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Mutations along human chromosomes: How randomly scattered are they?
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The diversity of mutations in human chromosomes is nowadays very well documented. The mutations
characterize populations in the world as well as genetic causes of diseases. In the approach that we follow, we
study the patterns of gaps between mutations by means of the rescaled range analysis and the fractal dimension
estimates. The results for chromosomes 1 to 22 and X indicate the existence of the so-called Hurst phenomenon
in all of them. The interpretation of this outcome entails the presence of long-range correlations and we propose
an explanation based on the genomic feature dubbed linkage disequilibrium, a nonrandom association of alleles
at different loci. An unexpected outcome is the noteworthy uniform reduction in the Hurst phenomenon when
considering the centimorgan metric instead of base position units. By contrast, such uniform reduction is not
observed with the fractal dimension values.
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I. INTRODUCTION

Genetic mutations are generally assumed to be a random
phenomenon. The vast majority of them are considered to be
neutral and do not have an impact on biological fitness of the
organism. This is in opposition to the small fraction of bene-
ficial and deleterious mutations that will be favored or purged
through selection mechanisms. Genetic drift is another impor-
tant mechanism by which genetic variants increase or decrease
frequency over time, eventually getting fixed or lost. Based
on minimum allele frequency (MAF) criteria, mutations are
labeled as common (MAF greater than 5%), low-frequency
(MAF between 1% and 5%), and rare (MAF less than 1%)
[1,2].

There exists presently a large catalog of successful mu-
tations in human chromosomes [3]. They include insertions,
deletions, duplications, copy-number variants, inversions,
translocations, and single-nucleotide polymorphism (SNP)
[4,5]. When the region affected is longer than 50 base posi-
tions (BPs) it is typically referred to as structural variation.
When the region affected consists of only one base pair,
the variant is classified under the SNP category [6,7]. The
catalog of SNP we are using has been generated based on a
comparison against a consensus DNA sequence represented
by a human reference genome [8] for which various versions
are currently in use (GRCh37 and GRCh38) [9]. Variants
can be defined by comparing any other sequence against the
reference. As a rule of thumb, there is one SNP per thousand
bases in human chromosomes. The SNP catalog is built up
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from DNA sequences provided by a large variety of human
population samples (approximately 2500 from 26 popula-
tions). For instance, world populations are characterized by
the allele frequencies of particular subsets of SNP. Moreover,
they serve as identifying characteristics to track the history of
human evolution [7] and in the process of identifying genetic
elements which are responsible for diseases [10,11].

There are chromosome regions, termed hot spots, where
SNPs tend to be observed. Other regions are SNP-free and
some specific sites cannot afford mutations at all, for it would
compromise essential biological functions. Thus, the proba-
bility of finding mutations along the chromosomes cannot be
purely random. An instance of SNP distribution is given in
Fig. 1, for chromosome 21, with two different metrics (to be
explained below) in Figs. 1(a) and 1(b). Every line stands for
a mutation. In Fig. 1(c) the lines are uniformly and randomly
distributed for the sake of comparison. The three plots have
the same number of lines in the space allotted. Compared
to the random pattern, the distribution of SNP presents com-
pelling differences in both metrics. Our goal is to quantify and
to provide an interpretation of the degree of correlation of SNP
locations in the human chromosomes 1 to 22 and X.

The mutation sequences we are analyzing are data struc-
tures dubbed a genetic map. A single individual exhibits only
a subset of those mutations whose cardinal number is small if
the individual is genetically close to the consensus sequence
of the catalog and larger otherwise.

We analyze the data provided by the 1000 Genome Project
[9] with some filters applied. The most direct approach con-
sists in using the series of intervals between mutations as
given by nucleotide BPs. Note that this separation has no
real bearing on the physical or spatial distance between
nucleotides in the chromosome. In contrast, the study of
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FIG. 1. Chromosome 21. (a) Location of consecutive SNPs be-
tween 1 and 2 cM. (b) Same SNP subset as in (a) referring to their site
number in the chromosome. (c) Uniform random distribution sample
of the same number of SNPs. The three plots have the same number
of lines in the space allotted.

chromosome meiotic recombination has introduced a more
elaborate measure of genetic distance between SNPs in terms
of the so-called centimorgan (cM) units. Given two different
sites in a chromosome, 1 cM corresponds to 1% probability
that it approximately breaks between those two sites during
meiotic recombination. The key point is that although a mei-
otic recombination fraction can be experimentally estimated,
it does not increase linearly with the separation between BPs,
which prevents it from being a true genetic distance. However,
a genetic distance d expressed in centimorgans is additive,
namely, d (AC) = d (AB) + d (BC), for three given sites, un-
like recombination probabilities. The relationship between
centimorgans and recombination probability is not linear, but
logarithmic. A very elegant and short formulation of the issue
was given long ago by Kosambi [12,13].

We study the SNP interval sequences using the so-called
rescaled range R/S method and the fractal dimension [14].
The analyses are carried out first in terms of a series of SNP
intervals measured in BPs and second using the SNP intervals
given in centimorgan units.

The R/S analysis, when successful, provides an index 0 <

H < 1 whose value has an interesting interpretation. When
the series under scrutiny originates from a simple random
process, H = 0.5. Values H �= 0.5 indicate the presence of
long-range correlations in the series. Whenever H > 0.5, the
series is said to be persistent, which means that large (small)
values are most likely to be followed by large (small) values
in the sequence. The case H < 0.5 is called antipersistent and
presents the opposite behavior. This tool was introduced by
Hurst [15] in the context of hydrology where it was found
that a number of phenomena in nature (recorded as numer-
ical series) yielded H � 0.73, which is referred to as the
Hurst phenomenon in the literature and H as Hurst expo-
nent [14]. The mathematical origin of the Hurst phenomenon
has intrigued mathematicians for years [16–18]. The crux is
that although the distribution of intervals between SNPs on
its own may follow a probability law of a random process,
the distribution when the order of occurrence of these in-
tervals becomes a factor cannot be one of simple random
probability [16].

We present results for the Hurst exponent associated with
mutations in human chromosomes 1 to 22 and X. The
analysis in terms of nucleotide BPs indicates that all chro-
mosomes exhibit the Hurst phenomenon. When the analysis
is made in terms of centimorgan units, the value of H
decreases significantly but still shows persistent character.
An interpretation of these results is provided and a pos-
sible origin of the Hurst phenomenon in SNP patterns is
suggested.

The computation of the fractal dimension D associated
with the SNP sequences has been carried out by a procedure
due to Higuchi [19]. Values D � 1 are associated with regular
curves and D � 1.5 with pure noise. The D outcomes show
less conclusive results than H , in both BP and centimorgan
representations.

For the sake of completeness we briefly explain the R/S
method in Sec. II and the relationship between centimorgan
units and meiotic recombination probabilities in Sec. III. The
latter is intended to clarify the differences between the two
chromosome descriptions we use with the R/S analysis. Sec-
tion IV gathers some statistical features of the chromosomes.
In Secs. V and VI the results of the analyses in terms of BP and
centimorgan units are given. A discussion and interpretation
of the outcomes are in Sec. VII.

The data sets we use are available at the 1000 Genomes
Project [3] for every human chromosome 1 to 22 and
X, in ASCII format [20,21]. We have discarded mutations
that are found in the populations with MAF less than
1%. Namely, we keep mutations with common and low-
frequency allele frequencies. This is customary in some
genetic studies and, in a way, successful mutations are defined
by this threshold. Given a chromosome, the corresponding
data file contains the site number where the SNP takes
place and the genetic distance in centimorgans refers to the
origin.

II. RESCALED RANGE ANALYSIS

Given a nucleotide site i in a chromosome, let ξi � 0 de-
fine the gap between two adjacent SNPs, either in BP or in
centimorgan units. The index i runs from 1 to N , where N + 1
stands for the total number of SNPs.

We commence by considering a contiguous subsequence of
length n inside the full sequence {ξi}N

1 . The computation we
are describing will be replicated systematically for nonover-
lapping SNP interval windows yielding in this way average
values. The mean interval length between adjacent SNPs in
the window is then

〈ξ 〉n = 1

n

n∑
k=1

ξk. (1)

Following Feder [14], for fix n we calculate the series
{X (i, n)}n

i=1 of accumulated departures of adjacent SNP gaps
from the mean SNP separation in the window

X (i, n) =
i∑

k=1

(ξk − 〈ξ 〉n), i � n, (2)
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and then compute its range

R(n) = max
1�i�n

X (i, n) − min
1�i�n

X (i, n). (3)

To work with a dimensionless quantity, Hurst introduced the
ratio R/S, the rescaled range, with S the standard deviation
estimated from the n observations in the window

S(n) =
[

1

n

n∑
k=1

(ξk − 〈ξ 〉n)2

]1/2

, (4)

and observed that for a number of real data records the
rescaled range behaves as

R/S ≡ 〈R(n)〉/〈S(n)〉 = (n/α)H , α > 0, (5)

with the Hurst exponent H = 0.73 ± 0.09. Here 〈R(n)〉 and
〈S(n)〉 are averages of R(n) and S(n), respectively, for N/n
nonoverlapping windows of length n.

In contrast, for records generated by statistically indepen-
dent processes with finite variance, the rescaled range R/S
behaves asymptotically as

R/S = (πn/2)1/2. (6)

A simple way to estimate H from data is as the slope of
the linear regression of log(R/S) vs the window size log n:
log(R/S) = H log n − H log α. The constant α is character-
istic of the data set at hand and has not received particular
attention in the literature.

III. KOSAMBI’S CENTIMORGAN TRANSFORMATION

Given three consecutive loci a, b, and c, let y1, y2, and
y3 stand for the probabilities the chromosome breaks during
meiosis in the intervals (a, b), (b, c), and (a, c), respectively,
with 0 � yi � 0.5. In a meiotic process the recombination
fractions yi are not true additive distances. A way to map re-
combination probabilities into a genetic distance is explained
next. Following Kosambi [12], the experimental evidence at
that time was y3 � y1 + y2, only for small enough values yi,
whereas for intermediate values y3 � y1 + y2 − y1y2 and for
large values y3 � y1 + y2 − 2y1y2. Kosambi posed the ques-
tion of finding a single formula for the full range of values
0 � yi � 0.5, in the form

y3 = y1 + y2 − βy1y2, (7)

with β to be specified. The idea [12] is to introduce a new
variable x that depends continuously on y, y = f (x), and be a
true additive distance x3 = x1 + x2. In addition, whenever x is
small enough f (x) � x. It is assumed that f is independent of
the chromosome and of the site. Equation (7) reads then

f (x + h) = f (x) + f (h) − β f (x) f (h). (8)

In the limit h → 0, f (h) ∼ h and we get the differential equa-
tion

f ′(x) = 1 − β f (x), (9)

FIG. 2. Chromosome lengths in BPs.

i.e.,

dy

dx
= 1 − βy, y(0) = 0. (10)

The next move requires an assumption about β. Kosambi
proposed the simple choice β = 4y, which encompasses the
cases above: β → 0 for small values of y, β → 2 for large
ones since y cannot exceed 0.5, and β → 1 for intermediate
y, recovering the phenomenology at that time from small,
medium, and large recombination fractions. The differential
equation becomes

dy

dx
= 1 − 4y2, y(0) = 0 (11)

and is readily integrated

y = 1

2
tanh(2x), x = 1

4
ln

1 + 2y

1 − 2y
. (12)

This function maps the experimentally measured recombi-
nation probabilities y ∈ [0, 0.5) into the new variable x ∈
[0,∞). By convention, 100x is expressed in centimorgans
units.

IV. SOME FEATURES OF THE GENETIC MAP

The following is a brief description of the 23-chromosome
genetic map that we are analyzing. The chromosome lengths,
which vary between 50 × 106 and 250 × 106 BPs, are given
in Fig. 2. Figure 3 presents the SNP genetic distance in cen-
timorgans from a chromosome physical origin as a function
of the SNP number. The detail shown for chromosome 1 in
the inset may be found everywhere for all the curves. The
irregular growth is reminiscent of the devil staircase shape
[14] characteristic of fractal structures.

Next we present some results concerning the statistics of
SNP gaps in chromosomes, in both BP and centimorgan units.
Their distributions in the genomic map are given in Figs. 4
and 5, both in log-log scales, in BP and centimorgan units,
respectively. The 23 curves in BP units do not collapse into a
universal curve, not even when they are rescaled with respect
to their own average gap length. The X-chromosome curve
exhibits a shape slightly different from the rest, a feature that
will reappear below in the R/S analysis outcomes. The SNP
gap range from 1 to 10 BPs presents a differentiated trend in
all curves which could be interpreted as a kind of mutation
repulsion in the BP representation.
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FIG. 3. SNP distance from the chromosome origin (in centimor-
gans). Only some chromosome curves are labeled for the sake of
clarity. The inset shows the devil staircase–like shape of the chromo-
some 1 curve.

The different curves in centimorgan units seem to display
power laws, including an approximately common crossover
around 0.001 cM. However, the explicit interpretation of that
crossover scale is not easy. In addition, the ranges produced
by these power laws are short.

In order to contrast the presence of correlations in the SNP
distributions we generated surrogate chromosomes in which
the gap sequence {ξi} has been replaced with {ξσ (i)}, where σ

stands for a random permutation of the indices. The resulting
sequences have the same mean and higher moments than the
originals; however, the eventual ordering correlations of the
sequence have been dropped out. Had all the correlations
detectable by H and/or D been removed, then H � 0.5 and/or
D � 1.5. The presence of correlations may be explicitly illus-
trated computing the ratios {rk}N−1

1 of two consecutive SNP
gaps, in BP units, as

rk = min{ξk, ξk+1}/max{ξk, ξk+1} ∈ [0, 1] (13)

for chromosomes 1 to 22 and X and then the correspond-
ing probability distribution, say, P(r). The same computation
is carried out for surrogate data. Figure 6 shows the

FIG. 4. Estimated distribution of SNP gaps in BP units. Here
PDF denotes probability distribution function.

FIG. 5. Estimated distribution of SNP gaps in centimorgan units.
Here μ stands for the slope of the dashed lines, given for visual
reference.

differences between both estimates. The proportions of many
unequal contiguous pairs of SNP gaps, say, r < 0.2, are much
higher in shuffled gaps. In the balance, the presence of similar
pairs of gaps is more frequent in real chromosomes. Thus, real
chromosomes exhibit higher diversity in ratios of pairs of gaps
with respect to the versions of surrogate data.

V. THE R/S ANALYSIS OUTCOMES

We have carried out the R/S analysis with both real and
surrogate chromosomes. Figure 7 shows in log-log scale the
outcomes of the power law (5). The results of the two se-
quence representation types are given, with SNP gaps in (i)
BPs (closed symbols) and (ii) centimorgans (open symbols,
with triangles for shuffled sequences). The dashed line has a
slope of 1

2 and corresponds to Eq. (6). The first observation
is that all chromosome sequences, given either in centimor-
gans or in BPs, exhibit a similar slope. The Hurst exponents
obtained by a linear fit to pooled data are H (BP) = 0.784(3)
and H (cM) = 0.636(2). For the corresponding surrogate se-
quences, Hs(BP) = 0.515(1) and Hs(cM) = 0.526(1), very
close to a pure random pattern. The specific Hurst expo-
nents for every chromosome are in Fig. 8. Every slope is
obtained from a linear fit to a set of seven to nine points,
depending on the chromosome length. The mean values of the
23 estimated exponents are 〈H (BP)〉 = 0.769, with standard

FIG. 6. Probability distribution for the ratio (13) of adjacent SNP
gaps measured in BPs, estimated from chromosomes 1 to 22 and X
(closed circles) and from surrogate chromosomes (open circles).
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FIG. 7. Plot of the R/S analysis for chromosomes 1 to 22 and
X from SNP gaps in centimorgans (open squares) and BPs (closed
circles). Triangles stand for surrogate chromosomes. Color codes the
chromosome. The dashed line is for Eq. (6). Solid lines are best linear
fits to pooled data.

deviation (s.d.) equal to 0.019, and 〈H (BP)〉 = 0.636, with
s.d. equal to 0.016.

The main observation is that the mapping from BP-based
separation to centimorgan-based genetic distance reduces the
correlation among SNP gaps along the chromosomes, albeit
not completely. Thus, the Hurst phenomenon exhibited by the
SNP gap sequences in BPs is depleted when the R/S analysis
is done in terms of centimorgans. All this said, it is interesting
to observe the peculiarity of the X chromosome whose H
value decrease is the shortest one. A possible explanation is
that the X chromosome is somewhat different for the way it

FIG. 8. Hurst exponents for chromosomes 1 to 22 and X from
SNP gaps in centimorgans (open circles) and BPs (closed circles).
Open squares stand for surrogates chromosomes. Error bars are 95%
CI.

takes part in meiosis. Recombination of the X chromosome
only occurs in females. Thus, it experiences half the amount
of recombination with respect to the rest. The lower share
in meiosis might have lead to a different degree of statistical
correlations.

No relationship is observed between the chromosome
length and the Hurst exponent.

VI. FRACTAL DIMENSION ANALYSIS OUTCOMES

The computation of the fractal dimension D associated
with a time series, or in general to a sequence of points
{i, x(i)}, i = 1, 2, . . . , n, allows a classification of the com-
plexity of that signal and may provide interesting information.
The D index is sometimes interpreted as a measure of the
roughness of the pattern.

We have carried out the D computation for the SNP gap
sequences of chromosomes following a technique by Higuchi
[19,22]. The idea consists in measuring the cumulative abso-
lute distance reached by the curve on the ordinate axis. The
length is measured on point subsets of the curve which are
k units apart from each other, namely, x(m), x(m + k), x(m +
2k), . . .. The explicit formula that defines the length of the
curve, with m and k given, reads

Lm(k) = n − 1

k2
⌈

n−m
k

⌉ �(n−m)/k
∑
i=1

|x(m + ik) − x[m + (i − 1)k]|,

(14)

with n the total number of points. The length is then averaged
over all possible initial values m to give 〈L(k)〉. Then, if
〈L(k)〉 ∝ k−D, the curve is fractal with dimension D. For in-
stance, a curve obtained with pure noise should give D = 1.5,
whereas for a regular curve D = 1. Under the hypothesis of
self-affinity of the pattern, there is a simple algebraic relation-
ship between the Hurst exponent and the fractal dimension
[14,23]

H + D = 2. (15)

In Fig. 9 we have plotted in doubly logarithmic scale 〈L(k)〉
against k, both in BP and centimorgan units. The higher
(lower) points in every column set correspond to the longer
(shorter) chromosomes. Straight solid lines are linear fits to
the pooled chromosome data. The pluses and crosses stand for
shuffled data and have been horizontally shifted by a factor 2
for clarity. The dashed lines are linear fits to these two sets.
The fractal dimension obtained for every single chromosome
by a linear fit is in Fig. 10. Closed and open symbols are for
real and surrogate chromosomes, respectively. The average
fractal dimension for the 23 chromosomes reads 〈D(BP)〉 =
1.18 with s.d. equal to 0.05 and 〈D(cM)〉 = 1.20 with s.d.
equal to 0.02. Unlike the Hurst exponent, these results do not
exhibit a uniform change when considering the chromosomes
individually.

For real chromosomes, if we use the mean Hurst exponent
values estimated above, then the algebraic identity (15) is
approximately preserved in the BP case, whereas it is not
in centimorgan units. This is illustrated in Fig. 10, where
the black and red dashed lines stand for the inferred fractal
dimensions 2 − 〈H〉. The centimorgan representation is then a

064404-5



OTEO AND OTEO-GARCÍA PHYSICAL REVIEW E 106, 064404 (2022)

FIG. 9. A log-log plot to determine the fractal dimension of SNP
gap sequences in BP (squares) and centimorgan (circles) units. Pluses
and crosses are for shuffled data and have been horizontally shifted
by a factor 2 for more clarity. Every color stands for a different
chromosome (legend not provided). Solid and dashed lines are linear
fits to pooled data and to one run of shuffled data, respectively.

real data instance where the Hurst index and fractal dimension
separate, a case thoroughly discussed and illustrated in [23]
for a Gaussian random process of the Cauchy class.

For surrogate chromosomes the value D = 1.5, charac-
teristic of pure noise, is not reached. The points in Fig. 10
are averages of a number of shuffled data runs. The 23
chromosomes’ averaged fractal dimensions are 〈Ds(BP)〉 =
1.31 with s.d. equal to 0.02 and 〈Ds(cM)〉 = 1.39 with
s.d. equal to 0.01. Thus, although the ordering correlations
have been eliminated by shuffling, others remain detected
by D.

VII. DISCUSSION

The direct study of DNA segments by a rescaled range, or
by related methods, has received attention in the past [24–26].

FIG. 10. Estimates of fractal dimension for every chromosome
SNP gap sequence given in BP (squares) and centimorgans units
(circles). Open symbols are for shuffled data. Dashed horizontal lines
are the D estimates obtained from the algebraic relationship (15)
using the Hurst exponent estimates as input. Error bars are 95% CI.

Note, however, that the analyses of DNA sequences and
of single-nucleotide polymorphisms are completely different
from each other. The former is carried out on a symbolic
series made up of nucleotide symbols {A,C,G,T} which are
mapped on numbers to allow the analysis. The latter are the
mutations that punctuate DNA sequences which give rise
to the numeric sequences of gap lengths. Interestingly, the
R/S analysis of DNA segments carried out in [26] provides
the value H = 0.6145 for a DNA strand of chromosome 20,
indicating persistence in the sequence. The origin of the corre-
lations is attributed to the presence of the so-called motifs and
Alu repeats in the DNA sequence. An issue these works have
addressed concerns the possible characterization of coding
and noncoding regions by means of this type of analysis. It
could be interesting to R/S analyze segments of the genetic
map corresponding to coding genome regions. However, cod-
ing DNA strands for only 3% of genome and mutations takes
place one every 1000 BPs, which makes the length of records
too short for the analysis.

Here we have studied the distribution of mutations in
chromosomes collected from a large number of human pop-
ulations [3]. The outcomes indicate the existence of the
Hurst phenomenon in the human genetic map. When the
separation between mutations is computed in terms of BPs,
〈H (BP)〉 = 0.78. Using the genetic distance in terms of
centimorgans, the Hurst exponent is uniformly depleted to
〈H (cM)〉 = 0.64, which amounts a meaningful correlation
reduction. This is an unforeseen effect of the mathemati-
cal centimorgan mapping, which was originally devised to
merely provide a true genetic distance measure in chromo-
somes, because BP counts and recombination probabilities are
inappropriate.

The complexity ranking provided by D is more difficult
to interpret than H in the case at hand. The estimated mean
values 〈D(BP)〉 and 〈D(cM)〉 are quite similar, although they
present substantial variability when chromosomes are con-
sidered individually. Unlike the uniform decrease of H (BP)
to H (cM) for all chromosomes, the variations of D(BP) to
D(cM) are quite whimsical. In particular, for 10 out of 23
chromosomes it turns out that D(BP) > D(cM), which ren-
ders the D description of these chromosomes more random in
the BP representation than in centimorgan units. In addition,
the SNP gap shuffling does not drive the fractal dimension
close to D = 1.5, the nominal value for noise. The frac-
tal analysis does not disclose the nature of the correlations
involved; however, the fact that small scales correspond to
fractal dimension whereas large scales are associated with the
Hurt coefficient [23] indicates that the centimorgan-mapping
effect is different in both scales. This observation is connected
with features revealed in Sec. IV, namely, short gap intervals
show in BPs a different trend in Fig. 4 and the approximate
crossover in Fig. 5 seems also to separate short and long
ranges.

The Hurst exponent was historically introduced in a
time-series context. A theoretical explanation of the Hurst
phenomenon was then given on the basis of a fractional
Gaussian process in which the value of a point in the time
series is affected by all the precedents [14,27]. However, the
SNP gap patterns that we have analyzed come from a phys-
ical alignment and there is no preferred sense involved. The
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question is then to ascertain where the SNP correlations come
from. A well-known source of correlations in chromosomes
is the linkage disequilibrium mechanism. It originates in the
way meiotic recombination takes place. During meiosis ho-
mologous chromosomes pair and undergo reciprocal genetic
exchange, termed crossover. A pair of nearby SNPs is more
likely to stay in the next generation than a distant one be-
cause the probability that the chromosome breaks between
the nucleotides during meiosis is, as rule of thumb, propor-
tional to the separation. The proportionality is modified by
the presence of chromosomal regions with particularly low
(jungles) or high (deserts) recombination rates [28]. This is
a realization of the linkage disequilibrium effect. The fact that
SNPs are not fully random when measured in centimorgans

but more random than measured in BPs would suggest that
meiotic breaks are a significant but not the only contributor to
correlations.
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