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Minimum perturbation theory of deep perceptual learning
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Perceptual learning (PL) involves long-lasting improvement in perceptual tasks following extensive training
and is accompanied by modified neuronal responses in sensory cortical areas in the brain. Understanding the
dynamics of PL and the resultant synaptic changes is important for causally connecting PL to the observed
neural plasticity. This is theoretically challenging because learning-related changes are distributed across many
stages of the sensory hierarchy. In this paper, we modeled the sensory hierarchy as a deep nonlinear neural
network and studied PL of fine discrimination, a common and well-studied paradigm of PL. Using tools from
statistical physics, we developed a mean-field theory of the network in the limit of a large number of neurons
and large number of examples. Our theory suggests that, in this thermodynamic limit, the input-output function
of the network can be exactly mapped to that of a deep linear network, allowing us to characterize the space of
solutions for the task. Surprisingly, we found that modifying synaptic weights in the first layer of the hierarchy
is both sufficient and necessary for PL. To address the degeneracy of the space of solutions, we postulate that PL
dynamics are constrained by a normative minimum perturbation (MP) principle, which favors weight matrices
with minimal changes relative to their prelearning values. Interestingly, MP plasticity induces changes to weights
and neural representations in all layers of the network, except for the readout weight vector. While weight
changes in higher layers are not necessary for learning, they help reduce overall perturbation to the network.
In addition, such plasticity can be learned simply through slow learning. We further elucidate the properties of
MP changes and compare them against experimental findings. Overall, our statistical mechanics theory of PL
provides mechanistic and normative understanding of several important empirical findings of PL.
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I. INTRODUCTION

Perceptual learning (PL), the improvement of performance
in perceptual tasks after practice, is one of the most basic
forms of learning in the brain and has been extensively studied
experimentally [1–12]. Physiologically, PL is accompanied by
long-lasting changes to neuronal response properties in cor-
tical areas. Connecting physiological changes to behavioral
observations has been challenging, in part due to the complex
learning dynamics and processing in the sensory hierarchy,
which is composed of multiple cortical regions. As a result,
several important issues concerning the neural mechanisms of
PL remain unresolved after decades of research.

First, which cortical areas undergo modifications and
which of the changes causally drive PL? While behavioral
specificity of PL [13,14] points to an important role for plas-
ticity in early sensory areas, single-unit response properties
in early visual areas (V1, V2) show only minor changes after
visual PL [3,4]. In addition, PL induces significant changes
to single-neuron properties in intermediate to late stages of
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visual processing, such as V4 [5,6,9,10], LIP [15], and IT
[16,17]. Furthermore, it is unclear whether any such change
necessarily causes PL. For example, PL of sound and tactile
discrimination is correlated with substantial changes in re-
spective primary sensory areas [1,12], but such changes may
not contribute to improved neural coding [11].

Second, what are the functional consequences of the ob-
served changes? Analysis of changes in neuronal responses
after PL indicates improved accuracy of the neural coding of
the trained stimuli [8–10]. This appears to be inconsistent with
the behavioral finding that PL does not transfer to a different
task even when using the same stimuli [18–20]. The reverse
hierarchy theory [21] proposes that PL is initially driven by
learning in high areas, which results in less specific learning;
modifications of lower areas follow if the task is difficult, as,
for instance, in fine perceptual discrimination tasks, leading to
more specific learning. Analysis of a reduced model of PL has
lent support for this theory [22]. However, recent experimen-
tal and computational studies questioned these predictions
[8,9,23], providing evidence of changes in primary sensory
areas already in the early stages of PL. On the other hand,
experiments in random dot visual motion discrimination tasks
found that PL is correlated with changes in decision-making
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areas (e.g., LIP) but not sensory areas (e.g., MT) [15,24].
From a theoretical perspective, the hierarchical nature of the
underlying sensory system implies that there is an enormous
degeneracy of possible synaptic weight matrices that solve the
task of PL.

Most existing theories of PL assume changes only in either
the weights of the readout from a fixed sensory array [25–27]
or the input layer to a single cortical circuit [23]. Such shallow
models are inconsistent with the sensory hierarchy in the brain
and do not address the neural correlates of PL in multiple
cortical regions.

In the present paper, we directly addressed the issue of PL
in a deep network by studying PL of a fine-discrimination
task in a deep neural network (DNN) model of the sensory
hierarchy [28–30]. As learning dynamics in DNNs are, in gen-
eral, challenging to study [31–39], we developed a mean-field
theory of information propagation in the model in the limit of
large numbers of neurons in every layer and a large number
of training examples. The theory reveals that during the per-
ceptual task, the DNN effectively behaves like a deep linear
neural network. This considerably simplifies the theoretical
analysis of the space of solutions, as well as the emergent
changes in neural representations. Surprisingly, we found that
modifications of synaptic weights in the first level of the
hierarchy are both sufficient and necessary for PL. To address
the degeneracy of the space of solutions, we developed a
normative theory of PL. Specifically, we postulated that in
the brain, learning dynamics are constrained by a normative
minimum perturbation (MP) principle, which favors weight
matrices with minimal changes relative to their prelearning
values. Interestingly, MP learning induces changes in weights
and neural representations in all layers of the networks, except
for the readout weight vector. While weight changes in higher
layers are not necessary for learning, they help reduce overall
perturbation to the network. MP learning predicts changes
to tuning properties of cortical neurons that are consistent
with experimental observations and suggests that signal am-
plification, not noise reduction, is the primary driver of PL.
Our theory makes the readily testable prediction that PL
can simultaneously lead to positive and negative transfer to
different untrained stimuli. Finally, we found that MP learn-
ing can be implemented through slow gradient-descent (GD)
learning. Overall, leveraging the large size of the network
involved in PL, we have developed a statistical mechanics
theory of PL in DNNs which provides mechanistic and nor-
mative understanding of several important empirical findings
of PL.

Put in a broader context, this paper complements recent
theoretical studies of learning in deep networks [31–39], con-
tributing to the understanding of learning and computation in
these important architectures. In particular, our setting where
a deep, nonlinear network learns a linearly solvable task is
a popular paradigm for understanding network learning in
the so-called overparameterized regime [40,41], where the
network is vastly larger and richer than required by the trained
task [42]. Unlike standard analyses that focus on how the net-
work starts from random initialization and learns a single task,
our paper introduces a continual-learning perspective where
the impact of learning on previously learned tasks needs to be
minimized.

Our deep network model of PL is described in Sec. II.
The mean-field analysis is summarized in Sec. III. Section IV
presents the MP principle and analyzes PL with MP. Section V
analyzes the use of GD to learn MP plasticity. A discussion of
the implications for the field of PL is presented in Sec. VI.

II. A DEEP NETWORK MODEL OF PL

A. Input channels

We assume N input channels [Fig. 1(a), gray squares]
representing a 1D stimulus. Neurons in the input channels
are indexed by a preferred stimulus angle θi = i

N 2π for the
ith neuron. The collective response of input channels to a
stimulus with angle θ is given by the N-dim vector

x0(θ ) = f 0(θ ) + ε0, (1)

where ε0 is independent and identically distributed (i.i.d.)
Gaussian noise with zero mean and variance σ 2. The noise-
averaged response of each input neuron is given by a
bell-shaped tuning curve centered on its preferred stimulus,

f 0
i (θ ) = Z−1

s exp

(
cos(θi − θ ) − 1

σ 2
s

)
, (2)

where Zs ensures ‖ f 0(θ )‖ = √
N , making the firing rate of

each neuron O(1). σs controls the input selectivity, assumed to
be the same for all channels [Figs. 1(b) and 1(c)]. Tuning and
noise properties of input channels are not affected by learning.

B. Model architecture and pre-PL weights

Our model of the sensory system is a feedforward network
with L hidden layers and a linear readout from the top layer
[Fig. 1(a)]. Each hidden layer is composed of N rectified linear
(ReLU) neurons (cortical neurons). Let xl (θ ) denote the noisy
population response vector of neurons in layer l , and f l (θ ) its
average over noise. {xl (θ )}l=1,.,...,L are recursively given by

xl (θ ) = �(W lxl−1(θ )), (3)

where �(·) is the elementwise rectified linear function. The
linear behavioral readout a produces a scalar network output
from the activity in the last layer:

r(θ ) = aT xL(θ ). (4)

Pre-PL weights are modeled after feedforward synaptic
connections between visual areas in the brain: We chose a cir-
culant structure which is appropriate for propagating angular
signals [43,44]. Every neuron receives strong, excitatory input
from neurons in the previous layer with similar preferred stim-
uli and weak, inhibitory input from neurons with dissimilar
preferred stimuli. For simplicity, we assume pre-PL weights to
be identical across layers. We do not expect qualitative predic-
tions of our analysis to differ if initial weights have different
σw across layers. Concretely, pre-PL weights {W l}l=1,2,...,L are
given by

W l
i j,pre = Z−1

w exp

(
cos(θi − θ j ) − 1

σ 2
w

)
+ bw, (5)

where Zw is chosen such that each row of W l
pre has norm

1/
√

N [i.e., each weight is O(N−1)]. This normalization en-
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FIG. 1. Model of perceptual learning. (a) Diagram of the deep network model of the sensory hierarchy. The output of input channels (gray
squares) is passed through L layers of cortical neurons with ReLU nonlinearity (blue circles) before getting read out by a linear readout (a).
(b) Example tuning curves of input channels. Each curve represents a channel with a different preferred stimulus. The preferred stimuli of
input channels uniformly tile [0, 2π ]. This panel shows the regime of high input selectivity and hence narrow tuning curves. (c) Same as
(b) but for the scenario of low input selectivity. (d) Example feedforward weight structure before learning. Weights connecting neurons with
similar preferred stimuli tend to be excitatory (positive) and strong while those connecting neurons with dissimilar preferred stimuli tend to
be weak and inhibitory (negative). This panel shows the regime of high weight selectivity. (e) Same as (d) but for low weight selectivity. (f)
Bell-shaped tuning curves of input channels and the initial weight patterns lead to bell-shaped tuning curves for all cortical neurons before
PL. (g) Noise-averaged activity of the input channels [ f 0(θ )] in response to the two presented stimuli, θ±. The difference between them is
exaggerated here for illustration purposes. (h) The signal s is in the direction of the difference between f 0(θ±).

sures that the input to any hidden neuron is of magnitude
O(1). The offset bw is chosen such that each row sums to
0. The parameter σw controls selectivity of the prelearning
weights; small σw leads to a high-selectivity weight structure
where a few weights dominate the input [Fig. 1(d)] and vice
versa [Fig. 1(e)]. As a result of the input tuning curves and the
feedforward weight structure, all cortical neurons are tuned
to the 1D stimulus and have bell-shaped tuning curves before
learning [Fig. 1(f)].

C. Fine discrimination

We focus on learning a fine-discrimination task, where one
out of two similar visual stimuli is presented to the subject,
who must correctly indicate which one is presented. In our
model, the task consists of discriminating two values of the
stimulus, θ± = θtr ± δθ , where the center stimulus θtr is called
the trained stimulus and δθ ∼ O(N−1/2). This choice of scal-
ing ensures that the total signal-to-noise ratio in the input layer
is O(1). In each trial, one of θ± is presented and generates a
noisy activation of the input array [Eq. (1), Fig. 1(g)]. In each
trial, the decision neuron activity r indicates whether the input
comes from the θ+ stimulus or from θ− with r > 0 or r < 0,
respectively. Stimuli are presented with equal probability; the
optimal performance in the task is thus given by performing
maximum likelihood discrimination [25]. Importantly, since
the noise is Gaussian, the task can be performed optimally
by a linear discriminator reading out directly from the input
channels and using weights parallel to the signal [Fig. 1(h)],
defined as the unit vector

s = ( f 0(θ+) − f 0(θ−))‖ f 0(θ+) − f 0(θ−)‖−1. (6)

Thus, the output in this scenario equals sT x0(θ ) which leads
to optimal performance in this setup [45].

D. Pre-PL readout

We assume the pre-PL value of the readout weight vec-
tor apre to be optimized for this task when reading out the
pre-PL top-layer representations. Thus, we initialize the pre-
PL readout such that it minimizes the loss function between
the network readout and the optimal output (see below and
Supplemental Material (SM) [46] Sec. I). The rationale for
nonrandom initialization of the readout weights is to provide
the network with well-above-chance but generally suboptimal
performance (as shown below, it is suboptimal because the
top-layer representations may be suboptimal). In the context
of animal experiments, this mimics the situation where ani-
mals understand the task but have not yet acquired the expert
skills required for near optimal performance.

E. Learning

We model the process of PL as modifying weights to
minimize the discrimination error. Since the optimal output
for this task is given by sT x0(θ ), it is convenient to use a
mean-squared error objective function,

E (�) = 〈(aT xL(θ,W 1, ...,W L ) − sT x0(θ ))2〉θ=θtr±δθ,ε0 , (7)

where � = (W 1,W 2, ...,W L, a) denotes the vector of all
weights of the networks and angular brackets denote av-
eraging over the two stimuli and noise. This cost function
measures the deviation of the input-output function of the
system from the optimal one.
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Python scripts used for analysis can be found at Ref. [47].

III. A MEAN-FIELD THEORY OF PL OF THE
FINE-DISCRIMINATION TASK

In this section, we describe our mean-field approach to
studying sensory processing and PL in the deep, nonlinear net-
work by approximating it with an equivalent linear network.
We describe the approximation (Sec. III A) and the insights it
provides into why pre-PL cortical representations can be sub-
optimal (Sec. III B). We discuss the space of possible solutions
that this theory revealed in Sec. III C.

A. Equivalent linear networks

First, we note that, during the fine-discrimination task, sig-
nal and noise-induced fluctuations in the input to any neuron
are small (they both scale as N−1/2). This can be seen by
considering the scaling relations δθ ∼ O(N−1/2), σ 2 ∼ O(1),
and W l

i j ∼ O(N−1). In the large N limit, we can expand activi-
ties of cortical neurons around their average inputs by writing
(using � to denote the Hadamard product and f l to denote
f l (θtr ); this is similar to the approximation done in Ref. [48]
for recurrent networks)

xl (θ±) = �(W lxl−1(θ±)) (8)

≈ �(W l f l−1) + �′(W l f l−1) � [±δθW l dθ f l−1 + W lεl−1],

(9)

where

dθ f l = [ f l (θ+) − f l (θ−)]

2δθ
(10)

and εl = 1
2 [xl (θ+) + xl (θ−) − f l (θ+) − f l (θ−)] are the

signal-induced and noise-induced fluctuations in layer l ,
respectively. At large N , by the central limit theorem, the
components of noise are Gaussian (though correlated). For the
ReLU nonlinearity, the activation slope �′

i is 1 for an active
neuron and zero for an inact ive one. In the limit of large N ,
fluctuations in the input to each neuron are small compared to
the mean. Thus, inactive neurons remain quiescent for most
of the trials and do not contribute to the network output. For
a similar reason, activities of active neurons are [W l f l−1]i

i.e., they are linear functions of activities of neurons in the
previous layer. Thus, we can define effective weight matrices,
W l

eff, as (
W l

eff

)
i j = W l

i j, iff f l
i > 0 and f l−1

j > 0 (11)

and zero otherwise. Importantly, this approximation holds
only during fine-discrimination around a fixed θtr because of
the strong similarity between the different inputs. Inputs with
angles very different from θtr will be processed by different
sets of effective weights. Given the analysis above, during the
fine-discrimination task around θtr the input-output function
of the deep network is effectively linear,

r(θ ) = aT Px0(θ ), (12)

where

P = W L
effW

L−1
eff ...W 1

eff. (13)

We call P the processing matrix [Fig. 2(a), right]. We proceed
to consider how the properties of P affect task performance.

B. Prelearning suboptimal representations

Optimizing apre amounts to optimizing a linear readout
from an input Px0(θ ) which contains a signal and an additive
(correlated) noise. In such a system, the probability of error
under optimal readout is given by H (δθ

√
JL ), where H (x) =

(2π )−1/2
∫ ∞

x e−z2/2dz and JL is the linear Fisher information
[49]. It is defined as

JL = (dθ f L )T �−1
L dθ f L, (14)

where the matrix �L is the noise covariance matrix in the top
layer. Given the linear approximation, it is given by �L =
σ 2PPT and the top layer signal is dθ f L = Pdθ f 0. Even if P
is low rank (see below), the (pseudo)inverse (PPT )−1 is well
defined when multiplied by P. Hence,

JL = σ−2(dθ f 0)T PT (PPT )−1Pdθ f 0. (15)

Note that PT (PPT )−1P is a projection matrix. It is identity if
P is full rank. Otherwise, it projects inputs onto the low-rank
subspace spanned by its rows. Thus, Eq. (15) states that σ 2JL

is the squared norm of the projection of the signal vector
dθ f 0 ∝ s onto the subspace spanned by P. The network is
optimal if s resides in the span of P, yielding JL = J0 =
σ−2‖dθ f 0‖2.

We now ask whether the pre-PL weights are already op-
timal for the present task. We computed the singular value
decomposition of the pre-PL P and found that it has a low-
rank structure (SM Fig. S2). There are two sources of the
reduced rank of P depending on the system parameter regime:
a selective-input-unselective-weights regime characterized by
small σs and large σw [Fig. 2(b), blue] and an unselective-
input-selective-weights regime, characterized by large σs and
small σw [Fig. 2(b), red]. In the selective-input-unselective-
weights regime, the pre-PL network weights W l

pre are low rank
(even before rectification) due to the smoothness of circulant
weights, implying that they project to subsequent layers only
part of the signal in the input. In this regime, information
loss occurs regardless of the rectification of representation
neurons [Figs. 2(c) and 2(d), blue line]. On the other hand,
in the unselective-input-selective-weights (large σs, small σw)
regime, the original weight matrices project the full signal.
However, due to firing-rate rectification, a substantial fraction
of the neurons are inactive for essentially all training stimuli.
Thus, the effective weights are low rank. In this regime, the
low-rank structure of P disappears if we remove neuronal
rectification [Figs. 2(c) and 2(d), red line]. In both cases, the
signal contains a substantial component perpendicular to the
low-rank span of pre-PL P, as evidenced by computing JL/J0

[Fig. 2(b)]. Hence the pre-PL network exhibits suboptimal
performance.

C. Space of solutions

We derived the following necessary and sufficient con-
dition on post-learning effective weights that solve the PL
task by making the performance optimal (derivations in
SM [46] Sec. II; hereafter we use W l to denote W l

eff for
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(a)

(b) (c) (d) (e)

FIG. 2. Suboptimal neural representations before learning. (a) Schematics showing the relationship between weights (all arrows, left),
effective weights (red arrows, left and center), and the processing matrix (black arrows, right). (b) Information for the trained stimulus in
the last layer (JL) divided by the input information (J0), for different input and weight selectivity. The ratio is low for large σs, small σw(red
polygon) or small σs, large σw (blue polygon). Dots: Example parameters used in (c), (d). N = 1000 in all panels. L = 1 in this panel. See
Fig. S1 [46] for deeper networks. (c) Information for the trained stimulus in the last layer of networks of different depths, divided by the
input-layer information (J0). (d) Same as (c), but assuming that all neurons are in the linear regime. (e) Best last-layer information achievable if
plasticity is restricted to some weight matrices in a three-layer network. Dashed line: Performance if no weight matrix is modified. Modifying
any weight matrix improves the performance, but only modifying W 1 is sufficient and necessary for optimizing it.

brevity): For any values of W 2, ...,W L and a that satisfy ã ≡
(W 2)T ...(W L )T a 
= 0, the task can be performed optimally if
and only if W 1 satisfies

W 1 = ‖ã‖−2ãsT + W ⊥, (16)

where W T
⊥ã = 0. This result implies that the learning problem

can be solved for essentially arbitrary (nonzero) higher-layer
weights as long as W 1 is adjusted accordingly. Conversely,
restricting the plasticity to higher-layer weights while freezing
the first layer weights to their pre-PL values do not obey this
condition; thus this is insufficient for optimal performance,
as discussed earlier [Fig. 2(e)]. This result underscores the
critical role played by early sensory areas in PL.

IV. LEARNING WHILE MINIMIZING
NETWORK PERTURBATION

The large space of solutions makes it hard to predict the
pattern of changes in the circuit induced by learning. To
remove this degeneracy, we propose an optimality criterion,
MP, that favors a solution with small perturbations to pre-
PL weights. According to this criterion, the optimal weights

are

�� = �post − �pre, (17)

�opt = arg min
�post

‖��‖2 s.t. E (�post ) = 0, (18)

where post indicates post-PL weights and � refers to all
weights in the network. This principle is motivated by the
brain’s need to maintain relatively stable representations while
learning a new task. We analytically solved this optimization
problem with Lagrange multipliers by first setting up the
Lagrangian:

L =
L∑

l=1

‖�W l‖2 + ‖�a‖2

− λT
[
W 1

post
T
W 2

post
T
...W L

post
T

apost − s
]
. (19)

Extremizing the Lagrangian w.r.t. weight changes reveals a
general rank-1 structure for MP �W l

�W l = (
W l+1

post
T · · · W L

post
T

apost
)(

W l−1
post · · · W 1

postλ
)T

. (20)

Solving the above equations requires introducing 2L scalar or-
der parameters, which obey 2L self-consistent equations that
need to be solved numerically. Expressions of the order pa-
rameters and self-consistent equations for L = 1, 2, 3, as well
as the numerical procedure for solving the self-consistent
equations, are given in SM Sec. III.

We discuss features of the solutions below.
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(a) (b)

FIG. 3. Minimum-perturbation plasticity of perceptual learning.
(a) The magnitude of synaptic changes to each matrix and the
readout vector a, for networks initialized with different σw . Per-
cent change is defined as the Frobenius norm of synaptic changes
divided by that of the pre-PL weight matrix. In both panels, σs =
0.2, L = 3, N = 1000. (b) Restricting learning to W 1 leads to more
networkwide perturbation (measured by the sum of matrix norms
of �W 1, �W 2, �W 3) than unrestricted learning. In either case, the
readout a is also allowed to learn but does not change significantly
following PL.

A. Distribution of MP plasticity

We quantified the magnitude of MP modification to
weights in each layer by computing ‖�W l‖/‖W l

pre‖
[Fig. 3(a); see Fig. S6 [46] for the unselective-input-selective-
weights regime]. The analysis reveals two salient features
that are consistent across system parameters. First, MP plas-
ticity predominantly affects lower-layer weights. Second,
surprisingly, MP plasticity does not appreciably alter the
readout [Fig. 3(a), red line]. This suggests that hidden-layer
representation changes, rather than readout changes, drive
performance improvement. Plasticity in higher-layer weights
W l�2 plays the important role of reducing the overall pertur-
bation to the network. Indeed, if we restrict learning to W 1,
the total perturbation is greater [Fig. 3(b)].

B. Performance improvement is driven by signal amplification

An important and long-standing debate in PL research is
whether behavioral improvement is driven by signal amplifi-
cation, noise suppression, or both [3,5,6,9,50–53].

To address this question within the framework of MP
learning, we define the signal and noise contributions
via JL = (signal/noise)2, where the signal amplitude is
‖dθ f L‖ and the noise amplitude is defined via noise−2 =
(dθ f L )T �L−1dθ f L/‖dθ f L‖2. The network after MP learning
exhibits a pronounced amplification of signal [Fig. 4(a)], with
the effect being stronger in higher layers. Surprisingly, we
found that PL also ampli f ies noise across all layers, although
to a weaker extent than signal amplification [Fig. 4(b); further
details in SM Sec. VII; effects on noise correlation are shown
in Fig. S5]. Thus, MP learning improves perceptual perfor-
mance by strengthening the signal rather than weakening the
noise. This analysis also reveals that signal/noise changes
are generally greater in higher layers even though weight
changes are greater in lower layers, highlighting the difference

(a) (b)

FIG. 4. MP learning-induced changes to signal and noise. (a),
(b) PL-induced changes to signal (a) or noise (b) amplitude across
layers for different weight selectivity. Changes are generally greater
in higher layers and in networks with initial weights that are less
selective (larger σw). In both panels, σs = 0.4, N = 1000, L = 3.

between distribution of weight changes and distribution of
representation changes.

C. Impact on discrimination around untrained stimuli

MP plasticity breaks the symmetry of pre-PL represen-
tations with respect to θ , thus altering the representations
of untrained stimuli. To assess how these changes affect
the discrimination ability of angles around untrained val-
ues, we define a normalized information gain [JL,post(θ ) −
JL,pre(θ )]/[JL,post(θtr ) − JL,pre(θtr )] for an untrained stimulus
θ . Our analysis revealed a rich, nonmonotonic pattern of trans-
fer arising from MP plasticity. Consistent with experimental
findings, PL increases information for stimuli similar to the
trained one (proximal transfer, Fig. 5). In addition, PL also
transfers to distal stimuli, where the distance between trained
and test stimuli is intermediate (distal transfer). Importantly,
PL can also decrease information for certain untrained stimuli
(negative transfer), as revealed by the dips below 0 in Fig. 5.
Finally, as expected, representations for stimuli far away from
the trained one are unaffected by learning.

(a) (b)

FIG. 5. Transfer of PL to untrained stimuli. (a), (b) Information
changes in the last layer for different stimuli after PL, normalized
by change for the trained stimulus. The change for the trained stim-
ulus is 1 by definition. Information gain is prominent for stimuli
close to the trained one (proximal) and those dissimilar from the
trained one (distal). In all panels, N = 1000, L = 3, and the last
layer is analyzed. For the selective-input-unselective-weights regime
(a), σs = 0.4, σw = 1.0. For the unselective-input-selective-weights
regime (b), σs = 1.2, σw = 0.1.
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(a) (b)

(c) (d)

FIG. 6. MP learning with gradient descent. (a) Discrimination
error rate at convergence after regularized gradient descent with
different perturbation penalty strengths. Arrow: Maximum λ with
optimal performance. In all panels σs = 0.2, L = 3; σw = 0.8 except
in (b), (c). (b) Magnitude of changes from regularized gradient de-
scent (dots), compared against that of MP plasticity (line). (c) Same
as (b) but for slow GD without explicit regularization. (d) Leading
singular values of slow GD-induced changes to weight matrices
(normalized by the top singular value). That the first singular value
is overwhelmingly large suggests that induced changes are close to
rank 1.

V. MP LEARNING WITH GRADIENT DESCENT

So far, our analysis has focused on properties of MP plas-
ticity without addressing the important question of how such
plasticity is learned. We modeled the process of learning by
studying GD, which has been shown to reproduce physiolog-
ical features of PL in deep network models [22,54]. We used
GD to optimize � for a regularized loss function, defined as

Ereg(�) = E (�) + λ‖��‖2, (21)

where the second term imposes a penalty on weight per-
turbation; strength of the penalty is controlled by the
hyperparameter λ. We implemented GD by iterating �(t +
1) = �(t ) − η∇�(t )Ereg(�) until convergence, where η is the
learning rate. At convergence, larger λ results in smaller
weight perturbations but potentially suboptimal post-PL per-
formance. To realize MP learning, λ should be as large as
possible without making the final performance suboptimal
[Fig. 6(a)]. GD with such λ results in weight changes that are
fully consistent with MP plasticity (data not shown).

In the deep learning literature, it has been suggested that
small changes in learned parameters can also be realized
through implicit regularization by using small learning rates
[42,55]. We performed GD on the unregularized loss function,
E (�), with a small learning rate η. The resultant plasticity
agrees reasonably well with MP plasticity [Fig. 6(c)] in terms
of magnitude. It also has the same salient features as MP plas-
ticity: changes to the readout are negligible, weight changes
are very close to being rank-1 [Fig. 6(d)], and the identity of

active neurons does not change over learning (SM Sec. V), as
is the case for MP plasticity. These results point to the possi-
bility that the slow progression of PL could be normatively
explained as a mechanism to minimize perturbation during
PL.

VI. DISCUSSION

We have presented a theory of PL of fine discrimination in
a deep network. The theory leverages similarity of all inputs
relevant to the task, large network size, and structured weight
initialization to establish the effective linearity of the network
input-output function during training and performance of the
task. This input-output function is expressed by a process-
ing matrix P which has been shown to be low rank, hence
leading to a suboptimal representation of the stimulus that
cannot be resolved by adapting the readout weight only. We
further derived the space of postlearning weights that resolve
the suboptimality by fully spanning the task-relevant signal
direction. Motivated by the brain’s need to strike a balance
between plasticity (acquiring new skills) and stability (pre-
venting previously learned skills to be affected) in sensory
areas [56], we propose the normative MP principle that fa-
vors a specific solution. The favored solution, which we call
MP plasticity, induces physiological and behavioral changes
largely consistent with current experimental findings (for a
detailed comparison, see SM Sec. VIII). It also predicts that
PL improves the sensory code for some untrained stimuli
while degrading the representation of others, a readily testable
prediction. We discuss some prominent features of MP plas-
ticity and their implications for neural mechanisms of PL.

First, MP plasticity predominantly modifies the lowest-
level weights while leaving the readout essentially unchanged.
This points to the importance of involving low-level cortical
areas in PL of fine discrimination, consistent with recent nu-
merical experiments with deep convolutional networks [54].
That the readout is unchanged critically depends on our as-
sumption that the pre-PL readout is already optimized with
respect to prelearning representations, in contrast to most
neural network models of learning where the initial weights
are random. We argue that random initialization is not bio-
logically plausible when considering naturalistic tasks where
subjects perform well above chance with little to no training.
Note that while synaptic plasticity is greater in lower layers,
the resultant representational changes are greater in higher
layers.

Second, MP plasticity makes rank-1 modifications to
weights. While rank-1 weight changes are sufficient for op-
timizing neural representations for the trained task, such
changes can be highly task-specific. To demonstrate this, we
analyzed performance of the post-PL network on a width
discrimination task where two input-layer patterns with the
same θ but different σs are presented; PL does not improve
this performance, despite the fact that width discrimination
and angle discrimination involve the same mean input-layer
pattern (SM Sec. IV). Importantly, this absence of cross-task
transfer reconciles the apparent inconsistency of the observed
improved sensory representations by PL [3,7,8,10] and the
psychophysical findings that PL for one task did not transfer
to another task using the same stimuli [18–20], which was
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interpreted as evidence that population codes for these stimuli
did not improve [57]. Our results suggest that the improve-
ment of representations does not equally benefit all tasks even
if they share the same stimuli. Thus, cross-task transfer is not
a reliable indicator of whether representations improve after
PL.

Finally, from the perspective of signal and noise, MP plas-
ticity improves task performance by amplifying the signal.
This result is inconsistent with Ref. [23], who found that
amplification is not necessary for PL. Their conclusion may
be confined to the regime where performance is dominated
by neural noise, not input noise as in ours. Additionally, their
plasticity model differs from ours in that it assumes circularly
invariant weights both before and after learning, which forces
a global change of synaptic weights. In contrast, in our model,
PL plasticity is localized to the neurons responding to the
stimulus (if we require post-PL weights to be circularly invari-
ant in our model, post-PL tuning curves have very unnatural
multimodal shapes. See SM Sec. IX). Finally, we note that
our prediction of signal amplification stems from the fact that
the readout layer remains essentially unchanged under MP
learning. If the readout were adapted in ways that violate the
MP principle, signal amplification is not always necessary
(SM Sec. X).

Our current theory can be extended in several interesting
directions. First, our plasticity model does not include a mech-
anism of unsupervised learning, namely, plasticity triggered
by the mere exposure to the stimulus, independent of task.
Thus, including considerations for task-irrelevant plasticity,
observed in some PL studies [58,59], is an interesting topic
for future work. Second, the scenario where the input contains
stimulus-dependent noise correlation, which requires nonlin-
ear readouts for optimal performance [60], is worth further

analysis. We expect some qualitative findings from our work
to generalize. In particular, when the first layer weight matrix
W 1 is low-rank and not modified by learning, it can cause
irrecoverable loss of the linear component of the input Fisher
information [60], making the network performance subopti-
mal despite changes to higher layers. Nevertheless, changes
in the higher layers may also be necessary (depending on
hyperparameters such as the width of the first layer) to recover
the nonlinear components of the task. We also conjecture that
MP changes in the higher-layer weights will be more exten-
sive than what is necessary to solve the task to minimize the
overall perturbations in the weights. Finally, our formulation
of the MP principle implicitly assumes that neural representa-
tions are stable in the absence of learning. While this appears
to hold true for artificial stimuli commonly used in PL ex-
periments [61,62], representations of naturalistic stimuli are
known to drift over time in the absence of explicit training
[63–65]. It has been suggested that representational drift may
induce adaptive processes in downstream populations that
essentially compensate for the drift, keeping the underlying
computation intact [65]. If this is true, relative to a given state
of the readout population, MP learning may be an adequate
strategy.
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