

σ 2
obs

, (25)

where pobs(l ), pthe(l ), and σobs are the probability density of
the observed nucleotides, the theoretical probability, and the

TABLE III. The Jeffreys scale for interpretation of the Bayes
factor. The first column represents the logarithm of the Bayes factor
limit values, while the second column is the interpretation of the
evidence’s strength over the appropriate threshold.

ln Bi j Interpretation

Greater than 5 Strong evidence for model 01
[2.5, 5] Moderate evidence for model 01
[1, 2.5] Weak evidence for model 01
[−1,1] Inconclusive
[−2.5,−1] Weak evidence for model 02
[−5, 2.5] Moderate evidence for model 02
Less than −5 Strong evidence for model 02
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FIG. 3. Results from the Bayesian inference procedure, showing projections of the posterior distributions for the free parameters AG, αG,
σG, qG according to the q-Gamma distribution for chromosomes 04, 06, 10, and 15.

observed error, respectively. To acquire a clearer picture of
whether or not a model contains favorable evidence in com-
parison to the base model, we make use of the interpretation
of the Bayes factor following the Jeffreys scale, Table III [68].

To compute the Bayesian evidence ε(D|M ) with an ac-
companying error estimate, we use the MULTINEST code [69],
a Bayesian inference tool. This approach is implemented
for each chromosome and model to conduct the Bayesian

FIG. 4. The same as Fig. 3 but for free parameters AIG, αIG, σIG, qIG from inverse q-Gamma distribution for chromosomes 04, 06, 10,
and 15.
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TABLE IV. The table shows the uniform priors on the free pa-
rameters of q-Gamma distribution.

CHR Parameters Priors

All AG U(1 × 10−8, 1 × 10−6)
αG U(1, 3)
σG U(14, 20)
qG U(1, 1.2)

analysis. It generates posterior samples from distributions
with several modes and numerous curves in a large number of
dimensions [70,71]. We provide the triangle plot constructed
of confidence zones for the parameters and subsequent distri-
butions in Figs. 3 and 4, respectively, for model 01, q-Gamma
distribution, and model 02, inverse q-Gamma distribution.
The chromosomes displayed are a random selection from our
sample.

We obtained these findings using the priors specified in
Tables IV and V. We used the uniform prior for both models
because it has the smallest statistical influence on the likeli-
hood [Eq. (25)], resulting in more confidence in the selection
analysis. For chromosome 04, the Bayes factor is calculated as
ln(B12) = −1.3671+0.0019

−0.0019. Using the Jeffreys scale, Table III,
we find that model 02 can represent the data set with weak
evidence. In the instance of chromosome 06, however, we
derived the Bayes factor ln(B12) = −0.9298+0.0013

−0.0013. We also
saw that the lack of clear evidence for the offered models
prevented us from estimating which models best describe the
behavior of chromosome 3. The findings for the remaining
chromosomes are shown in Table VI. Consequently, chromo-
somes 3, 6, 10, 13, and 20 provided comprehensive support
for the suggested hypotheses, i.e., inconclusive. The remain-
ing 19 chromosomes, however, exhibited minimal support for
model 02. Specifically, we found that model 02, the inverse q-
Gamma distribution, presented weak evidence to characterize
the human genome.

IV. CONCLUSION

The SRCs always present in exon size distributions were
investigated in [29–31] through the ECDF with suppressed
fluctuations. Certainly, the fluctuations of the exon size dis-
tributions should be considered in order to analyze their role
in the SRC. In this context we presented models based on
the superstatistics formalism discussed in Refs. [33,34,39].
Specifically, we proposed a stochastic model through the
Langevin and Fokker-Planck, which provided the superstatis-
tics distributions for the sizes of exon chains, Eqs. (13) and
(18), also known as q-Gamma distributions (model 01) and

TABLE V. The table shows the uniform priors on the free param-
eters of inverse q-Gamma distribution.

CHR Parameters Priors

All AIG U(4000, 8000)
αIG U(0.4, 0.6)
σIG U(200, 400)
qIG U(1, 1.2)

TABLE VI. The results of the Bayesian analysis for each chro-
mosome. The column ln(ε1) gives us the Bayesian evidence for each
of the models, Eq. (13). The column ln(ε2) gives us the Bayesian
evidence for each of the models, Eq. (18), and column ln(B12) gives
us the Bayes factor.

CHR ln(ε1) ln(ε2) ln(B12)

01 −2.1356+0.0148
−0.0148 −0.9881+0.0133

−0.0133 −1.1475+0.0014
−0.0014

02 −2.0501+0.0153
−0.0153 −0.9918+0.0147

−0.0147 −1.0582+0.0006
−0.0006

03 −2.0260+0.0152
−0.0152 −1.2671+0.0154

−0.0154 −0.7589+0.0002
−0.0002

04 −2.1668+0.0150
−0.0150 −0.7996+0.0130

−0.0130 −1.3671+0.0019
−0.0019

05 −2.2890+0.0139
−0.0139 −1.2290+0.0158

−0.0158 −1.0599+0.0019
−0.0019

06 −2.1791+0.0148
−0.0148 −1.2493+0.0162

−0.0162 −0.9298+0.0013
−0.0013

07 −2.2418+0.0127
−0.0127 −1.1799+0.0155

−0.0155 −1.0619+0.0028
−0.0028

08 −2.2871+0.0137
−0.0137 −0.9765+0.0139

−0.0139 −1.3105+0.0002
−0.0002

09 −2.2668+0.0133
−0.0133 −1.0133+0.0145

−0.0145 −1.2535+0.0011
−0.0011

10 −2.2674+0.0134
−0.0134 −1.2816+0.0158

−0.0158 −0.9857+0.0024
−0.0024

11 −2.0635+0.0153
−0.0153 −0.8889+0.0145

−0.0145 −1.1746+0.0007
−0.0007

12 −2.1906+0.0158
−0.0158 −0.7556+0.0118

−0.0118 −1.4349+0.0040
−0.0040

13 −2.1262+0.0156
−0.0156 −1.2963+0.0151

−0.0151 −0.8298+0.0004
−0.0004

14 −2.2396+0.0132
−0.0132 −1.1546+0.0156

−0.0156 −1.0849+0.0023
−0.0023

15 −2.1806+0.0135
−0.0135 −0.9585+0.0151

−0.0151 −1.2220+0.0016
−0.0016

16 −2.1296+0.0137
−0.0137 −1.0316+0.0146

−0.0146 −1.0979+0.0009
−0.0009

17 −2.1629+0.0143
−0.0143 −1.0899+0.0155

−0.0155 −1.0730+0.0011
−0.0011

18 −2.3017+0.0119
−0.0119 −1.1454+0.0157

−0.0157 −1.1562+0.0037
−0.0037

19 −2.2425+0.0145
−0.0145 −0.9028+0.0142

−0.0142 −1.3396+0.0003
−0.0003

20 −2.1533+0.0146
−0.0146 −1.3560+0.0167

−0.0167 −0.7973+0.0021
−0.0021

21 −2.2438+0.0132
−0.0132 −1.1861+0.0156

−0.0156 −1.0577+0.0024
−0.0024

22 −2.0817+0.0158
−0.0158 −1.0795+0.0143

−0.0143 −1.0021+0.0015
−0.0015

X −2.4011+0.0130
−0.0130 −1.0556+0.0153

−0.0153 −1.3454+0.0022
−0.0022

Y −1.9682+0.0152
−0.0152 −0.8268+0.0141

−0.0141 −1.1414+0.0010
−0.0010

inverse q-Gamma distributions (model 02), respectively. The
argument’s core followed the construction of a temporal series
for exon sizes calculated in terms of the number of base pairs
(bp). As a result, we showed that at least for sizes of exon
chains over 10 bp, such distributions reasonably adjusted with
the data from capturing the SRC and fluctuations in the size
distribution of the exon chains. The best fit of free parameters
from the superstatistics distributions for the whole genome
follows in Tables I and II.

We implemented a selection model approach through
Bayesian statistics to compare both superstatistics distri-
butions. In Figs. 3 and 4, we presented the triangle plot
constructed of confidence zones for the parameters and sub-
sequent distributions for a selected sample of chromosomes
as the main results. Moreover, we presented the result of the
Bayesian analysis for the whole genome in Table VI. The
analysis was inconclusive for chromosomes 3, 6, 10, 13, and
20. However, the remaining 19 chromosomes exhibited mini-
mal support for inverse q-Gamma distribution (model 02).

The DNA code data that support the findings of this study
are available in the Ensembl Project database [60].
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