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Foot function enabled by human walking dynamics
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Bipedal walking, the habitual gait for man, is rather unique in nature and poses particular challenges for
balance and propulsion. The characteristic double-humped ground reaction force profile has been widely
observed but not put into functional context. We propose a mathematical model that captures the dynamics
of the human foot in walking including the characteristic motion of the center of pressure. Using this model,
we analyze the functional interplay of all essential biomechanical contributors to foot dynamics in walking.
Our results demonstrate the intricate interplay of a self-stabilizing mechanism which allows extending a leg’s
stance phase while simultaneously powering rapid swing by condensing the essentials of foot dynamics into
a reductionist, biomechanical model. A theory is presented which identifies the foot to be the key functional
element and which explains the global dynamics of human walking. The provided insights will impact gait
therapy and rehabilitation, the development of assistive devices, such as leg prostheses and exoskeletons, and
provide guidelines for the design and control of versatile humanoid robots.
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I. INTRODUCTION

Humans are the only habitual bipedal distance walkers
among mammals [1] with markedly double-humped force pat-
terns [2]. Moving on two legs comes with specific challenges
concerning balance, support, and propulsion, which results in
peculiar dynamics aimed at reconciling two competing ob-
jectives: To enhance controllability by extended stance phase
duration [3,4] and, as a consequence of the resulting high duty
factor, to recirculate inert legs in the brief remainder of the gait
cycle (GC).

For humans, walking is more efficient than running, even
at optimal speeds [5]. The characteristic force pattern of run-
ning is governed by the natural frequency of the leg [6]. As
this frequency cannot be reduced arbitrarily, walking seems
to be achieved by increasing the natural frequency—the leg
stiffness is reported to increase for walking in comparison to
running [7]—while reducing the mechanical energy fluctua-
tions to keep the leg on the ground for two periods instead of
one. Accordingly, the force pattern each leg experiences over
the course of a stance phase is double-humped. This funda-
mental frequency modulation of the leg-axis mode, along with
the further extension of single support through the forward
motion of the center of pressure (CoP) by ankle plantarflexor
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loading, results in a long period of controllability while at
the same time providing the power for rapid and efficient leg
swing by means of a catapult mechanism. The importance of
ankle plantarflexors for extending stance phase duration has
long been experimentally observed [8].

The foot as a lever [1] plays a crucial role in allowing
the CoP to shift for keeping a dynamic equilibrium while
allowing the ankle plantarflexors to be loaded at the same
time. Foot biomechanics has been extensively studied [9,10]
by kinesiologists, orthopaedists, anthropologists, roboticists,
and others. A number of key functions have been proposed
which can be categorized into support and stability [9,11,12],
increasing stride length and energy conversion [13–15], re-
ducing the contact collision [16], and absorbing the impact by
forceful plantarflexion [17,18].

The evolutionary development of the foot into a suit-
able lever for bipedal gait [1] has been postulated while a
functional description tying this role to the observed global
dynamics of human walking is lacking. So far, the foot’s
function in walking could not be explained from its structural
complexity [19]. Moreover, the importance for Achilles ten-
don loading has not been acknowledged.

We present a mathematical model that explains foot dy-
namics in the sagittal plane with the foot in a crucial position
as a lever for active forces reflected by the ground. Our model
explains the benefit of the evolved, specifically human global
gait dynamics. The resulting insights, elevating the foot’s
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function from a contacting body to a key functional element
of human walking, substantially extend the understanding of
human gait dynamics and will help to improve gait rehabilita-
tion in patients as well as the design of better gait assistive
devices and bio-inspired humanoid robots, which produce
more efficient, versatile, and robust locomotion.

II. METHODS

Data collection and processing is described below. More
detailed information is also available in Ref. [20]. In a nut-
shell, the way we came to our conclusions is to reduce
mechanical complexity of the dynamics of the human foot
by postulating a time-invariant velocity pole, which is indica-
tive of a pure rotational motion (Fig. 3), and confirming it
based on experimental data (Sec. II B 2). This allowed us to
write down a single, scalar equation of motion [Eq. ((3)] for
the dynamic behavior of the foot in walking and analyze it
comprehensively using data acquired from human walking
trials. Formulating expressions for the core interplay of pri-
mary foot drivers, i.e., ankle force and ankle torque, and the
characteristic shift of the CoP (Sec. B 1) allowed us to identify
fundamental connections between global walking dynamics
and foot function, reflected in the relation between the two
foot drivers. We further determined key events in the gait cycle
of human walking (see Appendix C for a detailed description
of events) and identified their temporal and dynamic relations
to gain further functional insight.

A. Data collection

We used experimental data from Ref. [21], in which three-
dimensional (3D) lower limb kinematics and ground reaction
forces (GRF) were collected from 21 subjects (11 females, 10
males) walking at 75% of their preferred transition speed be-
tween walking and running (approximately 1.5 m s−1) on an
instrumented treadmill (type ADAL-WR, HEF Tecmachine,
Andrezieux Boutheon, France). The study was approved by
the University of Jena Ethics Committee (in accordance with
the Declaration of Helsinki) and written informed consent was
provided by all subjects prior to the experiments. Subjects
wore athletic footwear in which they felt comfortable and
were given ample time for warming up and getting familiar
with the treadmill. None of the participants reported any case
of locomotor deficit.

Motion analysis was performed using eight wall-mounted
high-speed infrared cameras (Qualisys, Gothenburg, Sweden)
recording at a sampling frequency of 240 Hz. For the present
study, we used camera recordings of the sagittal positions
of eight reflective markers placed over anatomical landmarks
of both of the subject’s lower limbs (Fig. 1), respectively.
The center of mass of the head-arms-trunk (HAT) segment
(CoMHAT) was derived from sex-, height-, and weight-specific
regression curves from Refs. [22] and [[23], p. 62ff]. Ground
reaction forces (GRFs) were recorded at a frequency of
1000 Hz and down-sampled to 240 Hz.

Kinematic and GRF data were recorded simultaneously,
synchronized by a trigger signal provided by the treadmill
computer. The remaining time delay (2.5 × 10−3 s) and time

Kne

Ank

Trc

Kne

Mt5
Ank

x

y
Thigh

Foot

Shank

HAT

Hip

CoMHAT

FIG. 1. Kinematic setup. Sagittal marker positions were recorded
at the hip (greater trochanter, Trc), the knee (lateral knee joint gap,
Kne), the toe (5th metatarsal joint, Mt5), and the ankle (lateral
malleolus, Ank). The center of mass (CoM) of the HAT segment
was derived from sex-, height-, and weight-specific regression curves
[22]. The foot segment was defined between Mt5 and Ank, the shank
segment between Ank and Kne, the thigh segment between Kne and
Trc, and the HAT segment between Trc and CoMHAT. Ankle angle
ϕAnk, knee angle ϕKne, and hip angle ϕHip, were defined as inner joint
angles between two adjacent segments.

drift (2.0 × 10−5 s s−1) between both systems were identified
and corrected after the measurements [24].

B. Data processing

Initially, an inverse dynamics procedure [[25], Sec. 2.1],
including digital filtering and marker processing [[26], Ap-
pendix], was performed. Leg joint torques and forces can
be calculated implementing inverse dynamics algorithms. In-
consistencies between inverse dynamics model assumptions
(e.g., rigid segments) and measured kinematics (e.g., fluc-
tuating segment lengths due to skin marker movement) can
be identified and corrected. In our analysis, raw skin marker
trajectories were processed such that constant segment lengths
throughout measured sequences were guaranteed (see Ref.
[[26], Appendix] for further details) before calculating inverse
dynamics. Essentially, we determined sagittal ankle, knee
and hip joint torques for each leg by a sequential algorithm
[25] based on the sagittal coordinates of four markers per
leg (Fig. 1). After having digitally filtered and processed the
marker positions, and calculated their first and second deriva-
tives, the equations of motion of a leg’s chain of segments
were solved at each sample, from distal to proximal and in-
dependently for each leg, for the (three) sagittal components
of the joint force (two) and torque (one), taking soft tissue
dynamics into account [25].

All data were then processed and analyzed using cus-
tom software (MATLAB R2007b-2021a, MathWorks, Inc.,
Natick, MA). Signals of detected gait cycles (starting at touch-
down of one leg and ending with the next touchdown of
the same leg) were linearly interpolated to 201 samples and
then averaged at each sample (implicit time-normalization)
for each subject to give individual means (left and right side
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FIG. 2. Evaluated and discarded steps per subject. Bars indicate the number of recorded steps per subject with the total number of recorded
steps listed above each bar. Colors indicate evaluated and discarded steps (see legend). The average residual (in Nm) of a function fit to the
foot acceleration signal (see Appendix B 4 for fitting details) is listed for each subject.

combined). At 75% preferred transition speed, 1160 steps
were collected. In total, we analyzed 1143 (see Sec. II B 1)
walking gait cycles (between 42 and 62 per subject, Fig. 2).
Definitions of sagittal plane kinematics are illustrated in
Fig. 1. The collected marker trajectories were used to define
foot, shank, thigh and HAT segments. Joint angles at the
ankle (ϕAnk) were measured between the corresponding two
adjacent segments and were defined to increase with joint
extension. Angular velocity ϕ̇, acceleration ϕ̈ and jerk ˙̇ϕ̇ were
derived using a central difference approximation: a moving
average with a centered window of size 9 including four
previous data points (causal) and four following data points
(noncausal) each time a derivative is calculated. All kinematic
and force plate data (force and CoP components) were low-
pass filtered using a zero-lag second-order Butterworth filter
with a cutoff frequency of 40 Hz [27].

1. Discarded steps

From the entirety of all experimentally collected step data,
few had to be discarded for one of three reasons (Fig. 2). On
the one hand, there were a number of steps for which markers
were lost during the experiment and thus key dynamic prop-
erties could not be calculated due to the marker kinematics
already missing before data processing. On the other hand,
few steps turned out to show large deviations in their dynam-
ics, determined by foot torque fit residuals (see Appendix B 4
for fitting details) exceeding two times the mean residual for
the respective subject, which were also not considered for this
study. Finally, for a number of steps the subject overstepped
the boundary between left and right force plates and thus
dynamics could not be properly separated in double support.

In summary, 1143 of the 1160 recorded steps were left to be
analyzed, which amounts to an average of (54 ± 5) steps per
subject.

2. Single point of rotation

The authors make the assumption that the foot, while
deforming during stance and rolling over its ball after the
heel left the ground, still executes a pure rotation about a
single point (a time-invariant velocity pole), which is to be
determined. This rotation is characterized by constant vector
lengths between this point of rotation and at least two land-
marks of the foot throughout a defined time interval. The two
chosen landmarks are ankle marker and the foot’s kinemati-
cally determined CoM. The deviation d (t ) from the assumed
constant vector length can be expressed as

dCoM, f (t ) = RCoM, f −
√

(xCoM, f − xc)2 + (yCoM, f − yc)2,

dAnk(t ) = RAnk −
√

(xAnk − xc)2 + (yAnk − yc)2, (1)

where RCoM, f and RAnk are the time-invariant Euclidian dis-
tances between the point of rotation and the foot’s center
of mass and the ankle, respectively, (xCoM, f , yCoM, f ) and
(xAnk, yAnk) are the time-variant positions of the respective
landmarks, and (xc, yc) are the coordinates of the time-
invariant point of rotation. As landmarks, the experimentally
measured position of the ankle joint marker as well as the
position of the foot’s center of mass are used, the latter be-
ing determined in post-processing from markers on the ankle
and metatarsal joints. An optimization problem has been for-
mulated to determine RAnk, RCoM, f , xc, and yc by means of
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Eq. (1) as

argmin
RAnk,RCoM f ,xc,yc

∑
t

|dAnk(t ) dCoM f (t ) | (2)

and solved using lsqnonlin in Matlab2020b (Mathworks, Nat-
ick, MA) for each experimental step individually. The time
interval of the optimization is set to start with the instant the
heel initiates movement to leave the ground, determined by
the last sample at which the vertical ankle velocity (calculated
by differentiation of the experimentally recorded vertical an-
kle marker position using Matlab’s gradient function) is below
a threshold of 1 × 10−3ms−1, and ends three samples before
the foot leaves the ground as experimentally determined by
the disappearance of the measured vertical GRF component.
A video explaining the general assumptions for our model
may be found in the Supplemental Material [28].

C. Evaluation

For the entire optimization period the deviation in percent
of the instantaneous vector length (| �RCoM, f | and | �RAnk|), calcu-
lated with respect to the determined constant point of rotation
(xc, yc), from the time-invariant Euclidean distances RAnk and
RCoM, f , which result from the optimization, indicating the
quality of our assumption (Fig. 4). In addition, given the
residual motion of the foot while planted flat on the ground,
we have also determined the percentage error for the extended
period, starting with single support.

The existence of a time-invariant velocity pole allows for
the introduction of mechanical assumptions, reducing the
equations of motion from three to a single degree of freedom,
scalar equation of motion [Eq. (3)]. The assumptions leading
to and a detailed derivation of the equation of motion Eq. (3)
are documented in Appendix B.

III. RESULTS

Our experimental analysis confirms that a single point of
rotation during stance phase can be determined with a margin
of error for constant lever arm length of less than 2% for the
fitted data and less than 4% over most of the stance phase
starting from the onset of single support (Fig. 4). Subjects
exhibit different levels of left/right asymmetry resulting in
two distinct CoR clusters for certain subjects. Subject #15
has been chosen as a representative subject to demonstrate
the dynamic observations and consequences as the subject
appears to be a good representation of the general dynamics.
For comparison, the respective dynamics of all subjects are
shown in Figs. 9 and 10. This finding yields the formulation
of a one-dimensional mechanical model (Fig. 3) that describes
the foot’s sagittal plane dynamics and facilitates revealing its
key function during stance in bipedal walking.

A. Dynamic observation

Two primary and independent mechanical drivers for the
foot dynamics can be identified: the ankle torque component
perpendicular to the sagittal plane (TAnk), resulting from ankle
plantarflexor loading, and the ankle force vector projected into
the sagittal plane ( �FAnk, with | �FAnk| denoted as FAnk) as a
consequence of proximal body dynamics (Fig. 5). We derived

Mt5Mt5-mama-mamarrrkkkerere
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TAnk< 0

�FAnk

R
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�FGRF
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−�FAnk

�RCoP

�RCoM
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FIG. 3. A schematic of the foot model with all dynamic actors.
The foot is assumed as a body defined by its center of mass CoM f , its
moment of inertia If and the location of the ankle joint. The marker
at the 5th metatarsal joint (Mt5, see also Fig. 1) is used as a reference
point on the foot (Fig. 4). The gravitational force (0, −mf g)T acts
on the center of mass, ankle force �FAnk and ankle torque TAnk act at
the ankle joint. The reflection of primary forces, i.e., the vector �FGRF

of the ground reaction force (GRF), acts on the foot at the position
�RCoP = (RCoP,x, 0)T of the moving center of pressure (CoP), which is
the projection (see Sec. B 1) of the experimentally determined center
of pressure (CoPexp) along the instantaneous �FGRF into the plane of
the center of rotation (CoR). The positions of ankle, CoM f and CoP
relative to the CoR are given by the respective vectors. The symbol R
indicates the lever for the resulting torque caused by the ankle force
and its reflection. Subject to the resulting dynamics, the foot executes
a pure tilt (ϕ̇, ϕ̈) around the fixed CoR (Fig. 4).

the equation of motion for the foot [Eq. (3)] and grouped
the drivers on the right-hand side into two key functional
terms—a protagonistic torque term (Tpro), which rotates the
foot toward takeoff, and an antagonistic torque term (TAnk),
which counters this tendency to keep the foot flat on the
ground for an extended period of time (Fig. 6).

The protagonistic torque results from the ankle torque—
governed by elastic tendon characteristics and isometric
muscle operation [29]—and from the ankle force, which is
reflected by the ground as a consequence of proximal body
dynamics being transferred through the foot (Fig. 3). Each
increase in ankle torque pushes the center of pressure (CoP)
anteriorly [Eq. (B28)] and thus reduces the lever (RCoP,x) of
the reflected ankle force, which keeps the collective protago-
nistic torque contribution bound.
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FIG. 4. CoR variability and lever length error. For each step, the position of the CoR (xc, yc, the origin of our model’s coordinate system),
determined by optimization (Appendix B 4), is indicated by a “+,” given in coordinates relative to the ground (vertical) and the respective
most anterior Mt5-marker (see Figs. 3 and 1) position while the foot is planted flat on the ground. CoRs for left and right steps are indicated
individually as some subjects exhibit a clear left/right asymmetry, resulting in CoR clustering. Gray circles indicate a distance in steps of
5 mm from the median CoR of a subject respectively (2 cm for the outermost ring). Histograms show the number of samples for which each
instantaneous lever arm | �RCoM, f | and | �RAnk| deviates a certain percentage from its optimized fixed lever arm length RCoM, f or RAnk, respectively.
Each gray box indicates an error margin of one percent. Blue bars include only samples of the fit interval, red samples include the entire
intervals beginning with the onset of single support and ending with the foot’s takeoff. The bar graph at the bottom left indicates the total
number of samples considered for either interval in each subject. The intervals are illustrated in the plot at the bottom right of the figure, with
the full circle symbolizing an entire gait cycle.

064405-5



RENJEWSKI, LIPFERT, AND GÜNTHER PHYSICAL REVIEW E 106, 064405 (2022)

0 25 50
0

2

4

6

8
102

0 25 50
-10

-8

-6

-4

-2

0

2
101

26 30 35 40 45 50 55 60
0.98

1

1.02

30 40 50
-10

-5

0

5

10

31 40 50
-10

-5

0

5

10
10-1(a) (b)

FIG. 5. Main actor dynamics during stance phase. The ankle force norm (| �FAnk| = FAnk), as determined by inverse dynamics, is shown in
panel (A). The experimentally determined force (FAnk,exp) for each step is shown in dark gray, its mean is shown in blue, and the corresponding
equilibrium force (FAnk,eq), calculated from Eq. (3) with the left-hand side set to zero is depicted as a dashed cyan line. The dashed black line
indicates the combined weight of all segments proximal to the foot on the ground (mp g). Gray shadings of the background indicate single
support (dark) and double support (light). Panel (A1) shows the difference of both signals. The vertical lines indicate important gait events,
namely averages of (i) the instance the ankle force exceeds mp g (orange), (ii) the instance the ankle power turns positive indicating the onset
of push-off and alleviation phase [26] (gray), (iii) the instance the ankle force reaches its second maximum (green), (iv) the instance the ankle
torque reaches its minimum (brown), (v) the instance the trajectory of the resulting torque transitions into its bell-shaped part [(Fig. 8 in
Appendix C), pink], and (vi) the onset of the launching phase defined by the jerk maximum of the ankle joint angle [26] (olive). The respective
color for each event remains the same in all following figures. Analogously, in panel (B) the experimental ankle torque (TAnk,exp) is indicated
in red, the equilibrium torque (TAnk,eq) in dashed cyan and panel (B1) shows the difference of their norms. Panel (C) shows the relation of
experimental and equilibrium force/torque in blue and red respectively over time, with 1 indicating equilibrium and values above 1 that the
measured property exceeds the equilibrium torque. It can be clearly seen that force and torque depart from the equilibrium quite synchronously
but in opposite directions indicating a loss of equilibrium in favor of the protagonist and forward rotation of the foot.

The antagonistic torque is a direct result of upper body dy-
namics, i.e., the weight and motion of all proximal segments,
generating the resulting ankle force.

Torques caused by the foot’s weight (m f g) play a minor
role (Tchg, see Fig. 6). Due to the position of the foot’s center
of mass (CoM; mass: m f ), the torque of the foot’s weight
changes from protagonistic to antagonistic as soon as the
forward traveling CoP at position RCoP,x passes below the
foot’s horizontal CoM position RCoM,x, i.e., Rg = RCoM,x −
RCoP,x = 0 occurs [Eq. (3), Fig. 6(C)].

B. Dynamic consequences

According to the proposed equation of motion (Ap-
pendix B) that models the foot’s rotational dynamics

ϕ̈ I f ,CoR = −FAnk RFAnk︸ ︷︷ ︸
antagonist

− Rg m f g︸ ︷︷ ︸
changing

+ TAnk − RCoP,x FAnk,y︸ ︷︷ ︸
protagonist

, (3)

with ϕ̈ I f ,CoR symbolizing the foot’s inertial torque, it be-
comes obvious that—as long as the ankle force ( �FAnk =
(FAnk,x, FAnk,y)T = FAnk [sin(αF ),− cos(αF )]T ) is sufficiently

large to counter the ankle torque TAnk currently acting in
the sagittal plane — the CoP will move to a position such
that an equilibrium (ϕ̈ = 0) arises, which keeps the foot sta-
tionary on the ground. With respect to the center of rotation
(CoR, Fig. 3), the foot functions as a variable lever ( �RCoP =
(RCoP,x, RCoP,y)T ) for the ankle force reflected at the CoP,
acting as a protagonist in concert with the ankle torque. The
charging ankle force—the sole persistent antagonist—on the
other hand, acts on a nearly constant lever arm (Fig. 3, RFAnk =
RAnk,x cos αF + RAnk,y sin αF ), which varies only minutely
with force direction (αF ). Both primary drivers, i.e., the ankle
torque and the ankle force, reach their maximum magnitude
close to the end of single support (Fig. 5), with the ankle
torque (TAnk) peak marginally but consistently (within the
uncertainty of one sample) succeeding the ankle force (FAnk)
peak (Fig. 8, fourth column, third row).

The resulting torque [Fig. 6(C)], i.e., the sum of an-
tagonistic and protagonistic torque contributions, exhibits a
consistent temporal characteristic expressed by a phase of
near equilibrium followed by a bell-shaped peak which drives
the rotation of the foot into takeoff. This characteristic can
be modeled by the superposition of a linear and Gaussian
function dependent on time (Appendix B 4). The onset of the
bell-shaped curve follows the nearly concurrent extrema of
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ankle force reaches its second maximum (green), (iv) the instance the ankle torque reaches its minimum (brown), (v) the instance the trajectory
of the resulting torque transitions into its bell-shaped part [(see Fig. 8 in Appendix C) pink], and (vi) the onset of the launching phase defined by
the jerk maximum of the ankle joint angle [26] (olive). Panel (B) shows a comparison of the protagonistic torque with the inverted antagonistic
torque. Panel (C) shows the trajectory of the changing gravitational torque again, as well as the sum of torques (Tpro + Tant) without the
changing contribution. All three measured torque components (σexp), the linear part of the fit [Eq. (B29)], as well as the combined fit of linear
and Gaussian parts [σfit, Eq. (B29)] are depicted (see Appendix B 4 for fitting details).

the primary drivers [tmax(FAnk), tmin(TAnk); Figs. 6(C) and 8,
columns 3–5]. Thus, the magnitude of the second hump
in the ankle force trajectory determines the maximum an-
kle torque and hence the amount of elastic energy stored,
while the timing of the peak in ankle force marks the release
of the swing leg catapult.

C. CoP travel

Equation (3) can be solved for RCoP,x (see Appendix B 3)
to analyze the CoP’s shift in position. The CoP consistently
moves forward as a result of the increasing ankle torque but is
kept on a dynamic equilibrium (ϕ̈ I f ,CoR = 0) trajectory by the
self-stabilizing ankle force lever as long as the counteracting
force is sufficiently large (Fig. 7). As the force approaches
saturation in late single support (Fig. 5), the CoP deviates from
its equilibrium trajectory (Figs. 7 and 8). At the determined
instance of loss of dynamic equilibrium [tε , (Appendix C)]
the CoP deviation from its equilibrium position at this point in
time amounts to (0.47 ± 0.33) mm. According to Eq. (B28),
the CoP trajectory is determined by three main factors: The
ankle torque, the magnitude of the ankle force, and the ankle
force’s direction.

D. Timing

The observed succession of events (Appendix C) during a
gait cycle reveals the functional cascade leading to the loading
and unloading of the ankle joint in human gait. Figure 6(A)

shows the almost exactly mirrored trajectories of antagonistic
and protagonistic actors as well as the very small contribution
of the changing gravitational torque. During the first half
of stance all three torques nearly cancel each other out and
the foot remains firmly planted on the ground [Fig. 6(B)].
Approximately at midstance, when the ankle force approaches
the minimum between both humps [Fig. 5(A)], the resulting
torque slowly turns protagonistic [Fig. 6(C)]. During the final
third of single support, the ankle force exceeds the combined
weight of all proximal bodies [mp g, Fig. 5(A)] and rises
further toward its second peak which is reached briefly before
the end of single support. In nearly instantaneous succession
the ankle torque peaks as well. The period between both
main drivers peaking is very brief with the ankle torque peak
trailing the force peak in most cases (see Fig. 8, column 4, row
3). The resulting torque rapidly grows [Fig. 6(C)], causing an
accelerated rotation of the foot through double support into
swing.

IV. DISCUSSION

In human walking, a foot and the ground form a self-
regulating mechanism during most of single support phase,
which keeps the foot near static equilibrium. For a given
magnitude of the ankle force, there is an upper limit to the
magnitude of the ankle torque for which this equilibrium can
be maintained. The corresponding CoP position results from
the proportion of ankle force, in tandem with its reflection
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FIG. 7. Comparison of calculated and measured CoP progression. Gray lines indicate the CoP for each step, calculated for a dynamic foot
equilibrium [ϕ̈ If ,CoR = 0, Eqs. (B27) and (B28)] and compared to measured data. Gray shadings of the background indicate single support
(dark) and double support (light). Vertical colored lines indicate the timing of events as explained in the caption of Fig. 5 (see Appendix C
for detailed description of events). In the instant when the equilibrium is lost (tε), the measured CoP deviates on average by (0.47 ± 0.33) mm
from its equilibrium.

by the ground, and the ankle torque: An increasing torque
moves the CoP anteriorly, whereas an increasing force gener-
ates the opposite. The observed monotonous forward motion
of the CoP results from the ever increasing ankle torque. In the
second half of single support, the foot ultimately creeps away
from its dynamic equilibrium as a result of the weakening
force rate succumbing to the ankle torque’s sustained increase.

Importantly, because the ankle force is boosted by the
proximal body dynamics, as seen in the force’s second hump
substantially exceeding proximal body weight (mp g), the pe-
riod of dynamic quasi-equilibrium is extended and the amount
of elastic energy stored in the ankle plantarflexors increased.
The stored energy compensates for the swing duration being
diminished by the extended single support phase, through a
powerful launch of the trailing leg into the subsequent swing
during terminal stance.

Reductionist models of bipedal gait aim at explaining rel-
evant fundamentals while omitting arguably less important
details. We ponder established models from the viewpoint
of characteristic frequency while also taking a look at the
models’ predicted walking dynamics.

The inverted pendulum model [30,31] is based on the ob-
served arching trajectory of the whole body’s CoM during
midstance while in single support, but cannot reproduce the
observed comprehensive walking pattern (phasing, dynamics)
as, due to its single degree of freedom, it only exhibits a single
gait frequency for a given speed and step length, i.e., the gait
cycle itself with a single humped force trajectory for every
stance phase.

In contrast, the spring-mass model [32] exhibits a wide
range of possible characteristic frequencies tunable mainly
by leg stiffness [6]. This range of frequencies allows a leg

to maintain ground contact for consecutive periods producing
the typical double-humped force profile observed in human
walking. However, the analytical description of this double
hump [2] suggests lower characteristic frequencies than the
measured leg stiffness allows. Furthermore, the model pre-
dicts the force maxima to appear during double support phase,
which indicates an additional dynamic mismatch. Thus, to
synthesize humanlike gait, the extended contact time has to
result fundamentally from two periods on the ground at a
higher frequency which is determined by the superposition
of gravitational acceleration, leg spring characteristics (stiff-
ness and body mass), the system’s state at touchdown [6,33],
and finally the shift of the center of pressure which allows
an extended near-equilibrium period due to the magnitude
of the second force hump and cannot be reproduced by a
single point of contact. High leg stiffness is in fact observed
experimentally (Ref. [21], p.19, and Ref. [7], Table 2), but
the lack of a foot illustrates a limitation of the originally
proposed spring-mass model [6,32] for which even the longest
stance duration predicted by the physiologically parameter-
ized model is still substantially shorter than experimentally
observed [[7], Fig. 5]. Interestingly, this frequency discrep-
ancy in the model can be mitigated by adding a rolling foot
[34], which increases the model’s cycle time from 72% (with-
out a foot) [7] to 102% [34] of experimentally observed cycle
times [21]. In addition, the relation of gait frequency and
speed in humans [[21], p. 56], namely a decrease in frequency
at higher speeds, is inverse to the reported relation for the
spring-mass model [[32], Fig. 4].

Apparently, another degree of freedom, namely the ankle
joint, seems to be a key element to increase the stance du-
ration, specifically by elongated single support [34]. Adding
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FIG. 8. Timing of important gait events. All histograms indicate the number of steps for which an event occurs at a specific sample, the
x axis indicating time in % GC. Distribution of absolute event timing for all analyzed steps is shown on the diagonal. The events analyzed
are (i) ankle force norm exceeds proximal body weight (tF>mpg), (ii) push-off onset (tpush-off), (iii) maximum of ankle force (tmax(FAnk )), (iv)
minimum of ankle torque (tmin(TAnk )), (v) loss of equilibrium (tε), and (vi) onset of launching phase [26] (tlaunch). Gray shading indicates single
(dark) and double (light) support phases. The touchdown of the contralateral leg (tTDc, i.e., the right edge of the dark gray area occurs at
(50.45 ± 0.16) % GC. The determination of all events is explained in detail in Appendix C. The mean event time (in % GC) and standard
deviation are reported in numbers and indicated with a vertical line and horizontal error bar. The distribution of relative event timing is shown
in the upper half for all analyzed steps. Each column shows the timing relative to all other key events as indicated in the subfigures’ titles.
Zero (marked with a blue vertical bar) indicates the number of steps for which the two events occur simultaneously; negative numbers indicate
that the event of the respective row precedes the event of the respective column. The bottom row shows example trajectories of the respective
characteristic quantities from which each event has been determined, with the mean event time indicated by a vertical dashed line and error
bar.

this degree of freedom to the model without also imposing the
appropriate dynamics by parameter adjustment cannot elim-
inate the temporal mismatch [[34], Fig. 5]. Fundamentally,
to modulate the basic gait frequency for extending stance
duration, given a limited range of possible leg stiffness, the

axial and rotational dynamics of the segmented leg must act in
concert. The interaction of the planted foot and the constrain-
ing ground provides the coupling mechanism for axial leg and
rotational ankle dynamics, which makes it possible in effect to
separate the characteristic axial and rotational frequencies and
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therefore to mechanically decouple both degrees of freedom
in the time domain. In other words, this mechanism allows the
characteristic frequencies to be tuned by muscular actuation.

Our mathematical model [Eq. (3)] sheds light on this in-
tricate dynamic interplay of leg force and ankle torque acting
on the human foot. The combination of boosted leg force in
the second hump and forward moving CoP due to increasing
ankle torque, ultimately resulting in high-power launching of
the swing leg, realises the required temporal parameters for an
efficient, effortless, and sustainable bipedal gait.

Powering the leg swing from the ankle leads to a huge
gain in efficiency. In fact, with respect to the hip being the
leg’s pivot point during the swing phase, the large mechan-
ical advantage of the foot yields a clear efficiency benefit
in contrast to hip flexors having a weak leverage as swing
drivers [35–37]. Tuning leg stiffness through muscle action
and exploiting the natural passive dynamics, in addition to be-
ing efficient, also substantially reduces control effort [38,39].
Moreover, rapid swing comes with additional advantages for
swing leg controllability and passive gait stabilization in
the terminal swing phase, e.g., through swing leg retraction
[40,41]. This combination of low energy expenditure and low
control effort makes walking an ideal endurance gait, which
gave early humans an advantage in persistence hunting [5,42].

ACKNOWLEDGMENTS

This work was supported by the German Research Founda-
tion (DFG) under Grants No. 449427815 and No. 234087184.
S.L. conducted all experiments; S.L., M.G., and D.R. ana-
lyzed the biomechanics data; D.R. and M.G. developed the
analytical model and prepared the manuscript. All authors
revised and approved the final manuscript. All authors declare
to have no competing interests. The data supporting the main
conclusions of the manuscript are included in the manuscript
and appendices. The authors thank Dr. Stephen Starck of the
TUM Interactive Editing Service for his language coaching.

APPENDIX A: SUPPLEMENTAL DATA

The mechanism proposed in this paper has been illustrated
based on data of a single subject. The same data are shown
here for all subjects individually. While we see variability
in force and torque magnitudes as expected due to varying
weight and style of walking, the key parameters such as event
timing (Fig. 8), main actor dynamics (Fig. 9), and torque
contributions and resulting dynamics (Fig. 10) remain con-
sistent among subjects. Most importantly, the fit described in
Appendix B 4 captures the resulting dynamics that all subjects
exhibit in walking. The high variability of push-off timing
is visible by the respective vertical lines indicating push-off
during mid-stance in some subjects (on average, very early in,
e.g., subjects 13 and 16).

APPENDIX B: EQUATION OF MOTION

1. CoP transformation in the sagittal plane

To transform the CoP from the experimentally mandated
surface of the force plates into a parallel plane through the

optimized rotation point, the intersection between the vector

�F = �RCoP,exp + u �FGRF

and the plane

�P =
⎛
⎝xc

yc

0

⎞
⎠ + v

⎛
⎝1

0
0

⎞
⎠ + w

⎛
⎝0

0
1

⎞
⎠

is calculated: �F = �P is solved for the three parameters u, v,
and w. During stance, the transformed CoP position equals
the intersection point of vector �F and plane �P, which varies
from sample to sample, in terms of the three parameter values
(u, v, and w), with the direction of �FGRF and the position of
�RCoP,exp in �F (Fig. 3, Ref. [20]).

2. Derivation of the single-degree-of-freedom equation of motion

We examine the mechanics of a body with mass m f (center
of mass: CoM) positioned at �RCoM and inertia tensor I f (for
rotations around the CoM). The body is driven by a torque
�T , and it is exposed to gravity, with the vector of acceleration
�g, plus two further forces. Generally, the torque �T may be
any sum of torques applied to the body in addition to the
torques resulting from �FAnk and �FGRF applied through their
respective lever arms. As we, here, formulate the equations of
motion of only one mechanical body that is, at this stage, not
subject to any geometrical constraint, all forces and torques
applied to the (free) body are of external character. In the
specific biomechanical case that we treat in this study, namely,
the dynamics of the human foot contacting the ground, the
additional external torque �T is exactly the torque transmitted
through actuators passing the ankle joint (“Ank”); therefore,
we replace right away from hereon the symbol �T with �TAnk.
It should be, yet, always kept in mind, when regarding po-
tential applications of the equations of motion to mechanical
situations other then the human foot, that the symbol �TAnk gen-
erally represents the sum of all torques acting on the body in
addition to those induced by explicitly modeled force vectors
through their respective lever arms.

On the one hand, the net vector �FGRF of the ground reaction
force (GRF) acts at the net position �RCoP of the center of
pressure (CoP). Describing a force interaction between bodies
by a CoP implies that the interaction surface is a plane. Also
bear in mind that some �FGRF contributions can be of constraint
force character. This is actually the case in the model consid-
erations further below, in which a geometric constraint will be
introduced: A center of body rotation (CoR) fixed in space. To
guarantee consistency of our mechanical body model, while
as well including the latter constraint by assuming distributed
contact forces ( �FGRF) that act at a net CoP, any such CoP po-
sition, whether measured or modeled, must be (re)calculated
with respect to a plane that contains the fixed CoR. A CoP po-
sition is often determined with respect to the surface of a force
platform: say, �RCoP,exp. Thus, if the CoR is not located exactly
in the plane of this surface, then the measured �RCoP,exp must be
transformed to a plane through the CoR. The transformation
condition is that the torque applied by �FGRF to the body—i.e.,
the time rate of change of its moment of momentum around
its CoM—is the same, whatever newly chosen (shifted and
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FIG. 9. Main actor dynamics during stance phase for all subjects. Details as shown in Fig. 5 for all 21 subjects. While shapes and
magnitudes differ for all subjects, the general dynamics are consistent throughout.

rotated) contact plane: The CoP position �RCoP with respect
to the newly chosen plane is located where �FGRF applied at
�RCoP,exp intersects the new plane.

On the other hand, the body (foot) is connected to another
body (shank) via the joint “Ank” at the position �RAnk in space
where the (net, resultant, or intersegmental, respectively) joint
force �FAnk acts on the body. The driving torque �TAnk usually

represents a joint torque that is applied on the body via
structures surrounding “Ank.” However, �TAnk may be even
considered an overall torque acting on the body, which con-
sists of the sum of all internally (joint) plus other externally
applied torques.

The body’s equations of linear motion are

m f �̈RCoM = �FGRF + �FAnk + m f �g, (B1)
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FIG. 10. Three torque contributions according to Eq. (3) for all subjects. Details as shown in Fig. 6 for all 21 subjects. While shapes and
magnitudes differ for all subjects, the general dynamics as shown in panels C are consistent throughout.

with �̈RCoM symbolizing the vector of the body’s linear accel-
eration in space. As both �FGRF and �FAnk also cause torques on
the body, with their respective lever arms being

�rCoP = �RCoP − �RCoM (B2)

and

�rAnk = �RAnk − �RCoM, (B3)

respectively, the body’s equations of angular motion write

I f �̈ϕ = �TAnk + �rCoP × �FGRF + �rAnk × �FAnk, (B4)

with �̈ϕ symbolizing the first time derivative of the vector
of the body’s angular velocity �̇ϕ in space, i.e., its angular
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acceleration. If we solve the equations of linear motion
Eq. (B1) for �FGRF—note that �FGRF may even contain contribu-
tions of a constraint force (see further below)—and insert this
in the equations of angular motion Eq. (B4), the latter write

I f �̈ϕ = �TAnk + (�rAnk − �rCoP) × �FAnk

+ m f �rCoP × ( �̈RCoM − �g). (B5)

The vector

�RCoM = RCoM �er (B6)

from the origin to the CoM position (its absolute value is the
distance RCoM =: | �RCoM| � 0) can always be written in terms
of projections onto the (orthogonal) unit vectors

�er = �RCoM

RCoM
,

note: �̇er = ϕ̇ �eϕ , (B7)

�eω (given or assumed: current axis of rotation),

note: �ω = �̇ϕ = ϕ̇ �eω , and (B8)

�eϕ = �eω × �er (constructed),

note: �̇eϕ = −ϕ̇ �er, (B9)

of a polar coordinate system for which the location of its
origin can be chosen arbitrarily. This coordinate system is
right-handed because the triad of its orthonormal vectors �er

[Eq. (B7)], �eϕ [Eq. (B9)], and �eω [Eq. (B8)] is built in the order
according to Eq. (B9), which is equivalent to constructing
by �eω = �er × �eϕ or �er = �eϕ × �eω, respectively. The symbol
ϕ̇ in Eq. (B8) is the rate of change (first time derivative) of
the scalar (angle) parameter ϕ around the current axis �eω of
rotation. This axis points in direction �eω and goes through the
origin, with �ω = �̇ϕ, thus, symbolizing the vector of the current
angular velocity.

By calculating the time derivative of the product in
Eq. (B6) and substituting �̇er according to Eq. (B8), we find
the CoM velocity

�̇RCoM = RCoM ϕ̇ �eϕ + ṘCoM �er . (B10)

The time derivative of Eq. (B10), with multiply using
Eqs. (B8) and (B10), then yields the CoM acceleraxtion

�̈RCoM = (RCoM ϕ̈ + 2 ṘCoM ϕ̇) �eϕ

+ (R̈CoM − RCoM ϕ̇2) �er . (B11)

If it is now assumed that the body rotates around a point
(the CoR) fixed in space on the axis of rotation (�eω), with the
CoR in addition being chosen for (mathematical) convenience
to be the origin of the polar coordinate system, while the
distance RCoM from the origin to CoM is constrained by

RCoM = const. (B12)

to a fixed value (i.e., ṘCoM = R̈CoM = 0), then Eq. (B11) sim-
plifies, with both the first and the fourth term on its right-hand
side vanishing due to this constraint on the body’s motion, to

�̈RCoM = RCoM (ϕ̈ �eϕ − ϕ̇2 �er ). (B13)

That is, the linear acceleration �̈RCoM of the CoM is now solely
expressed in terms of the angular degrees of freedom that
remain due to the constraint expressed in Eq. (B12). Note
that introducing this constraint implies �FGRF to contain the
corresponding constraint force contributions.

Next, we see that the time derivative of the angular velocity
�ω = �̇ϕ [Eq. (B8)] is simply

�̈ϕ = ϕ̈ �eω. (B14)

Then, substituting Eq. (B14) and the constrained CoM accel-

eration �̈RCoM according to Eq. (B13) in Eq. (B5) allows us to
reformulate xthe latter as

ϕ̈ (I f �eω − m f RCoM �rCoP × �eϕ )

= �TAnk + (�rAnk − �rCoP) × �FAnk

− m f �rCoP × (ϕ̇2 RCoM �er + �g), (B15)

with additionally keeping in mind that we can always write
[see Eq. (B9)]

�rCoP × �eϕ = �rCoP × (�eω × �er ) = (�rCoP �er ) �eω − (�rCoP �eω ) �er .

(B16)

If we now restrict ourselves to only considering angular
rotations within the x-y plane, i.e., �eω = �ez, all force and
position vectors introduced so far point perpendicular to �eω,
and Eq. (B16) simplifies to

�rCoP × �eϕ = (�rCoP �er ) �ez. (B17)

Next, substituting Eqs. (B2) and (B3), which together imply
�rAnk − �rCoP = �RAnk − �RCoP, as well as Eq. (B17) and (B7)
into Eq. (B15), plus knowing �RCoM × �RCoM = 0, the body’s
equations of motion Eq. (B15) write

ϕ̈(I f + m f ( �RCoM − �RCoP) �RCoM) �ez

= �TAnk + ( �RAnk − �RCoP) × �FAnk

+ m f ( �RCoM − �RCoP) × (ϕ̇2 �RCoM + �g)

= �TAnk + ( �RAnk − �RCoP) × �FAnk

+ m f ( �RCoM − �RCoP) × �g
+ m f ϕ̇2 �RCoM × �RCoP. (B18)

If we further assumed the constraint force acting in the
CoR fixed at the origin to be the only contribution to �FGRF,
with �RCoP = 0 implying �rCoP = − �RCoM [Eq. (B2)], then the
specific form Eq. (B18) of the body’s equations of motion
Eq. (B15) would contract to

ϕ̈(I f + m f �RCoM �RCoM) �ez

= �TAnk + �RAnk × �FAnk + m f �RCoM × �g. (B19)

Sticking, however, to the consideration of distributed contact
forces that are transmitted at a plane, which is properly de-
scribed by a CoP, we can still further simplify Eq. (B18),
while not losing a lot of substance. Namely, if it is eventually
assumed that �FAnk acts within the sagittal (x-y) plane, just like
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the gravitational acceleration �g for which we assume

�g =
⎛
⎝ 0

−g
0

⎞
⎠ (B20)

here, and the torque �TAnk points perpendicular to the sagit-
tal plane (solely a z component), we end up with just one
equation of motion: only the z component of Eq. (B18)
[or Eq. (B19), respectively] remains, which lets us write
Eq. (B18) the following way:

ϕ̈(I f ,z + m f ( �RCoM − �RCoP) �RCoM)

:= ϕ̈ I f ,CoR

= TAnk,z + [( �RAnk − �RCoP) × �FAnk]z

− m f x g (RCoM,x − RCoP,x )

+ m f ϕ̇2 [ �RCoM × �RCoP]z, (B21)

with I f ,z = [I f �ez]z symbolizing the moment of inertia of the
body (foot) for rotation in the x-y-plane around its CoM. In a
human foot’s contact phase during walking, it turns out that
the contribution caused by the centrifugal force, the last term
on the right-hand side of Eq. (B21), is perfectly negligible. For
our planar model, force components in the z-axis direction do
not contribute to the torque in the sagittal plane and are thus
set to zero. This lets us write Eq. (B21) as

ϕ̈I f ,CoR = TAnk,z +
⎡
⎣

⎛
⎝RAnk,x

RAnk,y

0

⎞
⎠ ×

⎛
⎝FAnk,x

FAnk,y

0

⎞
⎠

⎤
⎦

z

−m f g (RCoM,x − RCoP,x )

−
⎡
⎣

⎛
⎝RCoP,x

0
0

⎞
⎠ ×

⎛
⎝FAnk,x

FAnk,y

0

⎞
⎠

⎤
⎦

z.

(B22)

This compactifies further by expressing Eq. (B22) explicitly
in terms of vector components in the sagittal plane, i.e.,

ϕ̈I f ,CoR = TAnk + RAnk,x FAnk,y − RCoM,x m f g

−RAnk,y FAnk,x − RCoP,x (FAnk,y − m f g)

= −FAnk RFAnk︸ ︷︷ ︸
antagonist

− Rg m f g︸ ︷︷ ︸
changing

+ TAnk − RCoP,x FAnk,y︸ ︷︷ ︸
protagonist

,

(B23)

abbreviating TAnk,z with TAnk as well as the norm of the pro-
jected force | �FAnk| with FAnk and defining

Rg = RCoM,x − RCoP,x, (B24)

RFAnk = RAnk,x cos αF + RAnk,y sin αF , (B25)

R = (RAnk,x − RCoP,x ) cos αF + RAnk,y sin αF

= RFAnk − RCoP,x cos αF . (B26)

For brevity we introduce the symbol σ for the left-hand side
of Eq. (B23):

σ = ϕ̈ I f ,CoR, (B27)

and σ = 0 indicates equilibrium.

3. Center of pressure (CoP)

Equation (B23) can be solved for RCoP,x as

RCoP,x = RAnk,x FAnk,y − RAnk,y FAnk,x

FAnk,y − m f g

+−RCoM,x m f g + TAnk − ϕ̈ I f ,CoR

FAnk,y − m f g

= RFAnk | �FAnk| + RCoM,x m f g − TAnk + σ

| �FAnk| cos αF + m f g
. (B28)

This equation explicitly describes the influence of each indi-
vidual dynamical actor on the positioning of the CoP traveling
in the ground plane. The influence of �FAnk can be divided
into two effects. The vertical component is moving the CoP
posteriorly as it increases the �FAnk magnitude. The horizontal
component, while having a substantially smaller impact as
it changes direction during stance phase initially pushes the
CoP slightly anteriorly while contributing to a posteriorly shift
during the second half of stance.

The ankle torque shifts the CoP anteriorly but all shifts are
always in relation to the primary antagonistic actor FAnk,y −
m f g. Setting the inertial torque ϕ̈ I f ,CoR [Eqs. (B23), (B27)]
to zero determines the position of a CoP position to keep
equilibrium for any given load situation. The comparison of
this equilibrium position with the experimental CoP trajectory
reveals at what instant the foot leaves its equilibrium (Fig. 7).

The CoP keeps an equilibrium configuration while travel-
ing until fairly late in stance. Due to the tumbling ankle force
(Fig. 5, bottom, and Fig. 9 for all subjects), which cannot keep
the CoP in equilibrium, and the still building ankle torque (see
chronological order, especially tmin(TAnk ) − tmax(FAnk ) in Fig. 8),
which pushes the theoretical equilibrium CoP more anteriorly,
the actual experimental CoP cannot follow suit, falls behind
its equilibrium position, and, as a result, the inertial torque
(σ ) accelerates the heel upwards and dynamically rotates the
foot in forward direction.

4. Fitting σ

For data analysis we have fitted the experimental foot
torque data with a composite function: the equilibrium phase
starting with the onset of negative ankle torque can be well
described by a linear function (creep) while the explosive foot
rotation (push-off) shows a consistent exponential character-
istic [Fig. 6(C)], well described by a Gaussian function,

σfit(t ) = a1 t + a2︸ ︷︷ ︸
linear

+ a3 exp

[
− (t − a4)2

a2
5

]
︸ ︷︷ ︸

Gaussian

, (B29)

with a1-5 denoting the parameters of the fitted function and
t being the time in % gait cycle (GC). Thus, the function for
which the optimizer minimizes the sum of squares (

∑
i f (ti )2)

to determine the fit parameters is

f (t ) = σfit(t ) − σexp(t ), (B30)

with σexp symbolizing the measured inertial foot torque, de-
termined by evaluating the right-hand side of Eq. (B23). The
optimization problem min[

∑
i f (ti)2] has been implemented
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in MATLAB2020b using lsqnonlin. The resulting parameters
a3, a4, and a5 characterise the height, peak time, and bell
width, respectively. The step-specific average residual

ε =
√√√√ 1

N

N∑
i=1

f (ti )2 (B31)

quantifies the quality of the resulting fit. For each step, this
allows us to determine the onset of the exponential growth in
torque as the instance in time when the Gaussian function part
exceeds the residual

a3 exp

[
− (tε − a4)2

a2
5

]
− ε = 0. (B32)

tε is reported as the onset of foot rotation at the very end of
the single support phase.

APPENDIX C: EVENT TIMING

Events of importance during the gait cycle have been iden-
tified and calculated from experimental data to determine
their succession. This has been done for each analyzed step
separately. Below, the calculation of each event is described.

1. Touchdown tTD

The events of the ipsi- and contralateral legs’ vertical
GRF components exceeding 20 N determine the touchdown
instants tTD (begin of stance) and tTDc (begin final double
support), respectively.

2. Takeoff tTO

The events of the contra- and ipsilateral legs’ vertical GRF
components falling below 20 N determine the end of initial
double support (tTOc) and of stance (tTO), respectively.

3. Push-off onset tpush-off

Push-off describes the phase of positive power output at
the ankle joint [43]. The onset of push-off is defined as the in-
stance in time the ankle power turns from negative to positive
before exhibiting a positive power peak in late stance.

The commonly accepted kinematics in biomechanics text-
books, e.g., Ref. [44], describes ankle dorsiflexion throughout
mid-stance and plantarflexion in terminal stance. The change
in movement direction results in a coincidental sign change in
ankle power at which instant a maximum amount of energy is
stored in the Achilles tendon. This process ideally exhibits a
smooth power curve with a single zero-crossing in late stance.

In our data, however, we observed stepping patterns with
very early plantarflexion as an occasional occurrence in some
subjects and regular patterns, as described above, in others.
Early plantarflexion results in an early zero-crossing of the
power curve and leaves the ankle power hovering close to
the abscissa. To reliably determine the instant of push-off,
we shifted the threshold for detecting positive power output
from zero to 5% of the power maximum. Accordingly, push-
off onset is defined as the instant (tpush-off) the ankle power
exceeds this threshold before reaching its maximum.

4. Ankle force exceeds proximal body weight tF>mp g

The instance in time (tF>mp g) the ankle force exceeds the
body weight (mp g) of all segments proximal to the foot on
the ground (mp = M − m f ; M is the overall body mass) is
determined by the first sample at which the norm of the ankle
force �FAnk exceeds the remaining body’s weight (mp) for the
first time after the norm’s minimum during midstance in single
support.

5. Ankle force maximum tmax(FAnk )

The instance of the ankle force maximum [tmax(FAnk)]
is determined by the sample the ankle force norm (| �FAnk|)
reaches its maximum value after having passed its minimum
in single support.

6. Ankle torque minimum tmin(TAnk )

The ankle torque shows a monotonous decrease dur-
ing single support. The instance of ankle torque minimum
[tmin(TAnk)] is defined as the sample of the torque’s smallest
value after having become consistently negative in single sup-
port.

7. Loss of equilibrium tε

This instant has been defined using the fit described in
Appendix B 4. The exponentially increasing inertial torque σ

is indicative of the foot losing its equilibrium and beginning
to rotate forcefully into swing. Accounting for indeterminacy
of the fit due to measurement error, we use the residual ε

according to Eq. (B31) for calculating the instant of loss in
equilibrium (tε) defined as the sample the Gaussian function
exceeds ε, i.e., deviates by ε from the linear term of the
function given in Eq. (B29).

8. Launching phase onset tlaunch

The occurrence of the maximum ankle jerk ˙̇ϕ̇Ank defines
the onset of the launching phase [26].
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