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Dynamics of cold random hyperbolic graphs with link persistence
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We consider and analyze a dynamic model of random hyperbolic graphs with link persistence. In the model,
both connections and disconnections can be propagated from the current to the next snapshot with probability
ω ∈ [0, 1). Otherwise, with probability 1 − ω, connections are reestablished according to the random hyperbolic
graphs model. We show that while the persistence probability ω affects the averages of the contact and
intercontact distributions, it does not affect the tails of these distributions, which decay as power laws with
exponents that do not depend on ω. We also consider examples of real temporal networks, and we show that
the considered model can adequately reproduce several of their dynamical properties. Our results advance our
understanding of the realistic modeling of temporal networks and of the effects of link persistence on temporal
network properties.
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I. INTRODUCTION

Random hyperbolic graphs (RHGs) have been shown to
be adequate for modeling real complex networks, as they
naturally and simultaneously possess many of their com-
mon structural characteristics. Such characteristics include
heterogeneous degree distributions, strong clustering, and the
small-world property [1–5]. RHGs are adequate only in the
“cold regime,” where the network temperature T in the model
takes values between 0 and 1. This is because only when
T ∈ [0, 1) can RHGs have strong clustering, as observed in
real systems [2]. Cold RHGs have been successfully used
as a basis in maximum likelihood estimation methods that
infer the hyperbolic node coordinates in real systems, facilitat-
ing important applications that include community detection,
missing and future link prediction, network navigation, and
network dismantling [6–14].

Recently, the simplest possible version of dynamic RHGs,
the dynamic-S1 model, has been proposed and analyzed [15].
In the dynamic-S1, the hyperbolic node coordinates remain
fixed, while each network snapshot Gt is constructed anew
using the static S1 model, or equivalently, the hyperbolic
H2 model [2]. It has been shown that the dynamic-S1 can
qualitatively (and some times quantitatively) reproduce many
temporal network properties observed in real systems, such as
the broad distributions of contact and intercontact durations
and the abundance of recurrent components [15,16].

Correlations among the network snapshots in the dynamic-
S1 are imposed by the nodes’ hyperbolic coordinates; nodes
at smaller hyperbolic distances have higher chances of being
connected in each snapshot, intuitively explaining why hetero-
geneous (inter)contact distributions emerge in the model. In
particular, the contact and interconnect distributions are power
laws in the model, with respective exponents 2 + T ∈ (2, 3)
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and 2 − T ∈ (1, 2) [15]. These distributions are remarkably
consistent with (inter)contact distributions observed in some
real systems. For instance, in human proximity networks,
studies have reported power-law contact distributions with
exponents larger than or close to 2 [17,18], and power-law
intercontact distributions with exponents between 1 and 2
[19–22]. Based on the dynamic-S1, human proximity net-
works have been recently mapped to hyperbolic spaces, and
related applications have been explored [23]. We note that the
dynamic-S1 exhibits realistic dynamical properties only in the
cold regime [T ∈ (0, 1)] but not in the hot (T > 1) [24].

In this paper, we observe that synthetic temporal networks
constructed with the dynamic-S1 may underestimate the aver-
age contact and intercontact durations in the corresponding
real systems. This observation suggests that in addition to
purely geometric aspects, the explicit link formation pro-
cess in one snapshot may impact the topology of subsequent
snapshots in real networks. Motivated by this observation,
we consider and analyze a generalization of the dynamic-
S1 with link persistence [25–27], called ω-dynamic-S1. In
the ω-dynamic-S1, both connections and disconnections can
persist, i.e., propagate, from the current to the next snapshot
with probability ω ∈ [0, 1). Otherwise, with probability 1 −
ω, connections are reestablished according to the S1 model.
The case ω = 0 corresponds to the dynamic-S1 [15].

We perform a detailed mathematical analysis of the con-
tact and intercontact distributions in the ω-dynamic-S1. One
of our main results is that while the persistence probability
ω affects the averages of the (inter)contact distributions, it
does not affect the tails of these distributions. Specifically, we
show that for sufficiently sparse networks, the (inter)contact
distributions decay as power laws with the same exponents
as in the dynamic-S1. We also show that synthetic networks
constructed with the ω-dynamic-S1 can reproduce several dy-
namical properties of real systems, while better capturing their
average (inter)contact durations. These results advance our
understanding of the realistic modeling of temporal networks
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and of the effects of link persistence. In particular, our results
suggest that link persistence in real systems may affect only
the averages but not the tails of the (inter)contact distributions,
which are important properties affecting the capacity and de-
lay of a network and the dynamics of spreading processes
[28–33]. For instance, it has been shown that heterogeneous
interevent distributions may slow down epidemic spreading
[29,31]. Since link persistence does not affect the tail of the
intercontact distribution, it may not affect the characteristics
of related epidemic spreading measures [29,31].

Intuitively, a higher persistence for nonlinks means that
nodes will tend to stay disconnected for a longer period of
time, which can slow down epidemic spreading. This slow-
down could be more important for intercontacts that would
otherwise be short, e.g., intercontacts between more similar
nodes. On the other hand, a higher persistence for links means
that nodes will tend to stay connected for a longer period
of time, which can increase the chances of transmitting a
communicable disease. This effect could be more important
for contacts that would otherwise be short, e.g., contacts be-
tween less similar nodes. Investigating the exact effects of link
persistence on epidemic spreading is an interesting avenue for
future work.

The rest of the paper is organized as follows. In the next
section, we provide an overview of the S1 model. In Sec. III
we present the ω-dynamic-S1. In Sec. IV we illustrate that
the ω-dynamic-S1 can reproduce several dynamical properties
of real networks, while accurately capturing their average
contact durations. In Sec. V we perform a detailed mathe-
matical analysis of the contact and intercontact distributions
in the ω-dynamic-S1. Furthermore, we analyze the expected
time-aggregated degree in the model. In Sec. VI we discuss
other relevant work. Finally, we conclude the paper with a
discussion and future work directions in Sec. VII.

II. S1 MODEL

In the S1 model [2], each node has latent (or hidden)
variables κ and θ . The latent variable κ is proportional to the
node’s expected degree in the resulting network and abstracts
its popularity. The latent variable θ is the angular similarity
coordinate of the node on a circle of radius R = N/2π , where
N is the total number of nodes [34]. To construct a network
with the model that has size N , average node degree k̄, and
temperature T ∈ (0, 1), we perform the following steps:

(i) Coordinate assignment: for each node i = 1, 2, . . . , N ,
sample its angular coordinate θi uniformly at random from
[0, 2π ], and its degree variable κi from a probability density
function (PDF) ρ(κ ).

(ii) Creation of edges: connect every pair of nodes i, j with
the Fermi-Dirac connection probability

pi j = 1

1 + χ
1/T
i j

. (1)

In the last expression, χi j is the effective distance between
nodes i and j,

χi j = R�θi j

μκiκ j
, (2)

where �θi j = π − |π − |θi − θ j || is the similarity distance
between i and j. We note that since θ is uniformly distributed
on [0, 2π ], the PDF of �θ is the uniform PDF on [0, π ],
f (�θ ) = 1/π .

Parameter μ in (2) is derived from the condition that the ex-
pected degree in the network is indeed k̄. For sparse networks
(N � k̄),

μ = k̄ sin (T π )

2κ̄2T π
, (3)

where κ̄ = ∫
κρ(κ )dκ . Further, the expected degree of a node

with latent variable κ can be computed as

k̄(κ ) = k̄

κ̄
κ ∝ κ. (4)

For sparse networks, the resulting degree distribution P(k)
has a similar functional form to ρ(κ ) [35]. We also note
that smaller values of the temperature T favor connections at
smaller effective distances and increase the average clustering
[36] in the network, which is maximized at T → 0.

The S1 model is equivalent to RHGs, i.e., to the hyperbolic
H2 model [2], after a simple transformation of the degree
variables κ to radial coordinates r on the hyperbolic disk. See
Ref. [2] for further details.

III. ω-DYNAMIC-S1

The ω-dynamic-S1 models a sequence of network snap-
shots, Gt , t = 1, . . . , τ , where τ is the total number of time
slots. In the model there are N nodes that are assigned latent
variables κ, θ as in the S1 model, which remain fixed in all
time slots. The temperature T and the persistence probability
ω are also fixed, while each snapshot Gt is allowed to have
a different average degree k̄t . Thus, the model parameters are
N, τ, ρ(κ ), T, ω, and k̄t , t = 1, . . . , τ .

Let

e(t )
i j =

{
1 if nodes (i, j) are connected at time t,
0 otherwise.

The snapshots in the ω-dynamic-S1 are generated according
to the following simple rules:

(i) Snapshot G1 is a realization of the S1 model with aver-
age degree k̄1.

(ii) At each time step t = 2, . . . , τ , snapshot Gt starts with
N disconnected nodes and has target average degree k̄t .

(iii) Each pair of nodes i, j in snapshot Gt connects accord-
ing to the following conditional connection probabilities:

P
[
e(t )

i j = 1
∣∣e(t−1)

i j = 1
] = ω + (1 − ω)p(t )

i j , (5)

P
[
e(t )

i j = 1
∣∣e(t−1)

i j = 0
] = (1 − ω)p(t )

i j , (6)

where p(t )
i j is given by (1), with k̄ in (3) set equal to k̄t .

(iv) At time t + 1, the process is repeated to generate snap-
shot Gt+1.

Equation (5) is the case in which the node pair i, j is
connected in the previous time slot t − 1. In that case, the
pair is connected in slot t either because the connection has
been propagated from t − 1 (with probability ω) or because
the connection has been established according to p(t )

i j (with
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probability 1 − ω). Equation (6) is the case in which the pair
i, j is not connected in t − 1. In that case, the pair can be con-
nected in slot t if the disconnection has not been propagated
from t − 1 (with probability 1 − ω) and the pair connected
according to p(t )

i j .
We note that the unconditional connection probability for

node pair i, j at time t = 2, 3, . . . can be written as

P
[
e(t )

i j = 1
] = P

[
e(t )

i j = 1
∣∣e(t−1)

i j = 1
]
P
[
e(t−1)

i j = 1
]

+ P
[
e(t )

i j = 1
∣∣e(t−1)

i j = 0
]{

1 − P
[
e(t−1)

i j = 1
]}

= ωP
[
e(t−1)

i j = 1
] + (1 − ω)p(t )

i j . (7)

Solving the above recurrence equation yields

P
[
e(t )

i j = 1
] = ωt−1 p(1)

i j + (1 − ω)
t−2∑
s=0

ωs p(t−s)
i j . (8)

Notice that if each snapshot has the same average degree, k̄t =
k̄,∀t , then p(t )

i j is the same in all slots, p(t )
i j = pi j,∀t , and (8)

simplifies to

P
[
e(t )

i j = 1
] = pi j . (9)

In other words, if k̄t = k̄,∀t , then the unconditional con-
nection probability is exactly the same as the connection
probability in the S1 model. Thus, as a side note, in this case
the ω-dynamic-S1 satisfies the equilibrium property, in the
sense that individual snapshots in the model are indistinguish-
able from static-model realizations [27]. The equilibrium
property is also satisfied for ω = 0, i.e., when there is no link
persistence, in which case P[e(t )

i j = 1] = p(t )
i j . Otherwise, the

equilibrium property is not satisfied.

IV. REAL VERSUS MODELED NETWORKS

A. Real networks

To illustrate the realism of the model, we compare its
properties against the properties of five real temporal net-
works. These networks according to the model have a different
link-persistence probability ω. Specifically, we consider three
face-to-face interaction networks from SocioPatterns [37],
which correspond to a high school in Marseilles [38], a pri-
mary school in Lyon [39], and a village in rural Malawi [40].
These networks were captured over a period of 5, 2, and 13
days, respectively. Each of their snapshots corresponds to a
slot of 20 s.

Further, we consider the network of coded interactions
between sociopolitical actors from the Integrated Crisis Early
Warning System (ICEWS) [41], as well as the e-mail commu-
nication network between members of a European research
institution (Email-EU) [42,43]. We consider 401 daily snap-
shots of the ICEWS network (days 3000–3400 in the data).
For the Email-EU network, we consider only bidirectional
communications corresponding to 79 weekly snapshots (from
October 2003 to May 2005). In all cases, we number the time
slots and assign node IDs sequentially, t = 1, 2, . . . , τ and
i = 1, 2, . . . , N . Table I gives an overview of the data.

TABLE I. Overview of the considered real networks. N is the
total number of nodes seen; τ is the total number of time slots; n̄
is the average number of interacting (i.e., nonzero degree) nodes
per slot; k̄ is the average snapshot degree (k̄ = ∑τ

t=1 k̄t/τ ); k̄aggr is
the average degree in the time-aggregated network, i.e., the average
number of other nodes that a node connects to at least once; t̄c is
the average contact duration, i.e., the average number of consecutive
slots in which two nodes remain connected; and t̄ic is the average
intercontact duration, i.e., the average number of consecutive slots in
which two nodes remain disconnected. Average values above 10 are
rounded to the nearest integer.

Real network N τ n̄ k̄ k̄aggr t̄c t̄ic

High School 327 18179 17 0.06 36 2.79 527
Primary School 242 5846 30 0.18 69 1.62 229
Malawi Village 86 57791 3.4 0.04 8.1 2.91 213
ICEWS 29047 401 1089 0.09 13 1.19 40
Email-EU 980 79 549 2.96 33 1.84 6.5

B. Modeled counterparts

For each real network we construct its synthetic counter-
part using the ω-dynamic-S1, following a similar procedure
to that in Ref. [15]. Specifically, each counterpart has the
same number of nodes N and duration τ as the corresponding
real network, while the latent variable κi of each node i =
1, . . . , N is assigned as follows. First, for each real network
we compute the average degree per slot of each node i,

d̄i = 1

τ

τ∑
t=1

di,t , (10)

where di,t � 0 is node’s i degree in slot t . Then, we set

κi = d̄i. (11)

The angular coordinate θi of each node i is sampled uniformly
at random from [0, 2π ]. Further, the target average degree k̄t

in each snapshot Gt , t = 1, . . . , τ , is set equal to the average
degree in the corresponding real snapshot at slot t ,

k̄t = 1

N

N∑
i=1

di,t . (12)

Finally, the temperature T and the link-persistence probability
ω are simultaneously tuned such that the resulting average
time-aggregated degree k̄aggr and the average contact duration
t̄c are similar to the ones in the real network. We perform this
tuning manually by running simulations with different values
of T and ω until we find the combination that produces similar
values for k̄aggr and t̄c as in the corresponding real network.
Figure 4 in Sec. V A illustrates the dependence of t̄c on both
T and ω, while Fig. 9 in Sec. V C shows how k̄aggr depends
on these parameters. The values of T and ω that we find for
each case are reported in Table II. (We note that we do not
explicitly match the average intercontact duration t̄ic in each
real network.)

C. Properties of modeled versus real networks

Table II gives an overview of the modeled counterparts.
We see that their characteristics are overall very similar to the
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TABLE II. Modeled counterparts. Average values correspond to
averages across 100 simulation runs, except for the ICEWS network,
where the values are results from one run. Each counterpart has the
same number of nodes N and duration τ as the corresponding real
network in Table I.

Modeled network n̄ k̄ k̄aggr t̄c t̄ic T ω

High School 18 0.06 36 2.75 482 0.67 0.46
Primary School 32 0.16 69 1.66 246 0.75 0.18
Malawi Village 3.4 0.05 7.9 2.90 228 0.45 0.38
ICEWS 1033 0.08 12 1.17 36 0.90 0
Email-EU 592 3.34 36 1.86 6.8 0.53 0

ones of the real networks in Table I. Further, in Fig. 1 we also
compare the following properties between real and modeled
networks:

(a) The contact distribution, which is the distribution of the
number of consecutive slots in which a pair of nodes remains
connected.

(b) The intercontact distribution, which is the distribution
of the number of consecutive slots in which a pair of nodes
remains disconnected.

(c) The weight distribution, which is the distribution of the
edge weights in the time-aggregated network. In the time-
aggregated network, two nodes are connected if they were
connected in at least one slot, while the edge-weight in this
network is the total number of slots in which the two end
points of the edge were connected.

(d) The strength distribution, which is the distribution
of the node strengths in the time-aggregated network. The
strength of a node is the sum of the weights of all edges
attached to the node.

Figure 1 shows that the modeled counterparts capture all
the above properties in the real systems remarkably well.
Further, Fig. 2 shows that the counterparts can also capture
the variability of the number of interacting nodes per slot.
The model can also capture several other properties of the
considered real systems, as in Ref. [15], which we omit here
for brevity.

We note that ω = 0 in the ICEWS and Email-EU coun-
terparts, suggesting that there is no link persistence in the
corresponding real systems. On the other hand, ω > 0 in
the counterparts of the considered face-to-face interaction
networks. We note that one can model these systems using
ω = 0 and still qualitatively reproduce their properties, cf.
[15], but the average contact and intercontact durations will
be underestimated in that case. Specifically, the values of
{t̄c, t̄ic} in synthetic counterparts of the high school, primary
school, and Malawi village networks, constructed as described
in Sec. IV B but with ω = 0, are, respectively, {t̄c = 1.62, t̄ic =
298}, {t̄c = 1.41, t̄ic = 207}, and {t̄c = 2.03, t̄ic = 167} (ver-
sus the values in Tables I and II).

In the next section, we focus on the contact and intercontact
distributions in the ω-dynamic-S1, and we prove their proper-
ties. We also analyze the expected time-aggregated degree in
the model, elucidating its dependence on both the temperature
T and the link-persistence probability ω.

V. ANALYSIS

To facilitate the analysis, we assume k̄t = k̄, ∀t , i.e., that all
snapshots have the same average degree k̄. This assumption
renders the connection probability pi j in (1) the same in all
time slots. However, we note that our analytical results follow
closely the simulation results from the modeled counterparts
of the previous section, where this assumption does not hold.

One of our main results is that for sufficiently sparse snap-
shots, N � k̄, the contact and intercontact distributions decay
as power laws with exponents 2 + T and 2 − T , irrespective
of the value of the persistence probability ω. Technically, we
consider these distributions in the limit N → ∞. However, the
same results also hold in the limit N/k̄ → ∞, which includes
the case when N is finite and k̄ → 0 [this case may be more
relevant to some real networks, such as face-to-face interac-
tion networks, where their size is relatively small but they
are still sparse (cf. Table I)]. As will become apparent, these
results do not depend on the distribution of the expected node
degrees, i.e., on ρ(κ ). We begin with the contact distribution.

A. Contact distribution

Consider the probability to observe a sequence of ex-
actly t consecutive slots, where two nodes i and j with
latent degrees κi and κ j and angular distance �θi j are
connected, t = 1, 2, . . . , τ − 2. This probability, denoted by
rc(t ; κi, κ j,�θi j ), is the percentage of observation time τ

where we observe a slot where these two nodes are not con-
nected, followed by t slots where they are connected, followed
by a slot where they are again not connected.

For each duration t , there are τ − t − 1 possibilities where
this duration can be realized. For instance, if t = 2, the
two nodes can be disconnected in slot s − 1, connected in
slots s and s + 1, and disconnected in slot s + 2, where s =
2, . . . , τ − 2. Therefore, the percentage of observation time
where a duration of t slots can be realized is

gτ (t ) := τ − t − 1

τ
. (13)

Clearly, for any finite t , gτ (t ) → 1 for τ → ∞.
For ease of exposition, we use the symbol

ξ := 1 − ω, (14)

and we observe the following:
(i) The probability that two nodes i and j are not connected

in a slot s is 1 − pi j , where pi j is given by (1).
(ii) The probability that i and j are connected in slot s + 1,

given that they are not connected in slot s, is ξ pi j .
(iii) The probability that i and j are connected in slots s +

2, . . . , t given that they are connected in slot s + 1, is [1 −
ξ (1 − pi j )]t−1.

(iv) The probability that i and j are not connected in slot
t + 1, given that they are connected in slot t , is ξ (1 − pi j ).

It is easy to see that the probability rc(t ; κi, κ j,�θi j ) is the
product of gτ (t ) and the probabilities in points (i)–(iv) above,

rc(t ; κi, κ j,�θi j ) = gτ (t )ξ 2 pi j (1 − pi j )
2[1 − ξ (1 − pi j )]

t−1.

(15)

We note that we do not consider the cases when the first (last)
of the t slots in which two nodes can be connected starts (ends)
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FIG. 1. Real vs modeled networks. The plots show the contact distributions (first column), intercontact distributions (second column),
weight distributions (third column), and strength distributions (fourth column). The values in the y-axes of the plots represent relative
frequencies, i.e., they are computed as nt/

∑
j n j , where nt is the number of samples that have value t . All plots have been binned

logarithmically. The results with the model are averages over five simulation runs, except for the ICEWS network, where the results are
from one run. Durations are measured in numbers of days and weeks for the ICEWS and Email-EU networks. For the other networks they are
measured in numbers of slots of 20 s.

FIG. 2. Number of interacting nodes per time slot in real and modeled networks.
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at the beginning (end) of the observation period τ . To account
for these cases, one needs to add the extra term (2/τ )ξ pi j (1 −
pi j )[1 − ξ (1 − pi j )]t−1 on the right-hand side of (15). This
term becomes insignificant for any finite t as τ → ∞.

The contact distribution, Pc(t ), gives the probability that
two nodes connect for exactly t consecutive slots, given that
they connect, i.e., given that t � 1. We can write

Pc(t ) = rc(t )∑τ−2
j=1 rc( j)

∝ rc(t ). (16)

In the above relation, rc(t ) is obtained by removing the condi-
tion on κi, κ j , and �θi j from (15),

rc(t ) =
∫∫∫

rc(t ; κ, κ ′,�θ )ρ(κ )ρ(κ ′) f (�θ )dκdκ ′d�θ,

(17)

where ρ(κ ) is the PDF of κ , while f (�θ ) = 1/π is the PDF
of �θ .

We note that empirically Pc(t ) is computed as described in
the caption of Fig. 1. Specifically, given a set of (nonzero)
contact durations, the empirical Pc(t ) is given by the ratio
nt/

∑
j n j , where nt is the number of contact durations in the

set that have length t .
Removing the condition on �θi j from (15) yields

rc(t ; κi, κ j ) = 1

π

∫ π

0
rc(t ; κi, κ j,�θ )d�θ

= gτ (t )
2μκiκ jT ξ 2

N

∫ 1

umin
i j

u−T (1 − u)1+T

× [1 − ξ (1 − u)]t−1du, (18)

where

umin
i j := 1

1 + (
N

2μκiκ j

) 1
T

. (19)

To reach (18), we perform the change of integration variable
u := 1/[1 + ( N�θ

2πμκiκ j
)1/T ].

For N → ∞, umin
i j → 0, and from (18) we have the follow-

ing limit:

lim
N→∞

Nrc(t ; κi, κ j ) = gτ (t )2μκiκ jT ξ 2
∫ 1

0
u−T (1 − u)1+T

× [1 − ξ (1 − u)]t−1du. (20)

Removing now the condition on κi and κ j gives

lim
N→∞

Nrc(t )

= lim
N→∞

N
∫∫

rc(t ; κ, κ ′)ρ(κ )ρ(κ ′)dκdκ ′

=
∫∫

lim
N→∞

Nrc(t ; κ, κ ′)ρ(κ )ρ(κ ′)dκdκ ′

= gτ (t )2μκ̄2T ξ 2
∫ 1

0
u−T (1 − u)1+T [1 − ξ (1 − u)]t−1du.

(21)

We note that we can exchange the order of the limit with the
integrals in (21) since

∫
κρ(κ )dκ = κ̄ < ∞. Further, we note
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FIG. 3. Contact distribution in simulated networks with the
ω-dynamic-S1 vs theoretical predictions given by (16), with rc(t ) as
in (23). The number of nodes is N = 500, the average node degree
is k̄ = 5, τ = 500, and ρ(κ ) = δ(κ − k̄), where δ is the Dirac delta
function. In (a) T = 0.2, and in (b) T = 0.8. Results are shown for
different values of the link-persistence probability ω = 1 − ξ , indi-
cated in the legends. The simulation results are averages over 10 runs
and the empirical distributions have been binned logarithmically. The
theoretical predictions are given by the solid lines. All axes are in
logarithmic scale.

that (21) holds irrespective of the form of ρ(κ ). Substituting
μ with its expression in (3), and evaluating the integral in (21)
(see Appendix A), yields

lim
N→∞

Nrc(t ) = gτ (t )
k̄T (1 + T )ξ 2

2
2F1[2 + T, 1 − t ; 3; ξ ],

(22)

where 2F1[a, b; c; z] is the Gauss hypergeometric function
[44]. Therefore, for sufficiently large N we can write

rc(t ) ≈ gτ (t )
k̄T (1 + T )ξ 2

2N
2F1[2 + T, 1 − t ; 3; ξ ]. (23)

Figure 3 validates the above analysis.
We note that the average contact duration, t̄c =∑τ−2
t=1 tPc(t ), depends on both the temperature T and the

link-persistence probability ω = 1 − ξ , as dictated by (23). In
particular, t̄c increases with decreasing T or with increasing
ω; see Fig. 4.
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FIG. 4. Average contact duration t̄c as a function of the link-
persistence probability ω. Results are shown for different values
of the temperature T indicated in the legend. All other simulation
parameters are the same as in Fig. 3. The red solid lines show the
theoretical predictions given by t̄c = ∑τ−2

t=1 tPc(t ).

For ξ → 1, rc(t ) becomes the one in the dynamic-S1

model [15],

rc(t ) ≈ gτ (t )
k̄T (1 + T )

N�(1 − T )

�(t − T )

�(t + 2)
. (24)

For t � 1, �(t − T )/�(t + 2) ≈ 1/t2+T , while for t 
 τ ,
gτ (t ) ≈ 1. Therefore, for 1 
 t 
 τ , (24) decays as a
power law,

rc(t ) ∝ 1

t2+T
. (25)

Interestingly, below we show that for sufficiently large t , rc(t )
also decays as the above power law for all ξ ∈ (0, 1).

Tail of rc(t ). To deduce the behavior of the tail of rc(t )
for ξ ∈ (0, 1), we utilize an asymptotic expansion for the
hypergeometric function 2F1[a, b; c; z] for |b| → ∞, given in
section 2.3.2 of Ref. [45] [Eq. (15) on p. 77]. This expansion
allows us to express the hypergeometric function in (23) for
t → ∞, as

2F1[2 + T, 1 − t ; 3; ξ ] =
{

2(−1)2+T

�(1 − T )
[ξ (1 − t )]−(2+T )

+ 2e−ξ (t−1)

�(2 + T )
[ξ (1 − t )]−(1−T )

}

× [1 + O(|ξ (1 − t )|−1)]. (26)

Equation (26) means that for sufficiently large ξ t we can write

2F1[2 + T, 1 − t ; 3; ξ ] ≈ 2

�(1 − T )

1

(ξ t )2+T

− 2(−1)T

�(2 + T )

1

eξ t (ξ t )1−T
. (27)

Further, since the dominant term in (27) is the first for large
ξ t , we can write the following simplified expression:

2F1[2 + T, 1 − t ; 3; ξ ] ≈ 2

�(1 − T )

1

(ξ t )2+T
∝ 1

t2+T
. (28)
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FIG. 5. 2F1[2 + T, 1 − t ; 3; ξ ] vs the approximation for large t in
(28). In (a) T = 0.2, and in (b) T = 0.8. Results are shown for differ-
ent values of ω = 1 − ξ indicated in the legends. The solid lines are
the exact results, while the dashed-dotted lines are the corresponding
approximations given by (28). All axes are in logarithmic scale.

We note that since ξ is fixed, ξ ∈ (0, 1), the approximations in
(27) and (28) come into effect for sufficiently large t . Figure 5
validates the above analysis.

Therefore, for large t 
 τ , rc(t ) in (23) is proportional to
1/t2+T for all ξ ∈ (0, 1]. Next, we turn our attention to the
intercontact distribution.

B. Intercontact distribution

To analyze the intercontact distribution, we follow a
similar procedure to that in the contact distribution. Let
ric(t ; κi, κ j,�θi j ) be the probability to observe a sequence of
exactly t consecutive slots, where two nodes i and j with latent
degrees κi and κ j and angular distance �θi j are not connected,
t = 1, 2, . . . , τ − 2. This probability is the percentage of ob-
servation time τ where we observe a slot where these two
nodes are connected, followed by t slots where they are not
connected, followed by a slot where they are again connected.

We observe the following:
(i) The probability that two nodes i and j are connected in

a slot s is pi j , given by (1).
(ii) The probability that i and j are not connected in slot

s + 1, given that they are connected in slot s, is ξ (1 − pi j ).
(iii) The probability that i and j are not connected in slots

s + 2, . . . , t given that they are not connected in slot s + 1, is
(1 − ξ pi j )t−1.
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(iv) The probability that i and j are connected in slot t + 1,
given that they are not connected in slot t , is ξ pi j .

The probability ric(t ; κi, κ j,�θi j ) is the product of gτ (t ) in
(13) and the probabilities in points (i)–(iv) above,

ric(t ; κi, κ j,�θi j ) = gτ (t )ξ 2 p2
i j (1 − pi j )(1 − ξ pi j )

t−1. (29)

We note that considering adding an extra term on the right-
hand side of (29) analogous to the one discussed below (15)
would be unnatural here, since by its name an intercontact
duration must be enclosed between two contacts.

The intercontact distribution, Pic(t ), gives the probability
that two nodes disconnect for exactly t consecutive slots,
given that they disconnect, i.e., given that t � 1. We can write

Pic(t ) = ric(t )∑τ−2
j=1 ric( j)

∝ ric(t ). (30)

In the above relation, ric(t ) is obtained by removing the con-
dition on κi, κ j , and �θi j from (29),

ric(t ) =
∫∫∫

ric(t ; κ, κ ′,�θ )ρ(κ )ρ(κ ′) f (�θ )dκdκ ′d�θ.

(31)

We note that as with Pc(t ), given a set of (nonzero) inter-
contact durations, the empirical Pic(t ) is given by the ratio
nt/

∑
j n j , where nt is the number of intercontact durations

in the set that have length t .
Removing the condition on �θi j from (31) yields

ric(t ; κi, κ j ) = 1

π

∫ π

0
ric(t ; κi, κ j,�θ )d�θ

= gτ (t )
2μκiκ jT ξ 2

N

×
∫ 1

umin
i j

u1−T (1 − u)T (1 − ξu)t−1du, (32)

where umin
i j is given by (19). To reach (32), we again perform

the change of integration variable u := 1/[1 + ( N�θ
2πμκiκ j

)1/T ].

For N → ∞, umin
i j → 0, and from (32) we have the follow-

ing limit:

lim
N→∞

Nric(t ; κi, κ j ) = gτ (t )2μκiκ jT ξ 2
∫ 1

0
u1−T

× (1 − u)T (1 − ξu)t−1du. (33)

We can now compute

lim
N→∞

Nric(t )

= lim
N→∞

N
∫∫

ric(t ; κ, κ ′)ρ(κ )ρ(κ ′)dκdκ ′

=
∫∫

lim
N→∞

Nric(t ; κ, κ ′)ρ(κ )ρ(κ ′)dκdκ ′

= gτ (t )2μκ̄2T ξ 2
∫ 1

0
u1−T (1 − u)T (1 − ξu)t−1du. (34)
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FIG. 6. Same as in Fig. 3 but for the intercontact distribution.
The theoretical predictions are given by (30), with ric(t ) as in (36).
In (a) T = 0.2, and in (b) T = 0.8.

Substituting μ with its expression in (3), and evaluating the
integral in (34) (see Appendix B), yields

lim
N→∞

Nric(t ) = gτ (t )
k̄T (1 − T )ξ 2

2
2F1[2 − T, 1 − t ; 3; ξ ].

(35)

Therefore, for sufficiently large N we can write

ric(t ) ≈ gτ (t )
k̄T (1 − T )ξ 2

2N
2F1[2 − T, 1 − t ; 3; ξ ]. (36)

Figure 6 validates the above analysis.
The average intercontact duration, t̄ic = ∑τ−2

t=1 tPic(t ), de-
pends on both the temperature T and the link-persistence
probability ω = 1 − ξ , as dictated by (36). In particular, t̄ic
increases with increasing T or with increasing ω; see Fig. 7.

For ξ → 1, ric(t ) becomes the one in the dynamic-S1

model [15],

ric(t ) ≈ gτ (t )
k̄T (1 − T )

N�(1 + T )

�(t + T )

�(t + 2)
. (37)

For t � 1, �(t + T )/�(t + 2) ≈ 1/t2−T , while for t 
 τ ,
gτ (t ) ≈ 1. Therefore, for 1 
 t 
 τ , (37) decays as a
power law,

ric(t ) ∝ 1

t2−T
. (38)

Below, we show that for sufficiently large t , ric(t ) also decays
as the above power law for all ξ ∈ (0, 1).
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FIG. 7. Same as in Fig. 4 but for the average intercontact duration
t̄ic. The theoretical predictions are given by t̄ic = ∑τ−2

t=1 tPic(t ).

Tail of ric(t ). To deduce the behavior of the tail of ric(t )
for ξ ∈ (0, 1), we utilize again the expansion for 2F1[a, b; c; z]
for |b| → ∞ given in Eq. (15) on p. 77 of Ref. [45]. Using
this expansion, we can express the hypergeometric function
in (36) for t → ∞ as

2F1[2 − T, 1 − t ; 3; ξ ] =
{

2(−1)2−T

�(1 + T )
[ξ (1 − t )]−(2−T )

+ 2e−ξ (t−1)

�(2 − T )
[ξ (1 − t )]−(1+T )

}

× [1 + O(|ξ (1 − t )|−1)]. (39)

Therefore, for sufficiently large ξ t we can write

2F1[2 − T, 1 − t ; 3; ξ ] ≈ 2

�(1 + T )

1

(ξ t )2−T

− 2(−1)−T

�(2 − T )

1

eξ t (ξ t )1+T
. (40)

Further, since the dominant term in the above relation is the
first for large ξ t , we can write the following simplified ex-
pression:

2F1[2 − T, 1 − t ; 3; ξ ] ≈ 2

�(1 + T )

1

(ξ t )2−T
∝ 1

t2−T
. (41)

Since ξ is fixed, ξ ∈ (0, 1), the approximations in (40) and
(41) come into effect for sufficiently large t . Figure 8 validates
the above analysis.

Therefore, for large t 
 τ , ric(t ) in (36) is proportional to
1/t2−T for all ξ ∈ (0, 1].

C. Expected time-aggregated degree

Here we turn our attention to the expected time-aggregated
degree, and we show its dependence on both the temperature
T and the link-persistence probability ω. The expected time-
aggregated node degree can be written as

k̄aggr = (N − 1)(1 − r0), (42)

where 1 − r0 is the probability that two nodes connect at least
once during the observation interval τ . Below, we derive the
relation for k̄aggr for large N .
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FIG. 8. 2F1[2 − T, 1 − t ; 3; ξ ] vs the approximation for large t
in (41). In (a) T = 0.2, and in (b) T = 0.8. Results are shown for
different values of ω = 1 − ξ . The solid lines are the exact results,
while the dashed-dotted lines are the corresponding approximations
given by (41).

Let r0(κi, κ j,�θi j ) be the probability that two nodes i and
j with latent degrees κi and κ j and angular distance �θi j do
not connect during the observation interval τ . We can write

r0(κi, κ j,�θi j ) = (1 − pi j )(1 − ξ pi j )
τ−1, (43)

where pi j is given by (1). Removing the condition on �θi j

gives

r0(κi, κ j )

= 1

π

∫ π

0
r0(κi, κ j,�θ )d�θ

= 2μκiκ jT

N

∫ 1

umin
i j

u−(1+T )(1 − u)T (1 − ξu)τ−1du

= 2μκiκ jT

N

{(
umin

i j

)−T

T
F1

[−T,−T,−τ ; 1− T ; umin
i j , ξumin

i j

]

− ξ (umin
i j )1−T

1 − T
F1

[
1 − T,−T, 1 − τ ; 2 − T ; umin

i j , ξumin
i j

]
+ ξT π

sin (T π )
2F1[1 − T, 1 − τ ; 2; ξ ]

− π

sin (T π )
2F1[−T,−τ ; 1; ξ ]

}
, (44)
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where umin
i j is given by (19). In the above relation,

F1[a, b1, b2; c; x, y] is the Appell series, which is a generaliza-
tion of the hypergeometric function for two variables x, y [44].
To reach (44), we perform the change of integration variable
u := 1/[1 + ( N�θ

2πμκiκ j
)1/T ].

We note that for x → 0 and y → 0, F1[a, b1, b2; c; x, y] →
1. Further, umin

i j → 0 for N → ∞. From (44), we have the
following limit:

lim
N→∞

N[1 − r0(κi, κ j )]

= 2μκiκ jT π

sin (T π )
{2F1[−T,−τ ; 1; ξ ]

− ξT 2F1[1 − T, 1 − τ ; 2; ξ ]}. (45)

Removing the condition on κi and κ j from (45), and substitut-
ing μ with its expression in (3), yields

lim
N→∞

N (1 − r0) = {2F1[−T,−τ ; 1; ξ ]

− ξT 2F1[1 − T, 1 − τ ; 2; ξ ]}k̄. (46)

Therefore, for sufficiently large N we can write

k̄aggr ≈ {2F1[−T,−τ ; 1; ξ ] − ξT 2F1[1 − T, 1 − τ ; 2; ξ ]}k̄.

(47)

For ξ = 1, the above expression becomes the one in the
dynamic-S1 model [15],

k̄aggr ≈ �(τ + T )k̄

�(1 + T )�(τ )
≈ τ T k̄

�(1 + T )
. (48)

The last approximation in (48) holds for τ � 1. Further, we
note that we can again utilize the expansion for 2F1[a, b; c; z]
for |b| → ∞ given in Eq. (15) on p. 77 of Ref. [45] to simplify
(47). Specifically, using this expansion, we can write (details
are omitted for brevity) that for sufficiently large τ ,

k̄aggr ≈ (ξτ )T k̄

�(1 + T )
. (49)

Figure 9 validates our analysis. We see that (49) is a good
approximation only for sufficiently low temperatures T . In
general, to accurately compute the expected time-aggregated
degree for any temperature T , one would need to remove the
condition on κi and κ j from the exact expression in (44), a task
that could be done numerically for any PDF ρ(κ ), and use the
result in (42).

VI. OTHER RELATED WORK

The work in Ref. [46] introduced the activity-driven model
(AD), while the work in Ref. [47] extended this model to
account for node attractiveness. However, the AD is not a
geometric network model. Here, we considered a geometric
temporal network model based on RHGs, which have been
shown to adequately reflect reality. Further, link persistence
has not been considered in the context of the AD. Finally, the
analysis of the AD has mainly focused on properties of the
resulting time-aggregated network, like its degree distribution
[46], and not on properties of the resulting temporal network
itself, like its (inter)contact distributions.
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FIG. 9. Average time-aggregated degree k̄aggr as a function of
the temperature T in simulated networks vs theoretical predictions.
Results are shown for two values of ω = 1 − ξ indicated in the
legend. All other simulation parameters are the same as in Fig. 3. The
red solid lines show the exact theoretical predictions given via (42)
and (44). The dashed-dotted lines show the corresponding large-N
approximations given by (49). The y-axis is in logarithmic scale.

The work in Ref. [48] proposed temporal extensions of
popular static network models (random graphs, configuration
model, stochastic block model) and provided algorithms for
fitting the proposed extensions to observed network data.
Even though this work considers link persistence, it does not
consider temporal extensions of geometric network models,
nor does it analyze the resulting temporal properties of the
proposed extensions in terms of their realism.

The work in Ref. [25] considers link persistence (also
called stability) in dynamic networks, in conjunction with
node hidden variables (or fitnesses) that determine the nodes’
capability of forming links, and it attempts to disentangle the
importance of the two mechanisms (link persistence versus
node hidden variables) in link formation in the interbank mar-
ket. To this end, it considers a link-persistence model similar
to the one we considered here. However, differently from this
work, it does not consider RHGs, i.e., networks where the
node hidden variables are their coordinates in their underly-
ing hyperbolic space. Further, it does not analyze emergent
dynamical properties, such as the (inter)contact distributions,
and the effect of link persistence on them.

In Ref. [26], a model based on RHGs similar to the
ω-dynamic-S1, but with persistence only for connections
(instead for both connections and disconnections) has been
shown to better explain the high edge overlap across layers of
real multiplex networks, compared to the case in which link
persistence is ignored. We also note that the ω-dynamic-S1 is
a special case of the general class of temporal hidden-variable
network models considered in Ref. [27], where there are no
hidden variable dynamics. A review of other work related
to the concept of persistence in temporal networks and in
complex systems in general can be found in Ref. [49].

VII. DISCUSSION AND CONCLUSION

We have considered and analyzed a simple dynamical
model of RHGs with link persistence, called ω-dynamic-S1.
Despite its simplicity, the model simultaneously reproduces
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many dynamical properties observed in real systems, while
providing flexibility in tuning the average contact and in-
tercontact durations via the link-persistence probability ω.
We have analyzed two main properties of interest, i.e., the
distributions of contact and intercontact durations, and we
found that they both decay as power laws in the model with
exponents that do not depend on ω. We have also analyzed the
expected time-aggregated degree in the model.

In future work, it would be interesting to analyze other
temporal network properties, such as the weight and strength
distributions, cf. Fig. 1, and statistics related to components’
formation, cf. Ref. [15]. Further, it is desirable to explore
generalizations of the model where connections and discon-
nections can persist with different probabilities (instead of
with the common probability ω). This would allow more
flexibility for accurately capturing both the average contact
and intercontact durations in real systems. We note that a
mathematical analysis of such a generalization does not ap-
pear straightforward. Further, it is desirable to develop more
sophisticated procedures for estimating the link persistence
probabilities in real systems, e.g., based on maximum like-
lihood estimation. Also, it could be interesting to investigate
the accuracy of the large-N approximations [cf. Eqs. (23) and
(36)] as a function of network sparsity (k̄/N). Furthermore,
it would be nice to investigate generalizations of the model
that would allow the nodes’ latent variables (κ, θ ) to change

over time (in the simplest case, via jump or walk dynamics
as in Ref. [27]) and analyze the effect of the latent variables’
motion on the resulting (inter)contact distributions and other
temporal network properties. Finally, it would be interesting
to investigate the exact effects of link persistence on spreading
processes and related measures, such as the ones considered
in Refs. [29,31].

Taken altogether, our results advance our understanding of
the realistic modeling of temporal networks with RHGs and of
the effects of link persistence on temporal network properties.
In addition to their explanatory power, parsimonious models,
like the ω-dynamic-S1, are also important for applications as
they can constitute the basis of maximum likelihood estima-
tion methods that more realistically infer the node coordinates
and their evolution in the latent spaces of real systems [50].
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APPENDIX A: EVALUATING THE INTEGRAL IN EQ. (21)

Evaluating the integral in (21) using MATHEMATICA [51] yields

I1 :=
∫ 1

0
u−T (1 − u)1+T [1 − ξ (1 − u)]t−1du

= T π (1 − ξ )t−1

ξ sin (T π )(t + 1)

{
(t − 1)2F1

[
2 − t, 1 − T ; 2;

ξ

ξ − 1

]
− [t − 1 − ξ (t + T )]2F1

[
1 − t, 1 − T ; 2;

ξ

ξ − 1

]}
. (A1)

Below, we show that (A1) can be simplified, leading to (22).
We first recall that the hypergeometric function is defined by the Gauss series

2F1[a, b; c; z] =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
(A2)

for |z| < 1, and by analytic continuation elsewhere [44]. The symbol (q)n is the Pochhammer symbol, defined as (q)n = 1 for
n = 0, and (q)n = q(q + 1) · · · (q + n − 1) for n > 0. Further, the following identity holds, known as Pfaff’s transformation
(Eq. 15.8.1 in Ref. [44]):

2F1[a, b; c; z] = (1 − z)−a
2F1

[
a, c − b; c;

z

z − 1

]
. (A3)

Using (A3) for (a, b, c, z) = (2 − t, 1 + T, 2, ξ ) gives

2F1

[
2 − t, 1 − T ; 2;

ξ

ξ − 1

]
= (1 − ξ )2−t

2F1[2 − t, 1 + T ; 2; ξ ]. (A4)

Also, using (A3) for (a, b, c, z) = (1 − t, 1 + T, 2, ξ ) gives

2F1

[
1 − t, 1 − T ; 2;

ξ

ξ − 1

]
= (1 − ξ )1−t

2F1[1 − t, 1 + T ; 2; ξ ]. (A5)

Now, using (A4) and (A5), we can rewrite (A1) as

I1 = T π

ξ sin (T π )(t + 1)
{(t − 1)(1 − ξ )2F1[2 − t, 1 + T ; 2; ξ ] − [t − 1 − ξ (t + T )]2F1[1 − t, 1 + T ; 2; ξ ]}. (A6)
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Equation (A6) can be simplified by utilizing two of Gauss’s relations between contiguous hypergeometric functions, namely
Eqs. (34) and (42) in Sec. 2.8 of Ref. [45], shown below,

c[a − (c − b)z]2F1[a, b; c; z] − ac(1 − z)2F1[a + 1, b; c; z] + (c − a)(c − b)z2F1[a, b; c + 1; z] = 0, (A7)

and

(c − b − 1)2F1[a, b; c; z] + b2F1[a, b + 1; c; z] − (c − 1)2F1[a, b; c − 1; z] = 0. (A8)

Specifically, using (A7) with a = 1 − t, b = 1 + T, c = 2, and z = ξ , we can write

[1 − t − ξ (1 − T )]2F1[1 − t, 1 + T ; 2; ξ ] + (t − 1)(1 − ξ )2F1[2 − t, 1 + T ; 2; ξ ] = − 1
2 (t + 1)(1 − T )ξ 2F1[1 − t, 1 + T ; 3; ξ ].

(A9)

Also, using (A8) with a = 1 − t, b = 1 + T, c = 3, and z = ξ , we have

1 + T

2
2F1[1 − t, 2 + T ; 3; ξ ] = 2F1[1 − t, 1 + T ; 2; ξ ] − 1 − T

2
2F1[1 − t, 1 + T ; 3; ξ ]. (A10)

Now, from (A9) we can rewrite (A6) as

I1 = T π

sin (T π )

{
2F1[1 − t, 1 + T ; 2; ξ ] − 1 − T

2
2F1[1 − t, 1 + T ; 3; ξ ]

}
. (A11)

Further, from (A10) we can simplify (A11) to

I1 = T (1 + T )π

2 sin (T π )
2F1[1 − t, 2 + T ; 3; ξ ]. (A12)

Using the above relation in (21), and noticing that 2F1[a, b; c; z] = 2F1[b, a; c; z], yields (22).

APPENDIX B: EVALUATING THE INTEGRAL IN EQ. (34)

Evaluating the integral in (34) using MATHEMATICA [51] yields

I2 :=
∫ 1

0
u1−T (1 − u)T (1 − ξu)t−1du

= (1 − T )π

ξ sin (T π )(t + 1)
{(1 − ξ )2F1[1 − t, 2 − T ; 1; ξ ] + [ξ (t + T ) − 1]2F1[1 − t, 2 − T ; 2; ξ ]}. (B1)

Equation (B1) can be simplified, leading to (35).
To this end, we again utilize two of Gauss’s relations between contiguous hypergeometric functions, namely Eqs. (43) and

(44) in Sec. 2.8 of Ref. [45], shown below,

c(1 − z)2F1[a, b; c; z] − c2F1[a, b − 1; c; z] + (c − a)z2F1[a, b; c + 1; z] = 0, (B2)

and

[b − 1 − (c − a − 1)z]2F1[a, b; c; z] + (c − b)2F1[a, b − 1; c; z] − (c − 1)(1 − z)2F1[a, b; c − 1; z] = 0. (B3)

Using (B3) with a = 1 − t, b = 2 − T, c = 2, and z = ξ gives

(1 − ξ )2F1[1 − t, 2 − T ; 1; ξ ] = (1 − T − ξ t )2F1[1 − t, 2 − T ; 2; ξ ] + T 2F1[1 − t, 1 − T ; 2; ξ ]. (B4)

Also, using (B2) with a = 1 − t, b = 2 − T, c = 2, and z = ξ gives

(1 − ξ )2F1[1 − t, 2 − T ; 2; ξ ] − 2F1[1 − t, 1 − T ; 2; ξ ] = − (t + 1)ξ

2
2F1[1 − t, 2 − T ; 3; ξ ]. (B5)

Now, from (B4) we can rewrite (B1) as

I2 = T (1 − T )π

ξ sin (T π )(t + 1)
{(ξ − 1)2F1[1 − t, 2 − T ; 2; ξ ] + 2F1[1 − t, 1 − T ; 2; ξ ]}. (B6)

Further, from (B5) we can simplify (B6) to

I2 = T (1 − T )π

2 sin (T π )
2F1[1 − t, 2 − T ; 3; ξ ]. (B7)

Using the above relation in (34), and the fact that 2F1[a, b; c; z] = 2F1[b, a; c; z], yields (35).
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