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Fluid circulation driven by collectively organized metachronal waves
in swimming T. aceti nematodes
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Recent experiments have shown that the nematode T. aceti can assemble into collectively undulating groups at
the edge of fluid drops. This coordinated state consists of metachronal waves and drives fluid circulation inside
the drop. We find that the circulation velocity is about 2 mm/s and nearly half the speed of the metachronal wave.
We develop a quasi-two-dimensional hydrodynamics model using the Stokes flow approximation. The periodic
motion of the nematodes constitute our moving boundary condition that drives the flow. Our model suggests
that large-amplitude excursions of the nematode tails produce the fluid circulation. We discuss the constraints
on containers that would enhance fluid motion, which could be used in the future design of on demand flow
generating systems.
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I. INTRODUCTION

Turbatrix aceti (T. aceti) are a type of freely swimming
nematode that have been shown to collectively self-organize at
the fluid-air interface to form traveling waves [1,2]. Individual
T. aceti nematodes, also called vinegar eels, are self-propelled
swimmers that continuously consume energy. Thus, a dense
suspension of vinegar eels is an example of active matter [3].

Perhaps the most common example of emergent travel-
ing waves is the much studied problem of ciliary carpets.
There hydrodynamic interactions between actively beating
cilia spontaneously result in the formation of large-scale
waves, known as metachronal waves [4]. Such organized
waves are critical for the motility of ciliated protists (such
as Paramecium [5]), mucus clearance in mammalian airways
[6,7], and fluid transport in the brain [8].

What makes our model system of vinegar eels unique is
that, unlike cilia which are affixed to a cell membrane, these
are freely swimming organisms. They fall under a special
class of active agents called swarmalators that can self-propel
and synchronize their phase of locomotion [9]. It is natural to
speculate whether the nematode-produced metachronal wave
[1,2] can be harnessed to drive coherent fluid flows. Key to
answering this question are quantitative measurements of the
emergent flow, and this is the focus of this paper.

The emergence of coherent fluid pumping states has been
reported in both experiments and simulations of other wet
active matter systems. For example, cytoplasmic streaming in
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plant cells emerges by microfilament self-organization [10].
With an oil emulsion containing droplets of a highly concen-
trated aqueous suspension of Bacillus subtilis, the bacterial
suspension organizes into a single stable circulating vortex,
resulting in fluid pumping [11]. Collectively formed vortices
or mills in plant-animal worms drive fluid flow [12]. Sim-
ulations of tiny swimming particles (microswimmers) show
that schools can corral a volume of liquid much larger than
the sum of the volumes swept along by each individual [13].
Examples of active-matter-driven pumps include the design
of microfluidic devices that can guide and control motil-
ity of self-propelled swimmers resulting in directional flows
[14–16].

An advantage of studying vinegar eels, compared to many
other active systems, is their relatively large size. Vinegar
eels are visible by eye and 1–2 mm in length, exceeding the
size of flagellates, bacteria, and many types of cells. The soil
nematode Caenorhabditis elegans (C. elegans) belongs to the
same order of Rhabditida as Turbatrix aceti and is widely
studied as it is both genomically defined and amenable to
genetic manipulation. However, metachronal waves have not
been observed in suspensions of C. elegans [1].

In analogy to ciliary transport [17], in this paper we seek
to understand the relation between the collectively organized
traveling waves and the generated fluid flows. We combine
experimental observations of dense suspensions of T. aceti
nematodes with hydrodynamic modeling. The paper is or-
ganized as follows. In Sec. II we present our experimental
measurements that reveal circulating flow driven by the col-
lective organization of the nematodes in a fluid drop. In
Sec. III we compute the flow field using a vertical average
for Stokes flow and a moving periodic boundary condition. In
Sec. IV A we present experimental observations of the motion
of the tails of nematodes that participate in the metachronal
wave. The role of the tail motion in influencing the hydrody-
namics is explored in Sec. IV B and we speculate about the
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FIG. 1. (a) Illustration of the experimental setup. A dilute drop of vinegar contains swimming nematodes and fluorescent microspheres. It
is filmed from above with a video camera. Blue light is absorbed by the microspheres which fluoresce in yellow green. The microspheres are
used to track circulation induced by collective motion in the vinegar eel population. (b) Color image from the video which has been annotated
to show the direction of circulation. (c) Postprocessed image from the video shows the nematodes at the boundary.

biomechanics of the nematode body motion in Sec. IV C. A
summary and discussion follow in Sec. V.

II. EXPERIMENTAL METHODS AND RESULTS

A. Sample preparation

We grow the nematodes in a 1:1 solution of distilled
water and food grade apple cider vinegar at approximately
5% concentration. For the experiment, 14 ml of the grow
culture containing the nematodes is centrifuged for 3 min
at 5000 rpm. This causes the nematodes to form a dense
clump at the bottom of the centrifuge tube. We extract 300
μl of this dense solution and mix it with 10 ml of water and
10 μl of a solution containing fluorescent yellow polyethy-
lene microspheres and a Tween 80 biocompatible surfactant.
The spheres have a diameter of 63–75 μm and a density of
1.00 g cm−3. The resulting solution is centrifuged again. Af-
terward 100 μl of the concentrated solution is extracted from
the bottom of the centrifuge tube and placed onto a bare glass
slide. The resulting droplet that we film for analysis has a
diameter of approximately 1 cm and a height h ≈ 1 mm.

B. Imaging

The experimental setup for imaging is shown in Fig. 1(a)
and a video taken with this setup is included as video A
in [18]. The fluorescent microsphere markers are used to
measure the flow induced by the collective motion of the ne-
matodes. We light the slide with bright blue LEDs, causing the
microspheres to fluoresce in yellow green. The drop is filmed
in color at 60 frames/s and from above with a Blackmagic
Pocket 4K digital camera.

Image frames at a single time from video A in [18] are
shown in Figs. 1(b) and 1(c). In Fig. 1(b) we show one of the
video frames in color. The microspheres appear green as they
fluoresce and the nematodes appear blue because of the LED
lighting. To best show the nematodes, we subtract a scaled ver-
sion of the red frames from the blue ones. The resulting image
is converted to grayscale and shown in Fig. 1(c). The nema-
todes have collected on the boundary and the metachronal
wave can be seen in the wavelike features on the outer edge

of the drop. Higher-magnification images (see [2], as well as
Sec. IV A and video B in [18]) show that the nematode heads
are near the boundary and their bodies are oriented at an angle
with respect to the boundary so that their tails extend into the
circulating fluid. The bright oval on the top left of the images
is a reflection from the lights used to illuminate the drop and
can be ignored.

C. Tracking particles

The fluorescent microspheres were tracked using the soft-
ware package TRACKPY [19], which implements in PYTHON

the Crocker-Grier algorithm for finding and tracking single-
particle trajectories [20]. The microsphere tracers are of
sufficiently low concentration that we do not expect them to
significantly affect the nematode behavior.

In Fig. 2(a) we show tracks traced by fluorescent micro-
spheres during 1 s of video A [18] on top of one of the video
frames. In Fig. 2(b) we show velocity vectors computed from
these tracks. In red and with thicker arrows we show average
velocities computed by fitting a line to the trajectory of each
microsphere in 1 s of video. This averages over several oscilla-
tions of the metachronal wave to better show fluid circulation.
Circulation of the microspheres can also be seen directly from
viewing video A [18]. Instantaneous velocities are computed
from the positions of the particles in the first two frames of
video A [18]. In Fig. 2(b) the instantaneous velocities are
shown with thin brown arrows.

Using a polar coordinate system with the origin at the
center of the drop, we measure the azimuthal and radial ve-
locity components vθ and vr , respectively, for each tracked
microsphere. In Fig. 3(a) the microsphere azimuthal compo-
nents of the average velocity (using 1 s of video) are shown
as a function of distance d from the outer drop boundary.
As indicated by the dotted line in the figure, the circulation
velocity decays as a function of distance from the boundary
and goes to zero at the center of the drop. The black dotted
line in Fig. 3(a) shows the curve vθ (d ) = uce−(d−d0 )/hs with
the parameters uc and d0 and decay length hs. The offset d0 is
used to describe a peak distance where circulation is highest
and uc gives the peak circulation velocity. Such an exponential
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FIG. 2. (a) Tracks of individual fluorescent microspheres from video A in [18]. The spheres were tracked using 60 video frames during
1 s of video. The tracks are shown on top of the first video frame from the video. (b) Velocities of the fluorescent spheres averaged over 1 s of
video are shown with red arrows on top of the first video frame in the sequence. The thinner brown arrows show instantaneous velocities of
the same spheres computed from positions in two consecutive video frames.

decay results from hydrodynamic-screening-caused flow near
boundaries [21–23]. In the following section we will show that
the decay length hs is consistent with hydrodynamic screening
in a shallow drop.

In Figs. 3(b) and 3(c) we plot the instantaneous azimuthal
and radial velocity components, respectively, as a function
of distance from the drop edge. The exponential curve from
Fig. 3(a) is overlayed on Fig. 3(b) for comparison and illus-
trates that the instantaneous velocity can be larger than the
time-averaged circulation speed. The velocities we measure
for the microspheres can exceed the forward swim speed
of the nematodes that are involved in the wave. The ne-
matodes forming the wave advance along the border at a
much slower speed, approximately 0.1 mm/s slower than
both the metachronal wave and the average azimuthal veloc-
ity [1,2], highlighting the emergence of large-scale coherent
transport through collective self-organization. The instan-
taneous velocities are higher than the averaged azimuthal
velocity component because of oscillations associated with
the metachronal wave and perturbations caused by close in-
teractions with individual nematodes.

D. Metachronal wave measurements

We characterize the kinematics of the emerging
metachronal wave. We measure the metachronal wave
frequency fMW with a cross-correlation technique, as
described by Quillen et al. [2]. We compute the product
of two image frames separated by an interval of time and
then sum the pixel values in the entire product image. The
peaks in the sum occur at multiples of the metachronal wave
period. We similarly measure the metachronal wavelength
λMW, by rotating an individual frame about the center of the
drop, multiplying it by the original frame, and summing over
the product image. Peaks in the sum occur at rotations that

are the metachronal wavelength divided by the drop radius.
Errors in these quantities are estimated from the strength and
widths of the peaks in these sums. These measurements are
summarized in Table I. We also list a range of values for the
peak averaged azimuthal or tangential speed uc and decay
length hs consistent with the average azimuthal velocities
shown in Fig. 3(a).

The wavelength of the metachronal wave is λMW ∼
1 mm, similar to that of our previous measurements [2].
The metachronal wave frequency is fMW ≈ 5.45 Hz, which
is within the 4–8 Hz range measured in similar experi-
ments [1]. Together these give a metachronal wave velocity
vMW = λMW fMW ≈ 5.1 mm/s. Near the collective wave, the
microspheres have a mean averaged azimuthal or tangen-
tial velocity component of about uc ∼ 2 mm/s. The ratio of
the microsphere mean azimuthal velocity component to the
metachronal wave speed is about uc/vMW ∼ 2

5 .

III. HYDRODYNAMIC THEORY FOR COHERENT FLOWS

To understand the underlying mechanics of the coherent
transport driven by the metachronal waves, we build a

TABLE I. Measurements.

Parameter Value

radius of drop Rd 5.25 mm
volume of drop Vdrop 100 μl
metachronal frequency fMW 5.45 ± 0.16 Hz
metachronal wavelength λMW 0.93 ± 0.09 mm
metachronal wave speed VMW 5.1 ± 0.5 mm/s
speed of average flow uc 2 ± 1 mm/s
exponential decay length of average flow hs 0.7 ± 0.2 mm
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FIG. 3. Microsphere velocities. (a) Average azimuthal velocity
component vθ of tracked microspheres as a function of distance from
the outer drop edge. The gray line shows an exponentially decaying
function with function and parameters in the legend. (b) Instanta-
neous azimuthal velocity component of microspheres as a function
of distance from the drop outer edge. The gray line shows the same
exponentially decaying function as in (a). (c) Microsphere instanta-
neous radial velocity component as a function of distance from the
drop outer edge. The gray line shows a velocity of zero.

quasi-two-dimensional (quasi-2D) hydrodynamic model for
the fluid flow. With a flow velocity of 1 mm/s, a length scale
of 1 mm, and dynamic viscosity of water ν ∼ 10−6 m2 s−1 = 1
mm2 s−1, the Reynolds number is about 1, so inertia could be
important in the velocity field. Nevertheless, we use a model
that is appropriate in the Stokes or low-Reynolds-number
limit.

A. Hele-Shaw approximation for the quasi-2D flow

We consider a three-dimensional incompressible flow field
in the drop U = {U,V,W }. In the limit of low Reynolds
number, the evolution of the flow field is governed by the
incompressible Stokes flow equations

∇ · U = 0, (1)

− 1

ρ
∇p + ν∇2U = 0, (2)

where p is the pressure and ν is the kinematic viscosity of the
fluid. The velocity field U is a function of (x‖, z), where x‖ =
{x, y} spans the plane on which the drop resides and the height
of the drop h(x‖) and 0 � z � h(x‖). The characteristic drop

thickness h ∼ 1 mm is smaller than the typical drop radius of
R ∼ 5 mm. This natural scale separation allows us to invoke
the lubrication approximation [24]. Scaling x‖ ∼ R and z ∼
h, we find W ∼ {U,V }h/R. In the limit h/R � 1 the vertical
velocity W = 0 to the leading order and ∂z p = 0 (see, e.g.,
[12]). The smallness of the aspect ratio h/R can be exploited
to separate the wall-normal dependence (i.e., in the direction
z) of the velocity field from its in-plane averaged value, as is
done in classical Hele-Shaw problems [25]. For this purpose,
we adopt the ansatz for the velocity field

U(x‖, z) = u(x‖) f (z) (3)

(following [12]), where f (z) is a single scalar function which
describes the velocity profile over the height of the cell
and u(x‖) = ux̂ + vŷ is a 2D depth averaged velocity field
defined as

u(x‖) = 1

h

∫ h

0
U dz. (4)

The ansatz of Eq. (3) is reasonable because the vertical ve-
locity vanishes to the leading order of the problem. The form
of f (z) depends on the boundary conditions. For flow in the
droplet with a free top interface and no-slip bottom surface we
take

f (z) = 3

2

[
1 −

(
1 − z

h

)2]
. (5)

On the other hand, for flow between two flat plates with
no-slip boundary conditions we could use f (z) = 6(z/h −
z2/h2). The ansatz of Eq. (3) along with the definition for u
gives

∂zzU = −αz
u
h2

, (6)

where αz = 3 for a free interface [consistent with Eq. (5)]
and αz = 12 for flow between two no-slip boundaries. In our
above formulation we have ignored curvature effects of the
drop height near the boundaries. This amounts to assuming
that the surface tension effects and the forces from the ne-
matodes in determining the drop shape are negligible (for a
discussion of these effects see [1]).

We average Eqs. (1) and (2) over depth to obtain the quasi-
2D approximation for the evolution of the velocity field

∇‖ · u = 0, (7)

− 1

ρ
∇‖ p + ν

[
∇2

‖ − αz

h2

]
u = 0, (8)

where ∇‖ = ∂xx̂ + ∂yŷ is the 2D gradient and ∇2
‖ is the asso-

ciated 2D Laplacian. The above set of equations differs from
the two-dimensional incompressible Stokes equation by the
additional dissipative term −αz/h2 which accounts for the
average friction force between the surface and the droplet
interface. By omitting the term ∇2

‖ u we would obtain the
so-called Darcy approximation of the Navier-Stokes equation,
which is often used to model flows in porous media and
viscous fingering in Hele-Shaw cells and describes potential
flow. In our case, the flow need not be in general a potential
flow [26,27]. The above set of equations is often termed the
Brinkman correction to Hele-Shaw flows [12,25]. It is worth
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FIG. 4. Coordinate directions. The boundary is on the bottom
and the direction to the center of the drop is upward. The metachronal
wave travels to the right. We ignore the curvature of the drop bound-
ary. Here the drop is viewed from above.

pointing out that the Green’s function associated with the full
Stokes equation is nontrivial [28] and involves the use of
the method of images to calculate the flow field [12,21,28]
(see [29] on the validity of approximation). One advantage
of the 2D Brinkman approximation is that it circumvents this
challenge and allows us to compute tractable solutions in a
spatially periodic domain, as we discuss next.

Since the depth-averaged velocity u acts like a two-
dimensional incompressible fluid, we can describe the two-
dimensional flow with a stream function ψ (x‖), where

(u, v) = (∂yψ,−∂xψ ). (9)

The vorticity ω is related to the Laplacian of the stream
function

ω = ∂xv − ∂yu = −∂xxψ − ∂yyψ = −∇2
‖ψ. (10)

Upon taking the curl of Eq. (8) we obtain the evolution of the
vorticity as

∇2
‖ω = αz

h2
ω. (11)

With negative αz, this is known as the homogeneous
Helmholtz equation, and with positive αz, it is known as the
homogeneous screened Poisson equation.

As the exponential decay length hs is smaller than the drop
radius Rd , with hs/Rd ≈ 0.13 we can neglect the curvature
of the drop edge. We set our x direction along the azimuthal
direction of the drop and the y direction is aligned with radius
from the drop center and is increasing with distance from the
drop edge (see Fig. 4). Since the flow field is driven by the
motion of the nematode tails, we expect the solutions to be
periodic along x over a metachronal wavelength. For positive
αz, a general solution of Eq. (11) that is periodic in x, with
period λMW = 2π/kMW, and decays at larger y has the stream
function

ψ (x, y) = a0e−y/hs +
∞∑
j=1

{[ac j cos( jkMWx) + as j sin( jkMWx)]

× e−β j jkMWy[bc j cos( jkMWx)

+ bs j sin( jkMWx)]e− jkMWy}, (12)

with coefficients a0, ac j , as j , bc j , and bs j , where

β j ≡
√

1 + αz

( jkMWh)2
. (13)

The characteristic length scale for the exponential decay asso-
ciated with the constant circulating term with coefficient a0 is

hs ≡ h√
αz

. (14)

The terms with coefficients bc j and bs j have zero vorticity as
they satisfy Laplace’s equation ∇2

‖ψ = 0.
The term proportional to αz in Eq. (8) gives rise to hy-

drodynamic screening with an exponential decay length of
hs = h/

√
αz typical in the Brinkman correction [30]. With a

drop thickness of about h ∼ 1 mm and αz = 3, consistent with
a fixed no-slip lower boundary and stress-free upper interface,
the decay length hs ∼ 0.6 mm. This is consistent with the
decay length measured in the induced circulation in Sec. II.

B. Metachronal wave boundary condition

The nematodes engaged in the metachronal wave are
densely packed. Their heads are near the outer edge of the
boundary and the tails touch moving fluid. This suggests
that the coherent circulating flow is driven by the motion
of the tails of the nematodes involved in the wave. To incor-
porate this in our model, we develop a kinematic description
of the tail motion. We assume that the tails act like a moving,
continuous no-slip boundary for the fluid flow. The trajectory
of each point on the boundary is described by a periodic
function associated with the oscillatory motion in the wave.
The metachronal wave gives a delay between the trajectories
of neighboring boundary points.

Neglecting curvature of the drop edge, the boundary
is spatially periodic in x with wavelength λMW and with
metachronal wave traveling in the positive x direction with
velocity VMW. We use the coordinate s ∈ [0, λMW) to describe
positions along the boundary. The trajectory of a material
point at s = 0 is described by a displacement function δ0(t )
which is temporally periodic with frequency fMW. Due to
the propagating traveling wave, a point on the boundary that
is displaced horizontally from the reference point at s = 0
undergoes the same trajectory but delayed in time. With xb =
(xb, yb), points on the boundary evolve as

xb(s, t ) = δ0

(
t − s

VMW

)
+ sx̂ + xm. (15)

In the above description, the boundary is a one-dimensional
space curve that is described by a displacement vector func-
tion δ0(t − s/VMW). This yields a wave traveling with the
metachronal wave velocity VMW. The constant xm sets the
position of the boundary at s = t = 0. The velocity of points
on the boundary

Vb(s, t ) = d

dt

[
δ0

(
t − s

VMW

)]
. (16)

The no-slip boundary condition for the fluid velocity implies
that

Vb(s, t ) = u[xb(s, t )]. (17)
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TABLE II. Parameters for flow models.

Parameter Value

metachronal wavelength λMW 1 mm
metachronal frequency fMW 5 Hz
screening parameter αz 3
drop thickness h 1 mm
screening length hs = h√

αz
0.6 mm

C. Finding a flow field consistent with the
velocity on the boundary

Once a set of positions on the boundary and the ve-
locities of these positions are specified, we try to obtain a
two-dimensional fluid flow field consistent with the boundary
condition. For this we use a minimization algorithm to find the
coefficients in the solution of the stream function in Eq. (12),
as illustrated below.

Using Eq. (17) for the boundary condition and integrating
over the boundary, we construct a non-negative function

g(δ0, ψ ) = 1

Lb

∫ Lb

0
|Vb(s) − u(s)|2ds, (18)

where Lb is the length of the boundary corresponding to a sin-
gle wavelength of the metachronal wave. The above function
is zero for a velocity field u(x‖) derived from a stream func-
tion ψ (x‖) using Eq. (9) that is consistent with the velocity
boundary condition described by the displacement function
δ0(t ). We use a multivariate minimization algorithm to min-
imize this function for different values of the coefficients in
Eq. (12). For the present problem we retain j = 20 Fourier
modes for the stream function, which results in 81 free param-
eters. To carry out the minimization we use the Nelder-Mead
simplex method available through PYTHON’s SCIPY.OPTIMIZE

package. The quality of the result is measured by computing
the standard deviation σv of the difference between the flow
velocity and boundary velocity integrated on the boundary.
This is equivalent to the square root of the minimization
function σv = √

g(δ0, ψ ). Once the fitting is done, the coef-
ficient a0 of the stream function allows us to compute and
characterize the average flow speed in the model at y = ym as

uc(ym) = −a0

hs
e−ym/hs . (19)

The key parameters for our boundary model are listed in
Table II. We choose αz = 3, corresponding to a fixed lower
boundary and a stress-free upper boundary as discussed in
Sec. III A. We take the drop thickness h = 1 mm, which yields
a screening length for the solution, hs = 0.6 mm, consistent
with our experimental measurements.

D. Role of different boundary motions in fluid circulation

Motivated by our prior work on a phase oscillator model for
the collective motion [2], we consider the velocity field that
would arise from a boundary where each point has a small
amplitude of oscillation compared to the metachronal wave-
length λMW. We describe the displacement vector of points on

TABLE III. Oscillating boundary models.

Tail
Parameter Model A Model B trajectory

amplitude (mm) Ab 0.10 0.10
amplitude (mm) Bb −0.05 −0.07
amplitude (mm) Cb 0.0 0.10
circulation or flow (mm/s) uc(ym ) −0.6 1.9 2.6
viscous dissipation per λMW (pW) 70 86 830
power in circulation 1% 9% 2%

the boundary with the function

δ0(t ) =Ab cos(ωMWt )ŷ + [Bb cos(ωMWt ) − Cb sin(ωMWt )]x̂,

(20)

with ωMW = 2π fMW and three constant coefficients Ab, Bb,
and Cb. We include only three terms because we can adjust
the phase of the wave to remove a term that is propor-
tional to sin(ωMWt )ŷ. Positions on the boundary xb(s, t ) are
then generated from δ0(t ) using Eq. (15). To compute the
average flow velocity [via Eq. (19)] we take ym to be the
distance between the mean y component of δ0(t ) and the drop
edge.

Depending on the choice of the constants in Eq. (20), we
obtain qualitatively different models for the boundary motion.
We explore two models, referred to as model A and model
B, with properties summarized in Table III. Model A has
Cb = 0 and each particle on the boundary moves back and
forth along a line segment. This model is similar to the phase
oscillator model [2] developed previously where the points on
the nematode bodies move back and forth, but at an angle
with respect to the outer drop edge. Model B has Cb �= 0
and each particle on the boundary particles has a loop-shaped
trajectory. Model B is inspired by geometric approaches for
describing flows near oscillating boundaries [31–33]. In this
setting a loop trajectory on a surface is described with two
infinitesimal operators that do not commute [31], resulting in
a flow velocity that is described via a curvature known as
the Stokes curvature [32,33]. Figures 5(a) and 5(c) display
the boundary position at a given time instant for the two
different boundary models, with the arrows indicating the
instantaneous velocity of the material points. The blue line on
the left shows the trajectory of a single point on the boundary
over one oscillation period.

The associated velocity fields for these two boundary
models are depicted in Figs. 5(b) and 5(d) and their circu-
lation speeds are listed in Table III. Interestingly, model A,
with back and forth oscillation of boundary material points,
yields a small circulation speed uc and predicts the incor-
rect direction for circulation with uc < 0. In contrast, model
B provides a circulation speed that is consistent with what
we observed experimentally. The computed solution captures
features of the experimental flow field, including the back
and forth motion associated with the metachronal wave. Both
model A and B flow fields have a rms velocity difference of
σv = 0.3 mm/s between the flow and boundary [the square
root of the minimization function in Eq. (18)].
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FIG. 5. (a) In blue we show the position of a single point on the boundary during a full oscillation period for a sinusoidal oscillating
boundary referred to as model A and with parameters listed in Table III. In red we show the boundary at single moment in time. Velocity
vectors are shown with black arrows. (b) Velocity field for model A that was found by minimizing the function of Eq. (18) over the boundary
shown in (a). The stream function is shown as a red image and with black contours. Velocity vectors in the fluid are shown with green arrows.
The velocity vectors on the boundary are shown with blue arrows. (c) Similar to (a) but for the sinusoidal oscillating boundary model B.
(d) Associated velocity field for model B.

E. Energetics of the flow

It is natural to ask how much energy is required to main-
tain these streaming flows or what fraction of the energy
injected by the nematode body motion is used by the coherent
flows. To answer this we estimate the viscous dissipation from
the velocity fields computed in Figs. 5(b) and 5(d) (see the
Appendix for details). Using viscosity μ = 0.9 mPa s, we find
that the estimated dissipation rate is about 80 pW per wave-
length for both models of the boundary motion (see Table III).
With about 20 vinegar eels per metachronal wavelength, this
corresponds to 4 pW per vinegar eel. Remarkably, we find
that for model B, only about 9% of this power goes into
maintaining fluid circulation, corresponding to the constant
or a0 term in the stream function given in Eq. (12) (see Ta-
ble III). The remainder of the power goes into oscillatory fluid
motion.

IV. ROLE OF TAIL MOTION IN DRIVING FLUID FLOW

The computed flow models for the oscillating boundaries
suggest that elliptical trajectories for points on a boundary are
necessary to drive the level of circulation in the fluid that we
saw in video A in [18]. As the nematode heads are trapped
at the drop edge, the motion is primarily imparted by the
nematode tails moving within the circulating fluid. To better
understand how the circulation is driven, we examine the
behavior of tails of the nematodes involved in the metachronal
wave.

A. Observed tail trajectories

To make accurate measurements of the eel tails, we
use the 10× magnification and high-speed videography
(1057 frames/s) described previously in [2] (see video B in
[18]). For a few nematode tails, we mark their positions on
every frame using the software package IMAGEJ. The resulting
tail trajectories are shown in Fig. 6 and they are also marked
in video B in [18]. In Fig. 6(a), tail-tip positions are plotted
for about an oscillation period with thick colored lines on
top of a grayscale image from video B. The tail-tip velocities
are shown with small arrows. Thin colored segments high-
light tangent directions for the tail. In Fig. 6(b) we display
smoothed versions of the same six tail-tip trajectories. The tra-
jectories are shifted horizontally so that their mean x positions
are the same. The similarity between the six trajectories gives
us confidence that the measured trajectories are associated
with the collective motion.

Based on our previous study of phase oscillator models
for the formation of the metachronal wave [2], we had ex-
pected the nematode tails to remain near the bodies of other
nematodes that are participating in the metachronal wave. The
phase oscillator model assumed that material points on nema-
tode bodies are oscillating back and forth with an amplitude
of about 0.1 mm and do not involve large-amplitude elliptical
motion. However, as shown in Fig. 6 and seen in video B
in [18], the tracked tail-tip trajectories are not ellipses but
figure-8 shapes. Excursions away from the drop edge (in the y
direction in Fig. 6) are about 0.8 mm, which is almost as large
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FIG. 6. Tail trajectories as seen in a higher-magnification high-speed video. (a) Six nematode tail tips are tracked and plotted with a thick
line. Each tail tip is plotted with a different color. Arrows show the velocity of the tail tip. Thin colored segments show tangent directions for
the tail at a subset of times with each segment ending at a tail-tip location. The underlying grayscale image shows a frame from the high-speed
video (video B in [18]). A scale bar is shown in red in the top left corner. The yellow arrow shows that the metachronal wave travels to the right.
The heads of vinegar eels involved in the metachronal wave are located at the bottom of the image, near the edge of the drop. (b) Smoothed
versions of the same six tracked tail trajectories. Horizontal x positions have been shifted so that the mean position is near zero. Vertical y
positions give the distance from the drop edge.

as the metachronal wavelength of 1 mm and exceeds the back
and forth motion of the rest of the nematode bodies and their
heads. The tail tips extend well outside the region near the
boundary where the nematodes are densely packed and their
velocities can be as high as approximately 10 mm/s.

We find that some tails could not be tracked for a whole
period because they go out of focus during part of the video.
We note that video B is of a shallow drop, with a depth about
half that of the drop shown in video A in [18]. The shallower
depth facilitates viewing individual nematodes, as they are
less likely to go in and out of focus, an issue at higher mag-
nification. However, as discussed in Sec. III A, a shallower
drop depth reduces the screening length hs. We have no reason
to suspect that the depth affects the motion of nematodes
participating in the metachronal wave, though the drop shape
can influence whether metachronal wave can form [1].

B. Flow field computed from tail trajectories

We proceed to compute the fluid flow resulting from the
observed tail trajectories. We use a single tail trajectory to
generate a boundary from a sequence of tails undergoing the
metachronal wave using Eq. (15). In Fig. 7(a) we show the tra-
jectory of the rightmost tail of Fig. 6(a) with a dotted line. The
associated wave boundary is shown with a solid thick line. The
generated boundary shows that the tail would overlap with
neighboring nematodes at different times, which is indeed
confirmed from the examination of video B in [18] that high-
lights the large tail-tip excursions. To generate a boundary, we
choose the rightmost trajectory, shown in pink in Fig. 6(a), be-
cause it has the least oscillatory motion in the x direction and
provides the least overlap. Reduced overlap in the boundary
condition is desirable since it is unphysical to have different
fluid velocities at a single point in our 2D fluid model. Using
the boundary shown in Fig. 7(a), we generate an associated
two-dimensional fluid flow with the method described in
Sec. III C. The flow is shown Fig. 7(b). The circulation
[computed from Eq. (19)] and viscous dissipation rate for this
flow model are listed in the rightmost column of Table III.

The quality of fit, estimated from Eq. (18), gives a rms of
σv ∼ 2 mm/s, which is poorer than for the flows associated
with models A and B. The higher value is probably due to the
higher velocities on the boundary and the unphysical overlap
region.

The average flow velocity uc = 2.6 mm/s, for the flow
shown in Fig. 7(b), is sufficiently high to be consistent with
the experimental values reported in Fig. 3(a). Integrating hor-
izontally, we find that the standard deviation of the v velocity
component at y = 0.4 is 1.6 mm/s. This is comparable to
the standard deviation, 1.1 mm/s, of the instantaneous radial
velocity component we measured and showed in Fig. 3(c).
Interestingly, we find that the power required to drive the flow
is about 40 pW per nematode in the wave with only 2% of this
power being used for fluid circulation. This estimated power
is about 10 times higher than the 3 pW power estimated power
for propulsion of C. elegans [34], suggesting that vinegar eels
expend more energy while they are in the metachronal wave
than they would while freely swimming. We speculate that
this could be because (i) tail trajectories for nematodes in the
metachronal (extending a maximum distance about 0.8 mm
peak to peak) are larger than those of a freely swimming eel
[which are about 0.3 mm peak to peak (see the right-hand side
of Fig. 1 in [2])], (ii) flow velocities may be overestimated
because of overlaps in the tail trajectories, and (iii) due to con-
finement, nematodes involved in the metachronal wave would
expend part of their energy pushing against each other. The
power required to drive both the metachronal wave and the
associated circulation per nematode could be up to an order of
magnitude higher than that expended while freely swimming.
Improved hydrodynamic modeling would be needed to better
estimate the power required to drive the flow and modeling
taking into account steric interactions would be needed to
estimate the power dissipated within the nematode bodies.

C. Mechanical model for a single tail motion

Our analysis of the nematode tail trajectories in the pre-
ceding section revealed a characteristic figure-8 shape for
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FIG. 7. (a) Trajectory of the rightmost tail in Fig. 6 shown as a
pink dotted line on the left, after smoothing. Points on the trajectory
are shifted and delayed using Eq. (15) to give the pink solid line,
which shows the boundary position at a single moment during prop-
agation of the metachronal wave. Arrows show velocity vectors of
points on the boundary. (b) Flow field associated with a boundary that
is approximated by the tail-tip trajectories. The boundary condition is
given by points and velocities on the solid line in (a). The colormap
shows the stream function and its contours are plotted with black
lines. The thick orange line shows the boundary. Blue vectors show
velocities on the boundary. Green vectors show fluid velocities. The
y axis shows y − ym, where ym is approximately the mean y position
of a boundary point.

the tail tips. We seek to develop a mechanical model that
sheds light on such an emergent pattern. We build a simplified
model for the backbone of an isolated nematode. We model
the centerline dynamics of an individual nematode as a pla-
nar, inextensible Euler elastica with bending rigidity B. The
centerline is parametrized by arclength s and identified by a
Lagrangian marker x(s, t ). Following [35], the actuation in
the nematode that produces periodic traveling undulation is
modeled using a preferred time-dependent curvature given by

κ0(s, t ) = As

L
sin(kws − 2π�0t ). (21)

Here kw is the wave number of the target curvature, A is
the amplitude, and �0 is the frequency. We consider the
nematode head at s = 0 to be fixed in space, as the heads of
nematodes participating in the metachronal wave do not move
very far (see Fig. 5 in [2]). The tail at s = L is both force-
and moment-free. Since the vinegar eel is a slender object,
we model its hydrodynamics using local slender body theory
[36,37], which relates the viscous forces fv (s) per unit length
to the centerline velocity as

8πμ∂t x(s, t ) = −L[fv]. (22)

Here μ is the fluid viscosity and L is the local mobility
operator that accounts for drag anisotropy along the body and
is given by

L[fv](s) =
[

1

ξ⊥
n̂(s)n̂(s) + 1

ξ‖
t̂(s)t̂(s)

]
· fv (s), (23)

where ξ⊥ = (2 − c)−1 and ξ‖ = −(2c)−1 are resistance coef-
ficients in the normal and tangential directions. For a slender
body, the coefficient c is assumed to be negative and small. In
the above expression, {t̂(s), n̂(s)} are the tangent and normal
vectors along the centerline, respectively. The elastic forces
are related to the viscous forces following the force and mo-
ment balance equations

fv + ∂sF = 0, (24)

Ms + ∂sx × F = 0. (25)

Here the F are the elastic contact forces of an inextensible
rod and M is the bending moment of the filament given by
M(s) = −B[κ (s, t ) − κ0(s, t )]xs × xss (here xs refers to the
derivative ∂sx). Scaling length by L and time with the relax-
ation time τ = 8πμL4/B of an elastic filament, the nematode
body shapes are governed by three dimensionless numbers:
(i) A/L, which sets the amplitude of the target curvature;
(ii) kwL, which sets the dimensionless wave number; and
(iii) W = �0τ , the worm number [35], which compares the
frequency of wave propagation to the elastic relaxation time
of the nematode body. Using L = 2 mm, B = 10−14 N m2

[38], and f0 = 2π�0 = 5 Hz, we obtain W ≈ 40. We solve
the coupled set of partial differential equations. numerically
as outlined in [37,39].

The shapes of the nematode body and the tail trajecto-
ries at x(s = L) are outlined in Fig. 8 and reveal the natural
emergence of the figure-8 trajectory shape at the tail tip. A
figure-8-shaped tail-tip trajectory can be seen in the similar
model of an elastic filament [examine Fig. 3(b) in [40]].
Figure 8 also shows that the amplitude of motion reaches
a maximum near the tail tip, which is consistent with ob-
servations of both freely swimming nematodes and those
participating in the metachronal wave. However, these sim-
ulations do not give tail amplitudes as large as we see in either
setting. We compare the largest distance between any two
points in the tail trajectory. This distance is 0.8 mm for the
tails tracked in Fig. 6(b), 0.26 mm for the freely swimming
eel shown in Fig. 1 in [2], but only 0.16 mm in the model tail
trajectory shown in Fig. 8(b). The body shapes in Fig. 8(a)
have decreasing wavelength near the tail tip, opposite to what
we observe, suggesting that the tails are stiffer or remain
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FIG. 8. (a) Shape of an isolated nematode as computed from the
preferred-curvature model. (b) Characteristic figure-8 shape of the
tail tips emerging from the inextensibility of the nematode body.

straighter than the rest of the nematode bodies. When body
curvature propagates down a nematode body, as required for
locomotion (see, e.g., [41]), we find that a natural outcome is a
figure-8-shaped tail-tip trajectory. However, a more complex
model than explored here, including steric interactions and
possibly proprioceptive feedback [41,42], would be needed to
better match the observed body shapes.

V. SUMMARY AND DISCUSSION

Using fluorescent microspheres, we have measured the
circulation velocity of flow in a 1-cm-diam and 1-mm-deep
drop that is driven by collective motion in a concentration
of swimming T. aceti nematodes, which are commonly called
vinegar eels. The mean circulation velocity is about 2 mm/s
and located within 1 mm of the outer edge of the drop. We
found that the ratio of circulating flow velocity to metachronal
wave speed is about 2

5 and decays rapidly as a function of
distance from the outer drop edge.

Perturbative models [43–45] for causing steady flow by
wavelike ripples on a surface have been developed for three-
dimensional flows in the Stokes flow or low-Reynolds-number
limit. These predict that the driven flow depends on the square
of the amplitude of surface perturbations in units of the wave-
length times the surface wave speed. This scaling suggests
that the ratio of flow speed to wave speed should be low. In
this context, the ratio of 2/5 for the ratio of circulation speed
to metachronal wave speed that we measured in the dilute
vinegar drop is unexpectedly high.

Unlike the planar sheet model [43,44] where the fluid lies
in an infinite three-dimensional half space, our system is shal-
low, with a fixed lower boundary (the slide that our drop lies
on) and a free upper boundary (the drop surface). We take into
account the shallow drop depth by integrating the velocity ver-
tically as a function of depth. Depth-averaged velocities give
a two-dimensional hydrodynamic model. Neglecting variation
of the vertical velocity profiles and drop thickness on hor-
izontal position, the fluid obeys the homogeneous screened
Poisson equation, typical of Hele-Shaw flow [12,25].

Using the trajectory of a single nematode tail, we con-
structed a boundary condition for the metachronal wave by

delaying the tail-tip trajectory at neighboring positions. This
model gives us the velocity and location of particles along a
moving one-dimensional boundary. With a general solution to
the 2D homogeneous screened Poisson equation that decays at
large distances from the boundary and using an optimization
routine, we find the stream function that minimizes the differ-
ence between the fluid velocity and particle velocities on the
boundary. The screening in the screened Poisson equation is
sensitive to the drop depth, with shallower drops having circu-
lating flows that decay more rapidly as a function of distance
from the moving boundary than flows in deeper drops. We
find that the circulation or streaming velocity is sensitive to
the boundary particle trajectory shape, with ellipse trajectories
more effective than linear trajectories at driving circulation.

We had expected to find that the tails of nematodes partici-
pating in the metachronal wave undergo ellipse trajectories.
However, upon examination, we found that the tails of the
nematodes undergoing collective motion have figure-8 tra-
jectories and undergo large 0.8-mm excursions away from
the drop edge. These are about twice as large as tail motion
exhibited by a freely swimming nematode or most of the
nematode body that is participating in the metachronal wave.

To probe the mechanical origins of the tail motion we
constructed a simple preferred curvature model for an isolated
nematode. This model captures the characteristic figure-8
shape of the tail and shows that this shape is naturally caused
by a curvature wave propagating down an elastic body. While
this model captures the characteristic figure-8 shape of the tail
and an increase in amplitude toward the tail tip, the simulated
results are not in great agreement for an isolated nematode.
This can be possibly due to subtle structural features asso-
ciated within the nematode such as varying cross-sectional
width along its backbone and variations in how such structural
features alter the internal force generation. The associated
biomechanics is left for future consideration. Understanding
collective effects poses another set of challenges in modeling.
For example, in contrast with the experimental measurements
for nematodes participating in the metachronal wave, our
simple mechanical model does not predict large-amplitude
oscillations of the tail tip. Since hydrodynamic interactions
are screened, we believe that such emergent dynamics of the
nematode tails could be associated with local steric interac-
tions. Our prior work suggested that steric interactions were
required for metachronal wave formation in the vinegar eel
system and caused the waves traveling down the nematode
bodies to deviate from a pure sinusoidal function [2]. Re-
cently, it has been proposed that steric interactions alone can
lead to the emergence of collective behaviors in arrays of cilia
and alter their isolated waveforms [46]. The potential role of
such effects remains to be explored.

A flow model generated with a boundary generated from
the observed tail motion exhibits sufficient circulation to be
consistent with the circulation we observed experimentally.
The flow model suggests that the motion of the vinegar eel
tails is important for driving fluid circulation.

The high ratio of circulation flow speed to metachronal
wave speed that we measured suggests that systems of ne-
matodes could be engineered to drive flows. What type of
container would best give fluid circulation? Bordertaxis of
the nematodes should be facilitated; otherwise the nematodes
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will not enter a collective state giving a metachronal wave.
The container edge where the eels would be corralled could
be shallow (less than 1 mm thick) or beveled, similar to
the contact angle caused by surface tension in a drop [with
contact angle below 70◦ (see [1])]. The top surface could
be covered, rather than open, though this would affect the
screening length scale. We assumed an open surface giving
αz ∼ 3 and a screening exponential length hs = h/

√
αz [as in

Eq. (14)], where h is the depth of the container. With a fixed
upper boundary (for an enclosed container) we would expect
αz ∼ 12. A container twice as deep would be needed to give
the same screening length in a closed container as one with an
open surface. A beveled edge might be the best compromise
as it might corral the eels, facilitating collective motion while
simultaneously allowing a larger screening exponential decay
length for the driven flow. Large-amplitude motion in the
nematode tails would help drive circulation, so the distance
between outer and inner container edges should be at least a
few millimeters.

We observed nematode bodies overlapping other nema-
todes in our high-magnification video and there are numerous
nematodes that are not engaged in the collective motion.
Our 2D flow and boundary model neglects motion of over-
lapping nematodes and those that do not participate in the
collective motion. Extending the fidelity and capability of the
hydrodynamic modeling is challenging but would improve
understanding of the relation between collective motion in a
dense concentration of oscillating swimming organisms and
associated flows resulting from their collective motion.
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APPENDIX: COMPUTING VISCOUS DISSIPATION

The viscous dissipation rate in an incompressible flow de-
pends on the traceless part of the velocity gradient

σi j = 1
2

(
∂x j ui + ∂xi u j

)
. (A1)

The viscous dissipation rate per unit volume

ε̇ = μ trσ 2 = μ
∑

i j

(σi j )
2, (A2)

where the dynamic viscosity μ = ρν and ν is the kinematic
viscosity.

We integrate over z to find the viscous dissipation rate per
unit area. It is useful to compute dimensionless constants that
depend on the assumed form for the velocity field as a function
of depth

f̄ = 1

h

∫ h

0
f (z)dz, (A3)

c0 = 1

h

∫ h

0
f (z)2dz, (A4)

c1 = h
∫ h

0
f ′(z)2dz. (A5)

The full three-dimensional velocity field (U,V,W ) is re-
lated to the vertically averaged two-dimensional velocity field
(u, v) with

U (x, y, z, t ) = 1

f̄
u(x, y, t ) f (z),

V (x, y, z, t ) = 1

f̄
v(x, y, t ) f (z),

W (x, y, z, t ) = 0. (A6)

From U , V , and W we compute the different components of
the velocity gradient tensor in terms of the stream function.

σxx = ∂xU = f (z)

f̄
∂xu = f (z)

f̄
∂xyψ,

σyy = ∂xV = f (z)

f̄
f (z)∂yv = − f (z)

f̄
∂xyψ,

σzz = ∂zW = 0,

σxz = 1

2
(∂xW + ∂zU ) = f ′(z)

2 f̄
u = f ′(z)

2 f̄
∂yψ,

σyz = 1

2
(∂yW + ∂zV ) = f ′(z)

2 f̄
v = − f ′(z)

2 f̄
∂xψ,

σxy = 1

2
∂xV + ∂yU ) = f (z)

2 f̄
(∂xv + ∂yu)

= f (z)

2 f̄
(−∂xxψ + ∂yyψ ). (A7)

We integrate the squares of the components of the velocity
gradient over depth

∫ h

0
dz σ 2

xx =
∫ h

0 f (z)2dz

( f̄ )2
(∂xyψ )2 = hc0

( f̄ )2
(∂xyψ )2,

∫ h

0
dz σ 2

yy = hc0

( f̄ )2
(∂xyψ )2,

∫ h

0
dz σ 2

zz = 0,

∫ h

0
dz σ 2

xy =
∫ h

0 f (z)2dz

( f̄ )2

1

4
(∂yyψ − ∂xxψ )2

= hc0

( f̄ )2

1

4
(∂yyψ − ∂xxψ )2,

∫ h

0
dz σ 2

xz =
∫ h

0 f ′(z)2dz

( f̄ )2

1

4
(∂yψ )2

= c1

h( f̄ )2

1

4
(∂yψ )2,

∫ h

0
dz σ 2

yz = c1

h( f̄ )2

1

4
(∂xψ )2. (A8)
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In terms of the stream function, the viscous dissipation rate per unit area is

ėA(x, y) =
∫ h

0
dz ε̇(x, y, z)

=μh

[
c0

( f̄ )2

(
2(∂xyψ )2 + 1

2
(∂yyψ − ∂xxψ )2

)
+ c1

2h2( f̄ )2
[(∂yψ )2 + (∂xψ )2]

]
. (A9)

Using f (z) from Eq. (5), corresponding to a fixed base
and free surface, and with Eq. (A5), we find f̄ = 2

3 , c0 =
8

15 , c1 = 4
3 , c0/( f̄ )2 = 1.2, and c1/( f̄ )2 = 3, which are used

in Eq. (A9). To estimate the viscous dissipation rate, we

integrate the dissipation rate per unit area with Eq. (A9), over
an area with x ranging from 0 to λMW and y ranging from the
boundary to y = ym + λMW, where ym [defined in Eq. (15)] is
approximately the mean y value for the boundary.
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