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We study the quantum dynamics of a photoexcitation uniformly distributed at the periphery of an extended
star network (with NB branches of length LB). More specifically, we address here the question of the energy
absorption at the core of the network and how this process can be improved (or not) by the inclusion of peripheral
defects with a tunable energy amplitude �. Our numerical simulations reveal the existence of optimal value
of energy defect �∗ which depends on the network architecture. Around this value, the absorption process
presents a strong speedup (i.e., reduction of the absorption time) provided that LB � L∗

B with L∗
B ≈ 12.5/ ln(NB).

Analytical and numerical developments are then conducted to interpret this feature. We show that the origin
of this speedup takes place in the hybridization of two upper-band excitonic eigenstates. This hybridization is
important when LB � L∗

B and vanishes almost totally when LB > L∗
B. These structural rules we draw here could

represent a potential guide for the practical design of molecular nanonetwork dedicated to the realization of
efficient photoexcitation absorption.
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I. INTRODUCTION

In natural photosynthesis, the solar energy is absorbed
by a nontrivial arrangement of chlorophyll molecules called
“light-harvesting complex” (LHC) [1–3]. After absorption,
the energy of light is efficiently transferred to a reaction center
where the adenosine triphosphate (ATP) is finally produced.
The energy released by the hydrolysis of ATP represents the
chemical fuel at the origin of life in the plant kingdom. Be-
cause the sun is a clean energy source with rich reserves, it
turns out that the solar energy is one of the best strategies to
overcome the current energy crisis [4,5]. As a consequence,
photosynthesis has recently attracted a large amount of re-
search interest. More precisely, a special attention has been
paid to elaborate artificial LHCs that could be able to mimic
natural photosynthesis to efficiently convert the energy of light
into chemical fuel [6–9].

In particular, it has been suggested that exciton-mediated
energy transport could be exploited in dendrimers to design
artificial LHCs [10]. A dendrimer is an engineered polymer
whose hyperbranched structure at nanoscale looks like the
fractal patterns that occur in the plant kingdom [11–14]. It
consists of several dendritic branches, called dendrons, that
emanate out from a central core. Each dendron is formed by
long molecular chains organized in a self-similar fashion. It
exhibits branching points where the chain splits into two or
three chains, increasing the generation number, and its pe-
riphery is occupied by functional terminal groups. To obtain a
LHC, the main idea consists in the functionalization of the ter-
minal groups by chromophores that favor light harvesting. The
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absorbed light yields Frenkel excitons that propagate along the
dendrons and converge toward the central core where chem-
ical fuel is finally produced [15–21]. Note that dendrimers
are not the only systems that have been considered. Many
alternatives have been elaborated owing to the prowess of
the chemical engineering, such as porphyrin arrays [22–24],
organic nanocrystals [25,26], or LHC based on noncovalent
interactions [27–29], to cite but a few examples.

From a theoretical point of view, the exciton propagation
in an artificial LHC can be viewed as a physical realization
of a continuous time quantum walk [30,31] on a network
that exhibits a complex architecture, defects (the light ab-
sorbers) and a trap (the reaction center). Therefore, to judge
the efficiency of the light capture process, it is of fundamen-
tal importance to understand the interaction between these
three ingredients. Specifically, the question arises as to how
to design the network so that these key ingredients prevent
excitonic localization and instead promote, as far as possible,
the propagation of energy towards the trap for an efficient
absorption process.

Indeed, as shown by Mulken et al. [32], localization
processes may first result from the complex nature of the
network that favors the occurrence of highly degenerate ex-
citonic eigenstates. Therefore, when the excitonic quantum
state initially expands over few degenerate eigenstates, spe-
cific quantum self-interferences arise. The propagation of the
exciton is thus stopped so that the exciton remains confined
in the neighborhood of the excited region on the network.
Such a feature has been reported in many networks such as
compact dendrimers [30], star graphs [33], and Apollonian
networks [34]. But the architecture of the network may also
induce localization even if the exciton occupies initially a
nondegenerate eigenstate. This feature has been observed in
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an extended dendrimer, when the initial wave function is
uniformly distributed over the periphery [35]. In that case
quantum interferences arise because multiple scatterings oc-
cur each time the exciton tunnels from one generation to
another resulting in a localization process when the generation
number exceeds a critical value.

Then, as in solid-state physics, the localization may arise
when the network is perturbed by energetic defects [36].
Indeed, a single defect breaks the symmetry of the network
resulting in the occurrence of an excitonic wave function
that exponentially localizes in the neighborhood of the de-
fect. Nevertheless, more subtle situations may arise when
several defects are present. Indeed, in accordance with the
well-known concept of localization transition due to Anderson
[37,38], the defects may act as a negative ingredient which
prevents the excitonic delocalization as observed in linear
chains [39], discrete rings [40], and binary trees [41]. By
contrast, in other cases, the presence of defects may behave
as a positive ingredient that enhances the delocalized nature
of the exciton. This feature has been observed in tree graphs
similar to dendrimers where a weak disorder yields extended
states through fluctuation-enabled resonances between states
that initially may appear to be localized [42,43].

Finally, the interaction with traps drastically affects the
efficiency of the excitonic propagation [44–48]. Originating
in the coupling with an external continuum, the trapping
effect is usually addressed using a non-Hermitian exciton
Hamiltonian. The real parts of the complex eigenvalues of the
Hamiltonian define the excitonic energies, whereas the imag-
inary parts specify the energy widths, i.e., the decay rates.
In that case, it has been shown that a general phenomenon
called superradiance transition may arise [49]. Indeed, when
the exciton-trap coupling is weak, all the excitonic eigenstates
exhibit quite similar decay rates. However, as the coupling
increases, an eigenstate restructuring takes place. Only a few
short-lived states, called superradiant states, exhibit cooper-
atively enhanced decay rates. These states are accompanied
by subradiant eigenstates which represent long-lived states
almost decoupled from the traps. When the exciton-trap
coupling becomes sufficiently strong, the superradiant states
localize on the traps so that the excitonic transfer to those
specific sites is drastically hindered and the trapping process
loses in efficiency.

In this paper, we present a theoretical work to illustrate how
the interplay between the complex architecture, the presence
of defects and the use of a trap could be exploited in an
extended star to design an efficient LHC. The star graph is
one of the most regular structures in graph theory. Organized
around a central core, it exhibits the local tree structure of
irregular and complex networks. However, its topology re-
mains sufficiently simple so that analytical calculations can
be carried out. To proceed, one considers that the periphery of
the extended star graph is functionalized by energetic defects
whereas the core is occupied by a trap. The absorption of light
by the defects brings the exciton in an initial state uniformly
delocalized over the peripheral sites whereas the trap is re-
sponsible for the exciton decay. Therefore, depending on the
structure of the graph, it will be shown that if the energetic
defects are judiciously chosen, the initial state localized at the
periphery may hybridize with a state localized on the core. As

a consequence, a speedup of the excitonic propagation is ob-
served and a quite efficient artificial LHC is finally obtained.

The paper is organized as follows, in Sec. II the ex-
tended star graph is introduced and the exciton Hamiltonian is
defined. Then the relevant observables required for character-
izing the dynamics and the absorption process are described.
In Sec. III, a numerical analysis is performed for characteriz-
ing the absorption process. Finally, in Sec. IV the results are
discussed and interpreted using a semianalytical approach.

II. THEORETICAL BACKGROUND

A. Model Hamiltonian

As shown in Fig. 1, we consider the extended star graph
formed by NB branches that emanate out from a central node.
Each branch � = 1, 2, ..., NB corresponds to a finite-size chain
whose nodes are labeled by the index s = 1, 2, ..., LB. The
central node, denoted (� = 0, s = 0), is connected to the side
site s = 1 of each branch. All the nodes are identical excluding
those of the periphery of the star, the terminal groups being
functionalized by energetic defects, as well as the core site
that is occupied by a trap.

In this network, we are interested in the motion of an
exciton whose quantum dynamics is described according to
a standard tight-binding model [50]. Within this model, each
site (�, s) is occupied by a molecular subunit whose internal
dynamics is described by a two-level system. Let |�, s〉 stand
for the state in which the (�, s)th two-level system occupies
its first excited state, the other two-level systems remaining
in their ground state. The vacuum state |�〉 describes all the
two-level systems in their ground state. Let ω0 denote the
Bohr frequency of the two-level systems except those of the
periphery and of the core of the graph. The terminal groups
are occupied by energetic defects whose Bohr frequency is
shifted by an amount � according to ω0 + �. The central
node is occupied by a trap that is responsible for the irre-
versible decay of the exciton. It is characterized by a complex
self-energy ω0 − i�/2 where � defines the exciton decay rate
[51,52]. Finally, the exciton is able to tunnel from one node to
another according to the hopping constant J that connects the
linked nodes. Note that in the case of concrete systems (e.g.,
molecular aggregates) the variations of parameters such as the
ones considered in our model (J , �, and �) are intimately
linked to the electronic structure properties of the molecular
subunits considered [12,53–55].

Within these notations, the Hamiltonian that governs the
one-exciton dynamics is defined as (with the convention
h̄ = 1)

Ĥ =
(

ω0 − i
�

2

)
|00〉〈00| +

NB∑
�=1

LB∑
s=1

(ω0 + �δsLB )|�s〉〈�s|

+
NB∑
�=1

J (|00〉〈�1| + |�1〉〈00|)

+
NB∑
�=1

LB−1∑
s=1

J (|�s〉〈�s + 1| + |�s + 1〉〈�s|), (1)

where δ is the Kronecker symbol.
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FIG. 1. Illustration of the extended star graph and the problem reduction based on rotational symmetries. (a) The original network
composed of a central site connected to NB branches with LB sites each. The total number of sites is 1 + NBLB. We consider here the presence
of a trap on the central site (represented in blue), and NB energetic defects located on the periphery of the star (represented in red). A rotational
symmetry of angle θ = 2π/NB is present. This symmetry can be used to reduce the complexity of the whole system into a series of effective
subgraphs with (b) NB − 1 effective chains modeling the Hamiltonian given in Eq. (3), and (c) the particular case of the effective chain modeling
the Hamiltonian given in Eq. (4). This last system (i.e., Hamiltonian) is the one we employ to describe the quantum dynamics of an initial
excitation uniformly delocalized on the periphery of the original network.

B. Block diagonal representation

For describing the exciton eigenstates, we can take advan-
tage of the fact that the Hamiltonian Ĥ is invariant under the
discrete rotation of angle θ = 2π/NB and centered on the core
of the star [see Fig. 1(a)]. Consequently, its diagonalization
is greatly simplified when one works with an intermediate
basis that involves the state localized on the core |00〉 and a
set of orthogonal Bloch states |χ (k)

s 〉 with s = 1, 2, ..., LB and
k = 1, 2, ..., NB. A Bloch state is defined as

∣∣χ (k)
s

〉 = 1√
NB

NB∑
�=1

e−ik�θ |�s〉. (2)

Within this basis, it turns out that k is a good quantum num-
ber so that the Hamiltonian Ĥ becomes block diagonal. It is
expressed as a direct sum Ĥ = Ĥ (1) ⊕ Ĥ (2)... ⊕ Ĥ (NB ) where
Ĥ (k) is the block Hamiltonian associated to the quantum num-
ber k. Therefore, two situations arise depending on the value
of the integer k.

For all k 	= NB, all the block Ĥ (k) are identical. They are
expressed as

Ĥ (k 	=NB ) =
LB∑

s=1

(ω0 + �δsLB )
∣∣χ (k)

s

〉〈
χ (k)

s

∣∣

+
LB−1∑
s=1

J
(∣∣χ (k)

s+1

〉〈
χ (k)

s

∣∣ + ∣∣χ (k)
s

〉〈
χ

(k)
s+1

∣∣). (3)

As illustrated in Fig. 1(b), they correspond to a tight-binding
Hamiltonian on a finite-size chain formed by the sites s =
1, 2, ..., LB. They involve the states |χ (k)

s 〉 but they do not
involve the state |00〉 localized on the core of the extended
star graph. Therefore, Ĥ (k 	=NB ) acts in a Hilbert space E (k 	=NB )

whose dimension reduces to LB. Each site is characterized
by a self-energy ω0 excluding the side site s = LB whose
self-energy is shifted by an amount �.

For k = NB, a different situation occurs. Indeed, in that
case, the Hamiltonian Ĥ (NB ) is defined as

Ĥ (NB ) =
(

ω0 − i
�

2

)
|00〉〈00|

+
LB∑

s=1

(ω0 + �δsLB )
∣∣χ (NB )

s

〉〈
χ (NB )

s

∣∣
+ √

NBJ
(|00〉〈χ (NB )

1

∣∣ + ∣∣χ (NB )
1

〉〈00|)
+

LB−1∑
s=1

J
(∣∣χ (NB )

s+1

〉〈
χ (NB )

s

∣∣ + ∣∣χ (NB )
s

〉〈
χ

(NB )
s+1

∣∣). (4)

As previously, Ĥ (NB ) defines a tight-binding Hamiltonian on a
finite size chain [see Fig. 1(c)]. This chain involves the sites
s = 0, 1, ..., LB associated to the states |00〉 (the exciton is
located on the core of the extended star), |χ (NB )

1 〉 (the exciton
is uniformly delocalized over the sites s = 1 of the branches
of the extended star), |χ (NB )

2 〉 (the exciton is uniformly delo-
calized over the sites s = 2 of the branches of the extended
star),... and so on. When compared with what happens when
k 	= NB, the finite size chain exhibits three defects. First, a
“complex” defect is localized on the side site s = 0 whose
self-energy ω0 − i�/2 is modified by the presence of the
trap. Second, the strength of the link between the side sites
s = 0 and s = 1 is equal to

√
NBJ , whereas in the core of the

chain this strength reduces to J . Finally, an energetic defect is
localized on the side site s = LB whose self-energy is shifted
by an amount � when compared with that of the other sites.
Note that Ĥ (NB ) acts in a Hilbert space whose dimension is
equal to LB + 1.

Within this block diagonal representation of the exciton
Hamiltonian Ĥ , the corresponding Schrödinger equation can
be solved numerically to determine the eigenvalues {ω̄(k)

μ } and
the associated eigenvectors {|ϕ(k)

μ )} labeled by the indexes k
and μ. From the knowledge of these eigen-properties, one can
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compute in principle all the observables needed for character-
izing the dynamics.

However, in the present work, we shall focus our attention
to a particular situation in which the interaction with an exter-
nal field, such as an electromagnetic field, will be assumed to
bring the exciton in a state that is uniformly delocalized over
the periphery of the star. Consequently, the exciton dynamics
is confined in the k = NB subspace. Restricting our attention
to that subspace, the notations are simplified as follows. First,
one disregards the index k and introduce the Hamiltonian
Ĥ = Ĥ (NB ). Then, the basis vectors are renamed as

|s) =
{

|00〉 if s = 0,∣∣χ (NB )
s

〉
if s > 0.

(5)

Within these simplified notations, the restriction of the Hamil-
tonian in the k = NB subspace is finally rewritten

Ĥ =
LB∑

s=0

(
ω0 − i

�

2
δs0 + �δsLB

)
|s)(s|

+ √
NBJ (|0)(1| + |1)(0|)

+
LB−1∑
s=1

J (|s)(s + 1| + |s + 1)(s|). (6)

C. Quantum dynamics: Method and numerical tools

Assuming that the exciton is initially in the state |LB)
uniformly delocalized over the peripheral sites, its transport
across the graph is thus described by the Hamiltonian Ĥ
[Eq. (6)]. To simulate the associated dynamics, we numeri-
cally diagonalize Ĥ to obtain the form

Ĥ =
∑

μ

ω̄μ

|ϕμ)(ϕ̃μ|
(ϕ̃μ|ϕμ)

. (7)

In Eq. (7), |ϕμ)/|ϕ̃μ) represents a couple of right and left
biorthogonal eigenstates of Ĥ sharing a same complex eigen-
value

ω̄μ = ωμ − i
γμ

2
, (8)

with ωμ and γμ representing, respectively, the real energy and
the decay rate of the right and left eigenstates pair |ϕμ)/|ϕ̃μ)
[56]. Knowing the eigenstates and the eigenenergies of Ĥ
allows us to numerically build the time evolution operator
Û (t ) = exp(−iĤt ) written as

Û (t ) =
∑

μ

exp(−iω̄μt )
|ϕμ)(ϕ̃μ|
(ϕ̃μ|ϕμ)

. (9)

From the knowledge of both the evolution operator and the
eigenstates, different observables can be computed. First, we
focus on the absorption probability PA(t ) expressed as

PA(t ) = 1 −
LB∑

s=0

|(s|Û (t )|LB)|2. (10)

PA(t ) measures the probability for the exciton to be absorbed
by the trap at time t . Then, to characterize the absorption pro-
cess at the core of the network, we introduce a characteristic
absorption time τ defined as

τ −→ PA(τ ) = 50%. (11)

The absorption time represents the moment when half of the
total excitonic population is absorbed by the central core. In
practice, the determination of the absorption time τ is realized
via a numerical minimization over t such that

τ = min
t

[0.5 − PA(t )]2, (12)

with the Nelder-Mead method from the scipy optimization
package.

III. NUMERICAL RESULTS: CHARACTERIZATION
OF THE ABSORPTION PROCESS

In this section, we present the results of our numerical
study focusing on the absorption process at the core of the ex-
tended star graph. Every simulation presented here is realized
considering the hopping constant J as the reference energy
unit (i.e., J = 1). The absorption rate on the core is fixed to a
small value (� = 0.1J). The latter is considered as a constant
for all our simulations. Note that we consider only positive
values for the defect energy shift �.

A. Absorption time: Evidence of a local minimum
by impurity tuning

Let us focus first on the dynamics of the absorption process
at the core of the star graph. To proceed, Fig. 2 shows the
evolution of the absorption amplitude PA(t ) as a function of
both the time and �. Two sets of model parameters are consid-
ered here with NB = LB = 5 (top panel) and NB = 10, LB = 5
(bottom panel). In this figure, dark regions are associated to
small absorption [i.e., PA(t ) ∼ 0], whereas bright regions re-
veal an almost complete absorption [i.e., PA(t ) → 1]. Reading
the figure along the time axis (from bottom to top), we see that
the absorbed population PA(t ) progressively increases with the
time whatever the value of �. However, we see that the speed
of the absorption process to reach the full absorption regimes
[i.e., PA(t ) → 1] is strongly modulated by the value of � (as
shown along the x axis). More particularly, when � ≈ 2J for
(NB = 5, LB = 5) and when � ≈ 3J for (NB = 10, LB = 5),
the absorption process appears to be suddenly accelerated:
PA(t ) reaches very quickly the full absorption limit as shown
by the arising of a vertical bright beam in Fig. 2. In fact, after
carrying out several simulations, it turns out that this speedup
effect arises when � reaches a critical value �∗ approximately
equal to �∗ ≈ √

NB − 1J . We illustrated in Fig. 2 this partic-
ular value with vertical blue dashed lines.

To further characterize the particular behavior occurring
around �∗, let us now focus on the characteristic absorption
time τ defined by Eq. (11). Its � dependence is shown in
Fig. 3 for two different branch numbers NB = 5 (top panel)
and NB = 7 (bottom panel) and for increasing values of the
branch length LB = 4, 6, 8, and 10. Here, we see that the
absorption time τ presents a three-phase evolution. In a first
phase, when � increases in the domain [0,�∗[, a progressive
increasing of τ is observed. The slope of this increase depends
on the value of LB: the larger LB is, the larger is the increase of
τ with �. Then, in a second phase, an abrupt change occurs
when � → �∗. Around this point (indicated with vertical
blue dashed lines), the absorption time τ suddenly decreases
to reach a local minimum. This feature reveals the important
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FIG. 2. Time evolution of the absorption probability PA(t ) as a
function of � (with fixed � = 0.1J). Top panel: Evolution for fixed
values NB = LB = 5. Bottom panel: similar plot for NB = 10 and
LB = 5. The vertical blue dashed lines indicate the particular value
of � = √

NB − 1J where a strong acceleration of the absorption
process is detected.

role of the number of branches NB in the arising of this sudden
behavior. After reaching this local minimum, the increasing
of � in the last domain ]�∗,+∞[ leads to the increasing
of the absorption time τ to very large values demonstrating
there that the absorption process is strongly slowed. As a final
remark on Fig. 3, note in both panels that all the curves are
on top of each other and never cross. This shows that, for any
fixed values of NB and �, increasing LB always generates a
larger absorption time τ . This is a feature that we observed
in every simulation conducted. To finalize our analysis of
the absorption time, let us show that the local minimum of
τ occurring around �∗ is actually a systematic feature of the
system under study. To proceed, we illustrate in Fig. 4 this
feature with a heatmap of the evolution of the characteristic
absorption time τ as a function of both parameters � and
NB (for a fixed value LB = 4). In this plot, we represent the
function �/J = √

NB − 1 by the full blue curve. As shown
here, the blue curve defines with a high level of precision the
evolution of the valley of local minima of the absorption time
τ across the parameter space (NB, LB). Note that similar trends
were always observed whatever the value of LB we considered
in our simulation (not shown here).

FIG. 3. Evolution of the absorption time τ with �, NB and LB

(� = 0.1). Top panel: Evolution of τ as a function of � for a fixed
value of NB = 5 branches and increasing values of branch length
LB = 4, 6, 8, and 10. Bottom panel: similar plot for a different fixed
number of branches NB = 7. The vertical blue dashed lines indicate
the particular value of � = √

NB − 1J where a strong acceleration of
the absorption process is detected.

B. Assessing absorption speedup
in the (NB, LB)-parameter space

The systematic presence of the local minimum for τ sug-
gests a potential enhancement of the absorption process when
� = �∗. Based on this, it is interesting to observe that, in
some cases, this local minimum can go even below the absorp-
tion time obtained in the absence of defects in the periphery of

FIG. 4. Evolution of the absorption time τ with � and NB (� =
0.1). Heatmap of the characteristic absorption time τ as a function
of � and NB for a fixed value LB = 4. The blue curve illustrate the
function � = √

NB − 1J which delimits a valley of local minima for
the absorption time τ .
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FIG. 5. Speedup S of the absorption process in the (NB, LB )
parameter space. The heatmap shows the evolution of the speedup
S [as defined in Eq. (13)] in the parameter space (NB, LB). Dark
colors shows where a speedup is produced (i.e., S > 0), whereas
white area reveal where there is none (i.e., S � 0). The dotted black
curve is description of the logarithmic limit defining the region where
a speedup is produced. The function used is LB = a0/ ln(NB) with the
numerical coefficient a0 = 12.5.

the star (i.e., � = 0). Numerical evidences of this feature are
given in both panels of Fig. 3. In these plots, we see indeed
that for LB = 4 (black curves) the absorption time τ actu-
ally reaches a (not only local) global minimum for � = �∗.
However, this is not the case anymore when considering for
example a parameter LB = 10 (orange curves in both panels
of Fig. 3).

These observations suggest then the existence of a poten-
tial “speedup” for the absorption process which can strongly
depend on the architecture of the network. As a consequence,
one can legitimately wonder: For which type of network could
we expect the occurrence of an absorption speedup when
� → �∗?

To assess this question, we introduced a measure S of the
speedup defined as

S = 1 − τ (�∗)

τ (� = 0)
. (13)

The measure S allows to estimate the reduction (or augmenta-
tion) of the absorption time obtained in the presence of defects
tuned like � = �∗ compared to the case when no defects is
considered � = 0. By definition, this measure S evolves on
the domain S ∈] − ∞, 1]. The closer S gets to 1, the more
important is the speedup. Conversely, S < 0 indicates that no
speedup is produced at all, namely: the absorption time τ at
� = �∗ is just a local minimum in the �-space.

Figure 5 shows a heatmap of S as a function of the struc-
ture parameters LB and NB. On this figure, we deliberately
choose to rescale the colormap to only highlight regions
where a reduction is produced (i.e., where S > 0) with a
gradient of dark color. White regions are then related to pa-
rameters subspaces where no reduction is produced for the
absorption time (when � = �∗). The results presented reveal
the existence of a region in the parameter space (NB, LB)
where a strong speedup can be expected. This region is NB-

FIG. 6. Evolution of the spectrum of the two upper-band exci-
tonic eigenstates of Ĥ as a function of � (with � = 0.1). Top panel:
energy ωμ and decay rate γμ of the two eigenstates for NB = LB = 5.
Bottom panel: similar plot for NB = 5, LB = 10. The vertical blue
dashed lines indicate the particular value of � = √

NB − 1J where a
strong acceleration of the absorption process is detected.

dependant and can be defined by the following approximate
condition:

S > 0 �⇒ LB � L∗
B with L∗

B ≈ a0

ln(NB)
, (14)

where a0 = 12.5 is a numerical coefficient. Thus, we see here
that the parameter LB is the main limiting factor concerning
the arising of a speedup in the absorption process at the core
of the network (with a logarithmic scaling in NB).

C. Excitonic eigenstates properties

To better understand the limitation of the absorption
speedup with LB, we will focus in this final numerical sec-
tion on a key ingredient of the quantum dynamics: the
excitonic eigenstates. As indicated by Eq. (9), the eigenstates
drive the evolution of the quantum transport inside the system
through the time evolution operator. They are thus encoding
a precious information on the capacity of the exciton to effi-
ciently delocalize to the absorbing central trap of the network.

Numerical investigations have revealed that only the two
highest energy excitonic eigenstates are strongly affected by
�, and this whatever the size of the system (i.e., the values
of NB and LB). For sake of conciseness, and because they will
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FIG. 7. Evolution of the inverse participation ratio (IPR) of the
two upper-band excitonic eigenstates of Ĥ as a function of � (with
� = 0.1). Top panel: IPR of the two eigenstates for NB = LB = 5.
Bottom panel: similar plot for NB = 5, LB = 8. The vertical blue
dashed lines indicate the particular value of � = √

NB − 1J where
a strong acceleration of the absorption process is detected.

play a central role in our future analysis (see Sec. IV), we will
here only focus on these two states in our discussion.

In Fig. 6, we show the evolution of the real and imaginary
part of the energy of these two particular eigenstates as a
function of �. As readily seen here, in the case NB = LB = 5
(see top panel of Fig. 6), their real energies ωμ exhibit an
avoided crossing around the specific value �∗ ≈ √

NB − 1J .
Simultaneously, the associated decay rates also cross in this
region thus indicating that both eigenstates share a similar
life time (and become quasidegenerate). However, these fea-
tures change in the case NB = 5, LB = 8 (see bottom panel of
Fig. 6). Here, the real energies simply cross each other and not
evident avoided crossing is present. Similarly, the associated
decay rates do not cross each other but simply present little
bumps around �∗. The two eigenstates do not share a same
life time amplitude anymore: one will always be long-lived
(small decay rate) whereas the second one will be short-lived
(large decay rate).

Let us now focus on a structural analysis of the two upper-
band eigenstates to characterize their response to variations
of �. To proceed we will use a measure of spatial delocal-
ization, called the inverse participation ratio (IPR), which is
defined like

IPR(|ϕμ)) =
(

LB∑
s=0

|(s|ϕμ)|4
)−1

. (15)

Within this definition, the IPR of an eigenstate fully lo-
calized on one site [of the effective chain, see Figs. 1(b) and
1(c)] is equal to 1. By contrast, the IPR of a state uniformly
delocalized over the whole chain is equal to LB + 1 (the total
length).

We illustrate in Fig. 7 the evolution of the IPR of both
eigenstates as a function of �. Here, two different chain
lengths are considered with LB = 5 (top panel) and LB = 8
(bottom panel) with a same number of branches NB = 5. Fo-
cusing first on the case LB = 5 (top panel), we observe that
a strong state restructuring occurs around �∗ as suggested
by the narrow peaks in the IPRs of both states. Around this
particular value, the spatial spreading of the two eigenstates
is maximized. This feature tends however to disappear when
increasing the length LB of the chain as shown in the bottom
panel of Fig. 7. In this second case, the two peaks arising in
the IPR of the two eigenstates are still present but strongly
minimized. Extending our numerical investigations, we ob-
served that increasing the length of the chain tends to totally
extinguish the IPR bumps in this region (not shown here). This
feature taking place rapidly as soon as we consider LB > L∗

B
[using Eq. (14), we obtain here L∗

B ≈ 8 for NB = 5] which
follows the evolution of the absorption speedup measured in
Fig. 5.

In the coming section, we will discuss the origin of the
absorption process speedup and why this phenomenon is re-
lated to the NB value. We will also explain why the structure
parameter LB is a limiting factor for the occurrence of this
speedup through the concept of quantum resonance from the
core and the periphery of the network.

IV. DISCUSSION: INTERPRETATION
OF THE ABSORPTION PROCESS

A. Schrodinger equation and eigenstates

In the previous section, numerical simulations have been
carried out to characterize the excitonic absorption at the core
of an extended star whose peripheral sites are occupied by
defects. These defects, whose energy is shifted by an amount
�, play a key role in the efficiency of the excitonic transfer be-
tween the periphery and the core. Indeed, we have shown that
when � reaches a specific value �∗, a sudden speedup of the
absorption process may arise, depending on the architecture
of the graph. This speedup effect takes place provided that the
branch length remains smaller than a NB-dependant critical
value approximately equal to L∗

B ≈ 12.5/ ln(NB). It turns out
that �∗ only depends significantly on the branch number and
it typically scales as �∗ ≈ √

NB − 1J . Our numerical results
revealed that this efficient pathway for the energy trans-
fer originates in the restructuring of the two highest energy
exciton eigenstates. When � is judiciously chosen, i.e., when
� = �∗ these states delocalize to create a bridge between the
periphery and the core of the star.

To interpret and discuss these observed features, let us
characterize the eigenstates of the Hamiltonian Ĥ [given in
Eq. (6)]. To proceed, the Schrodinger equation is expressed as

(ω0 − i�/2)ϕ(0) + √
NBJϕ(1) = ω̄ϕ(0),√

NBJϕ(0) + ω0ϕ(1) + Jϕ(2) = ω̄ϕ(1),

· · · = · · · ,

Jϕ(s − 1) + ω0ϕ(s) + Jϕ(s + 1) = ω̄ϕ(s),

· · · = · · · ,

Jϕ(LB − 1) + (ω0 + �)ϕ(LB) = ω̄ϕ(LB), (16)
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where ϕ(s) = (s|ϕ) is the exciton wave function with the
specific eigenenergy ω̄.

1. Extended states

According to the standard properties of the tight-binding
model [57,58], it is straightforward to show that the finite
chain shown in Fig. 1(c) supports extended states. Indeed, far
from the side sites, the Schrodinger equation reduces to that of
a linear chain with translational invariance. Therefore, when
one considers the presence of the boundaries, the Hamilto-
nian exhibits eigenstates that correspond to superpositions of
forward and backward traveling waves as

ϕ(s) = β (+)eiqs + β (−)e−iqs, (17)

where the amplitude β (±) can be found by applying boundary
conditions. These waves, with a real wave vector q, define
traveling states whose eigenenergies ω̄q = ω0 + 2J cos(q) be-
long to the energy band [ω0 − 2J, ω0 + 2J]. They describe
excitonic states uniformly delocalized over the branches of the
star and that propagate along that branches.

2. Localized states

Since the finite-size chain Fig. 1(c) exhibits defects which
break the symmetry of the problem, the Hamiltonian Ĥ sup-
ports additional states whose properties strongly differ from
those of the traveling waves. These states correspond to wave
functions that localize in the neighborhood of the defects and
whose energies lie outside the continuous band [57,58].

To illustrate this feature, let us seek the general solution of
the Schrodinger equation as

ϕ(s) =
{

α if s = 0,

β (+)eiqs + β (−)e−iqs if s � 1.
(18)

By inserting this solution in the Schrodinger equation far from
the side sites, it turns out that the eigenenergy satisfies the
dispersion relation of the infinite chain ω̄ = ω0 + 2J cos(q).
However, the value of the wave vector q is still unknown at
this stage. To determine the allowed wave vector, one must
study the Schrodinger equation for s = 0, s = 1, and s = LB.
One obtains a system of three equations for α, β (+), and β (−).
This system exhibits nontrivial solutions if its determinant
vanishes. This condition gives rise to the mode equation [59],
i.e., the equation whose solutions specify the allowed values
of the wave vectors. It is defined as(

�
J − e−iq

)(
NB − 1 − i �

2J e−iq − e−2iq
)

(
�
J − eiq

)(
NB − 1 − i �

2J eiq − e2iq
) = e2iqLB . (19)

In a finite-size chain, the mode equation cannot be solved
analytically. Nevertheless, as shown in the following, it can be
used to introduce relevant approximations and consequently
to understand the numerical observations

To proceed, the main idea consists in a two-step approach
in which one first treats independently the localization on
each side of the chain by considering the limit LB → ∞. In
doing so, it will be shown that each extremity of the chain
exhibits localized states characterized by a complex wave
vector q = Q + iκ . In that case, the right hand side of the
mode equation Eq. (19) vanishes so that the allowed q values

FIG. 8. Illustration of the right-side semi-infinite chain model.
Here, a trap is located on site s = 0 and a hopping defect is connect-
ing sites s = 0 and 1.

correspond to the solutions of two distinct equations written
as

(NB − 1) − i
�

2J
e−iq − e−2iq = 0, (20)

�

J
− e−iq = 0. (21)

Equation (20) describes states localized in the neighborhood
of the sites s = 0 and s = 1, whereas Eq. (21) characterizes
localized states occurring near the site s = LB.

The second step of our approach consists in considering
finite LB values for which a hybridization may occur between
states localized over different sides.

B. Localization near the core of the star

To understand the occurrence of localized states in the
neighborhood of the extremity sites s = 0 and s = 1, let us
consider the semi-infinite chain displayed in Fig. 8.

By solving Eq. (20), provided that NB is larger than 2, it is
straightforward to show that the semi-infinite chain exhibits
two localized states. The first state called “ϕ(�)

+ ” is located
above the continuous band whereas the second state called
“ϕ(�)

− ” is located below the continuous band. The correspond-
ing eigenenergies are defined as

ω̄
(�)
± = ω0 ± JNB√

NB − 1

√
1 − ε2

NB − 1
− iεJ

NB − 2

NB − 1
, (22)

where ε = �/4J . It turns out that the unstable nature of the
core site contaminates the energies of the localized states
ω̄

(�)
± = ω

(�)
± − iγ (�)/2 that become complex. Regarding the

energies ω
(�)
± , the presence of the trap is responsible for a shift.

These energies are pushed back towards the continuous band
edge as � increases. Nevertheless, they lie outside the band
provided that NB > 2. They are defined as

ω
(�)
± = ω0 ± JNB√

NB − 1

√
1 − �2

16J2(NB − 1)
. (23)

The two states “ϕ(�)
± ” are characterized by the same decay rate

γ (�) defined as

γ (�) = �

2

(
NB − 2

NB − 1

)
. (24)

This decay rate, that remains smaller than that of the core site,
depends on the branch number. It increases as NB increases
and it converges towards the limiting value γ

(�)
∞ = �/2 as NB
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FIG. 9. Illustration of the left-side semi-infinite chain model.
Here, we consider the presence of an energetic defect on the right
extremity site s = LB.

tends to infinity. Note that γ (�) = 0 when NB = 2. Finally, the
states “ϕ(�)

± ,” whose corresponding wave functions localize on
the extremity sites s = 0 and s = 1, are characterized by the
same localization length ξ± = 1/κ expressed as

ξ± = 2

ln(NB − 1)
. (25)

C. Localization near the periphery of the star

To understand the occurrence of localized states in the
neighborhood of the other extremity site s = LB, let us con-
sider the semi-infinite chain displayed in Fig. 9. It exhibits an
energetic defect on the side site.

According to Eq. (21), provided that � is larger than
J , the semi-infinite chain exhibits one localized state called
“ϕ(�)” and whose energy is located above the continuous band
(� > 0). This energy is defined as

ω̄(�) = ω(�) = ω0 + �2 + J2

�
. (26)

This state whose wave function localizes near the side site s =
LB, is characterized by the localization length ξ (�) expressed
as

ξ (�) = 1

ln(�/J )
. (27)

D. Hybridization process

Back to the general case by considering finite LB values,
let us imagine the following situation. Provided that NB > 2,
the finite-size chain will support at least two localized states
whose wave functions, slightly perturbed by the boundary
s = LB, are localized on the left extremity of the chain. If
� > J , then one expects the occurrence of a third localized
state whose wave function is important in the neighborhood
of the right extremity of the chain. Therefore, if the energy
of that state becomes resonant with that of a state localized
on the left side, then a hybridization will arise. This will give
rise to the occurrence of a superposition of states localized on
both sides of the chain. Depending on the parameter values,
this hybridization could favor an efficient energy transfer be-
tween the periphery and the core of the graph, as observed
numerically in Sec. III.

To illustrate this feature, let us consider that � is chosen so
that the state “ϕ(�)” localized near s = LB is almost resonant
with the state “ϕ(�)

+ ” localized near the trap, i.e., ω(�) ≈ ω
(�)
+ .

For a finite LB value, both states interact through the overlap
of their wave functions [59]. Let C denotes the corresponding
coupling, whose strength depends on the branch length LB.
In that context, if the two localized states are sufficiently far
from the continuous band, the dynamics of the two highest
eigenenergies is isomorphic to that of a two-level system

whose Hamiltonian is defined as

Ĥ two-level =
(

ω̄
(�)
+ C
C ω̄(�)

)
. (28)

The corresponding eigenvalues become complex indicat-
ing that the unstable nature of the state “ϕ(�)

+ ” contaminates
the second localized state “ϕ(�).” They are expressed as

ω̄± = ω
(�)
+ + ω(�)

2
− i

γ (�)

4

±

√√√√(
ω

(�)
+ − ω(�)

2
− i

γ (�)

4

)2

+ C2. (29)

When one analyzes the � dependence of these two highest
eigenenergies, two situations arise depending on the strength
of the coupling C.

When LB is sufficiently short when compared with the
localization length of the states “ϕ(�)

+ ” and “ϕ(�),′′ a strong
coupling C arises. One thus expects the occurrence of a strong
hybridization process at the resonance. Nevertheless, the na-
ture of the states of the Hamiltonian Ĥ two-level depends on the
value of � that controls that resonance.

For small � values, we are far from the resonance so
that the two localized states “ϕ(�)

+ ” and “ϕ(�)” remain al-
most independent. As observed in the top panel of Fig. 6,
Ĥ two-level exhibits a high energy eigenstate whose energy,
approximately equal to ω

(�)
+ , is � independent. This state,

which basically corresponds to “ϕ(�)
+ ,” is localized near the

side site s = 0 and is very sensitive to the presence of the
trap. It is a short lived state characterized by an important
decay rate approximately equal to γ (�). By contrast, the low
energy eigenstate of Ĥ two-level basically corresponds to “ϕ(�)”.
It is localized near the extremity site s = LB and it defines a
long lived state characterized by a very small decay rate and
whose energy is approximately equal to ω(�). In that case,
the initial creation of an excitonic wave function uniformly
delocalized over the periphery excites preferentially this latter
long lived state. Since this state is basically localized on the
defect site s= LB, a rather inefficient transfer arises between
the periphery and the core of the graph.

As � increases, the two eigenstates of Ĥ two-level get closer
to each other. Therefore, a resonance occurs giving rise to the
well-known avoided crossing effect observed in the top panel
of Fig. 6. The resonance takes place when � reaches a critical
value �∗ which is the solution of the equation ω

(�)
+ = ω(�).

According to both Eqs. (23) and (26) it is defined as

�∗ =
J

(
NB

√
1 − x + (NB − 2)

√
1 − xN2

B
(NB−2)2

)
2
√

(NB − 1)
, (30)

where x = �2/[16J2(NB − 1)]. Note that provided that the
decay rate of the trap remains small (i.e., � � J), this equa-
tion reveals that �∗ mainly depends on the architecture of the
star. It is approximately equal to �∗ ≈ √

NB − 1J in the limit
x → 0, in a perfect agreement with our numerical observa-
tions. At the resonance, the eigenvalues of the Hamiltonian
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Ĥ two-level are defined as

ω̄± = ω(�∗ ) ±
√

C2 −
(

γ (�)

4

)2

− i
γ (�)

4
. (31)

Consequently, the system supports two short lived eigen-
states with the same decay rate γ (�)/2, and which repel each
other. These two eigenstates are symmetric and antisymmet-
ric superpositions of the localized states “ϕ(�)

+ ” and “ϕ(�).”
Therefore, they correspond to delocalized states that realize
a bridge between the periphery and the core of the star. This
delocalization yields a sudden increase of the corresponding
IPR, as observed in the top panel of Fig. 7, resulting in a fast
and efficient energy transfer between the periphery and the
core of the graph.

As � increases again, one moves away from the resonance.
One thus recovers a situation in which the two localized states
“ϕ(�)

+ ” and “ϕ(�)” remain almost independent. As observed in
the top panel of Fig. 6, Ĥ two-level exhibits a high energy eigen-
state whose energy, approximately equal to ω(�), increases
linearly with �. This state basically corresponds to “ϕ(�)” and
it is a long lived state characterized by a very small decay rate.
By contrast, the low energy eigenstate of Ĥ two-level basically
corresponds to “ϕ(�)

+ ” and it defines a short lived state whose
decay rate is approximately equal to γ (�). Consequently, since
the localized nature of the eigenstates recurs, the efficiency
of the transfer between the periphery and the core of the star
breaks down.

At this step, let us mention that Eq. (29) yields a rather
good estimate of both the energies and the decay rates of
the two highest energy eigenstates of the star, as illustrated
by the red curves shown in the top panel of Fig. 6. To pro-
ceed, the calculations have been carried out by using the
theoretical expressions of ω

(�)
+ [Eq. (23)], ω(�) [Eq. (26)],

and γ (�) [Eq. (24)]. For LB = 5 and NB = 5, the coupling
C = 5.75×10−2J has been estimated by studying the energy
difference at the resonance between the two highest energy
eigenstates in the limit � = 0.

As the length of the branches LB increases, the overlap
between the two localized states “ϕ(�)

+ ” and “ϕ(�)” decreases
resulting in a drastic cut in the coupling constant C. Far from
the resonance, since the coupling C does not play a significant
role, the physics is the same as the one discussed previously.
By contrast, a fully different situation arises at the resonance,
as displayed in the bottom panel of Fig. 6. In that case, the
hybridization process is extremely small between the two
localized states “ϕ(�)

+ ” and “ϕ(�)” so that the eigenvalues of
the Hamiltonian Ĥ two-level are now expressed as

ω̄± = ω(�∗ ) − i

⎛
⎝γ (�)

4
±

√(
γ (�)

4

)2

− C2

⎞
⎠. (32)

In other words, it is as if the two states “ϕ(�)
+ ” and “ϕ(�)”

kept their own properties at the resonance. They share the
same energy resulting in the disappearance of the avoided
crossing process. The state almost identical to “ϕ(�)

+ ” is mainly
localized on the core of the graph. It corresponds to a short
lived state whose decay rate scales as γ+ ≈ γ (�) − 4C2/γ (�).
By contrast the state almost identical to “ϕ(�)” is localized
on the periphery. It thus remains quite insensitive to the trap

and it corresponds to a long lived state whose decay rate is
approximately equal to γ− ≈ 4C2/γ (�). As observed in our
numerical simulation, the initial creation of an excitonic wave
function uniformly delocalized over the periphery of the star
graph excites this latter long lived state. As a result, a slow and
inefficient transfer arises between the periphery and the core
of the graph. Note that the localized nature of these two states
prevents their IPR to take a significant value, as displayed in
the bottom panel of Fig. 7. Moreover, as illustrated by the red
lines in the bottom panel of Fig. 6, Eq. (29) still provides
a rather good estimate of both the energies and the decay
rates of the two highest energy eigenstates of the star, the
coupling being fixed now to C = 1.74×10−3J for LB = 10
(and NB = 5).

To conclude, let us mention that the present approach
shows that resonance-induced efficient energy transfer be-
tween the periphery and the core of the star requires a
coupling C between “ϕ(�)

+ ” and “ϕ(�)” sufficiently strong.
This coupling is proportional to the overlap between the two
states “ϕ(�)

+ ” and “ϕ(�).” At the resonance, both states are
characterized by an almost identical localization length ξ ≈
2/ ln(NB − 1) [see Eq. (25) and Eq. (27) for � ≈ J

√
NB − 1].

Therefore, one expects this overlap to scale approximately
as exp(−LB/ξ ) so that the coupling strength depends on the
competition between the branch length LB and the localization
length ξ . In other words, a strong C value (or a weak C value)
refers to a situation in which LB is shorter (or larger) than ξ .
This feature suggests that resonance-induced efficient energy
transfer arises provided that LB is smaller than a critical value
L∗

B ∼ ξ , i.e., a critical value that scales as L∗
B ∝ 1/ ln(NB − 1),

in a quite good agreement with the results displayed in Fig. 5
and the behavior given in Eq. (14).

V. CONCLUSION

In this paper, we studied the quantum dynamics of a
photoexcitation uniformly distributed at the periphery of an
extended star graph composed of a central absorbing site
connected to NB branches of length LB. We investigated the
question of the energy absorption at the core of the network
and how the latter can be improved by the inclusion of periph-
eral defects with a tunable energy amplitude �.

By mean of numerical and analytical developments, we
demonstrated the possibility to generate a strong speedup
for the energy absorption process (i.e., a strong minimiza-
tion of the absorption time). To produce this speedup, the
amplitude � of the peripheral energy defects should be tuned
as � = �∗ with �∗ ∝ √

NB − 1. Moreover, the architecture
of the star graph has to satisfy the condition LB � L∗

B with
L∗

B ∝ 1/ ln(NB). To interpret the arising of the speedup, ana-
lytical and numerical developments were conducted. We then
demonstrated that the origin of this feature takes place in the
restructuring of the two highest energy exciton eigenstates.
When � = �∗, these states delocalize to create a bridge be-
tween the periphery and the core of the star. This effect is
important when LB � L∗

B and vanishes almost totally when
LB > L∗

B.
Therefore, our analysis of the excitonic dynamics made

it possible to determine the structural rules governing the
arising of an absorption enhancement for the extended star
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graph. Naturally, these results are preliminary and motivate
a series of questions that could represent interesting starting
point for future works. For example, it would be interesting to
investigate if similar rules (for �, NB and LB) would hold in
the case of a more realistic system including the presence of a
perturbative environment for the photoexcitation. To proceed,
dissipative and dephasing effects could be included in future
simulations to mimic the effect of the excitonic optical recom-
bination and the presence of an external phonon bath. Such
new ingredients will obviously perturb the excitonic dynamics

and thus modify the conditions for the arising of the absorp-
tion speedup. Still along the lines of targeting more realistic
systems, the presence of natural disorder of the site energies
and hopping constants in the networks could also be consid-
ered as a way to model the imperfections naturally present in
molecular networks. In this context, depending on the strength
of the local disorder, the symmetry breaking generated would
naturally open new paths for the excitonic dynamics leading
to potential different absorption mechanisms. All these ideas
are left for future projects and papers.
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