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Sharpest possible clustering bounds using robust random graph analysis
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Complex network theory crucially depends on the assumptions made about the degree distribution, while
fitting degree distributions to network data is challenging, in particular for scale-free networks with power-
law degrees. We present a robust assessment of complex networks that does not depend on the entire degree
distribution, but only on its mean, range, and dispersion: summary statistics that are easy to obtain for most
real-world networks. By solving several semi-infinite linear programs, we obtain tight (the sharpest possible)
bounds for correlation and clustering measures, for all networks with degree distributions that share the same
summary statistics. We identify various extremal random graphs that attain these tight bounds as the graphs with
specific three-point degree distributions. We leverage the tight bounds to obtain robust laws that explain how
degree-degree correlations and local clustering evolve as a function of node degrees and network size. These
robust laws indicate that power-law networks with diverging variance are among the most extreme networks in
terms of correlation and clustering, building a further theoretical foundation for the widely reported scale-free
network phenomena such as correlation and clustering decay.
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I. INTRODUCTION

Degree heterogeneity drives many complex network prop-
erties, with the spread of a virus over a network as a
striking example. In homogeneous networks, when differ-
ences between node connectivity are relatively small, classical
network theory says an epidemic can arise when the average
number of secondary infections caused by a single infected
individual, R, exceeds one. In scale-free networks with high
degree fluctuations, on the other hand, this is not a good
predictor, as individuals who are infected early on may be
different from the average individual. Indeed, these individ-
uals typically have more contacts so that an epidemic can
develop even if R is close to zero. A virus then spreads
extremely quickly and can hardly be contained. Many real-
world networks, in fact, often have extremely heterogeneous
degrees that can be approximated with power laws, so that
the proportion of nodes having k neighbors scales as k−τ with
exponent τ between 2 and 3 [1–3]. Power-law degrees imply
various intriguing scale-free network properties such as the
absence of an epidemic threshold for τ < 3 [4,5], ultrasmall
distances [6], and efficient embedding methods [7].

Because of this degree of heterogeneity, the analysis of
such networks is complex. Network properties such as the
friendship paradox, and more generally the connections be-
tween nodes with vastly different degrees, are studied in
network theory in the form of so-called degree-degree correla-
tions and clustering. Degree-degree correlations measure the
correlation between the degrees of two connected nodes, often
captured in terms of a(k), the average degree of a neighbor
of a degree-k node. By “clustering” we mean the creation of
triangular connections (triadic closure), quantified in terms of
c(k), the probability that two neighbors of a degree-k node are

neighbors themselves. In uncorrelated networks, the a(k) and
c(k) are independent of k. However, the majority of real-world
networks, and scale-free networks in particular, have a(k) and
c(k) functions that decay in k, first observed in technological
networks such as the Internet [8,9]. Figure 1 shows the same
fall-off for a social network: YouTube users as vertices, and
edges indicating friendships between them [10].

When a(k) decreases in k, the network is said to be
disassortative, so that high-degree vertices typically connect
to low-degree vertices. When c(k) decreases in k, this may
indicate the presence of hierarchy. A hierarchical topology
arises, for example, when the rare high-degree nodes together
form a backbone, and the low-degree nodes are located in
clusters of low-degree nodes that are connected to one of
the high-degree nodes. These core peripheries are found in
complex networks created by both humans and nature [11].
This view of a hierarchical network explains both the neg-
ative degree-degree correlations, because most low-degree
nodes are connected to a single high-degree node, and the
clustering fall-off, because the core periphery mainly con-
sists of triadic closures between low-degree communities
while high-degree nodes rarely participate in triangles and
communities.

Network features such as decaying degree correlations
are broadly studied through random graphs, mathematically
tractable models that can generate random samples of a
graph in which nodes have independent and identically dis-
tributed (i.i.d.) degrees [12–16]. Random graph models take
the degree distribution as input. Conditional on the degree
distribution, random graph properties such as average distance
and clustering can be characterized and tested against mea-
surements from real-world network data with the same degree
distribution.
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FIG. 1. (a) a(k) and (b) c(k) for the YouTube social network.

Motivated by the wide range of examples of networks with
heavy-tailed degrees, the power-law distribution has become
a popular choice as an input degree distribution for random
graph models. Fitting a power law to real-world data, however,
is statistically challenging [17–19]. For small values, a power
law is usually not a good fit. For this reason, lower bounds
for the power laws or additional slowly varying functions are
often introduced, but these form extra functions that need to
be fitted as well. Larger values of the power law also present
challenges. Most real-world data sets only follow a power law
up to some maximal degree, which is often modeled by an
exponential cutoff [20–22]. Real-world networks are finite by
definition, while a power law allows infinitely large values.

An inherent disadvantage of network theory that rests
on random graphs is the dependency on precise statistical
assumptions about the degree distributions. Network theory
should not be overly sensitive to the assumed degree dis-
tribution, especially when the assumption is hard to justify
statistically. For power laws, for instance, the tail exponent
τ implies vastly different network properties. One reason for
this is the variance of the degree distribution. When the num-
ber of nodes, n, becomes large, the variance grows to infinity
for τ < 3, while the variance remains finite for τ > 3. This
difference in variance growth crucially influences the network
structure and its degree-degree correlations [23,24].

To overcome this sensitivity of network null models to
precise statistical assumptions on the presence of power laws
or other specific degree distributions, here we characterize
degree correlations and clustering in random graphs that only
require partial information about the degree distribution. In-
spired by the complicated assessment of power laws, we
assume that only the mean, dispersion, and cutoff of the de-
gree distribution are known. Here we consider two measures
of dispersion: the variance and the mean absolute deviation
(MAD) of the degree distribution. The MAD is an alternative
to variance for measuring dispersion around the mean and
may be more appropriate in the case of heavy tails. Indeed,
MAD can deal with distributions that do not possess a finite
variance, in particular the class of power-law distribution with
τ ∈ (2, 3), for which MAD remains finite while the variance
becomes infinite in the large-network limit when n → ∞.

We will establish the maximal correlation and maximal
clustering that can be achieved by all degree distributions that
share the same mean, cutoff, and dispersion. By constructing
and solving optimization problems, we find the extremal de-
gree distributions that maximize the degree-degree correlation

and clustering. These optimization problems take the form

max
P∈P

EP [graph property], (1)

where P is the set that contains all degree distributions that
comply with the limited information, such as the mean, cutoff,
and dispersion. Hence, within the set P , we find the degree
distribution P ∗ that maximizes the expected graph property.
We will refer to the random graph with the extremal degree
distribution that attains the maximum as the extremal random
graph.

We solve optimization problems as in (1) for the hidden-
variable model [25,26], a random graph model that generates
graphs with degrees that approximately follow some given
distribution. The optimization problems in this paper give
rise to semi-infinite linear programs and can be solved using
methods from distributionally robust optimization. Using a
primal-dual approach, we can solve these semi-infinite linear
programs in closed form and find the precise description of the
degree distribution P ∗ that attains the largest expected graph
property. Since this distribution is by definition contained in
the set P , the bound

EP [graph property] � EP ∗ [graph property], ∀P ∈ P,

(2)
is the best possible (tight) bound for all degree distributions
that share the same summary statistics as is P .

Distributionally robust optimization finds applications in
many domains [27–29], but applications in the area of network
science are rare. In fact, we are only aware of two papers that
apply distributionally robust optimization to study complex
networks. The first paper investigates the maximal possible
subgraph counts under a restrictive cutoff scheme that cre-
ates uncorrelated networks [30]. The second paper provides
a distributionally robust model for the influence maximization
problem where the influence diffusion is adversarially adapted
to the choice of seed set [31]. Here the authors aim to detect
a seed set whose worst-case expected influence is maximized,
and show that this differs from the standard model in which
influence is assumed to diffuse independently across the dif-
ferent edges.

We term the largely unexplored approach taken in this
paper distributionally robust random graph analysis, referring
to the combination of classical random graph analysis and
the optimization framework that only conditions on partial
distributional information. This view on random graphs trades
precise results, which hold for a given degree distribution, for
robust statements, which hold for classes of degree distribu-
tions. Such robust results fit well with the search for universal
properties of complex networks.

Here are the main contributions of this paper:
(i) For all degree distributions with a given mean, variance,

and cutoff, we obtain the maximal degree-degree correlations
and local clustering. We show that these bounds for a(k) and
c(k) decay in k, as observed in most real-world networks and
random graph models.

(ii) We show that the maximal values of a(k) and c(k)
are often attained by uncorrelated graphs. In particular, the
sharpest possible bounds for a(k) and c(k) for all degree
distributions with the same mean and variance are attained by
uncorrelated degrees distributions, as long as it is possible to
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create such uncorrelated distributions with the given mean and
variance.

(iii) We compare the extremal graph models that pro-
vide the highest correlations and clustering to existing results
for power-law random graphs. While power laws are often
thought of as degree distributions that lead to extreme behav-
ior, the power laws are not the degree distributions that possess
the largest possible values of a(k) and c(k) when τ > 2.

(iv) We provide a method to detect whether any given
real-world data set can be modeled by hidden-variable models
for properties of interest. We show that for several real-world
data sets, no possible hidden-variable model can model the
particular real-world data set.

We introduce the hidden-variable model and assumptions
on the degree distribution in Sec. II. We then solve the max-
imization problem that finds the extremal random graph that
generates the maximal degree-degree correlation in Sec. III.
The scaling laws for clustering as a function of the network
size are presented in Sec. IV, and in Sec. V we do this for
clique counts. In Sec. VI, we obtain results for the setting
when the MAD instead of the variance is used as the dis-
persion measure. In Sec. VII, we compare the robust bounds
obtained in earlier sections with the existing results for scale-
free networks with power-law degrees, and with data from
real-world networks.

II. RANDOM GRAPHS AND HIDDEN
(RANDOM) VARIABLES

Our analysis of degree-degree correlations and clustering
will be based on the hidden-variable model, a random graph
model in which every vertex i ∈ [n] has a weight hi, and
edges are formed between pairs of nodes with a probability
that depends on both weights. More specifically, every pair of
vertices is connected independently with probability

p(hi, h j ) = min

(
hih j

h2
s

, 1

)
= min

(
hih j

μn
, 1

)
, (3)

where μ denotes the average weight, and hs is the structural
cutoff set to

√
μn throughout this paper, in line with its typical

choice for power-law networks [25,32–34]. This choice of
cutoff ensures that the weight of a vertex is close to its degree
[32,35]. The structural cutoff describes the maximal degree
of vertices that are not prone to degree-degree correlations
[25]. As soon as the degree of a vertex becomes larger than
the structural cutoff, it is forced to connect to lower degree
vertices, as only a few high degree vertices can be present
while keeping the average degree fixed.

The natural cutoff describes the constraint on the largest
possible network degree or the largest possible weight hc. In
many real-world networks as well as in networks generated
from power-law degrees, the largest observed degree is much
larger than the structural cutoff of

√
μn. For example, when

the degrees of the vertices follow a power-law distribution
with degree exponent τ , the largest degree scales as n1/(τ−1).
This means that the network contains vertices that are prone
to degree-degree correlations and connection probabilities
become nonconvex, which makes the network analysis tech-
nically more challenging.

The hidden-variable model has several properties that
make it amenable to analytical analysis. First of all, when
the connection probabilities are suitably chosen, the weight h
and the degree k of a vertex are similar with high probability.
Indeed, the expected degree d j of vertex j, given its weight,
satisfies

E[d j | h j] =
∑
j �=i

min

(
hih j

μn
, 1

)

≈
∑
i �= j

hih j

μn
≈ h j . (4)

To be more precise, when h 
 1, then k = h[1 + o(1)] [13].
This makes it possible to interchange weights and degrees,
which is convenient as the connection probabilities are defined
in terms of weights. Second, when all hidden variables are
assigned, most network statistics of interest can be computed
as a function of the hidden variables. For example, the average
degree of all neighbors of a vertex with weight h can be
written as

a(h) = 1

h

n∑
i=1

hi min

(
hhi

μn
, 1

)
, (5)

where the sum is over all vertices in the network, and multi-
plies the weight of a vertex with the probability that vertex i
connects to the weight-h vertex.

The local clustering coefficient denotes the probability that
two randomly chosen neighbors of a vertex with weight h are
neighbors themselves. This statistic can again be written as a
function of the hidden variables. Formally,

c(h) = 1

h2

∑
1�i< j�n

min

(
hhi

μn
, 1

)

× min

(
hhj

μn
, 1

)
min

(
hih j

μn
, 1

)
. (6)

Here the sum is over all pairs of vertices in the network, and
the term inside the summation computes the probability that
these vertices form a triangle with the weight-h vertex.

At first sight, degree correlations and clustering seem un-
related, as the former is defined in terms of edges and the
latter in terms of triplets of nodes. Still, intuitively, a(k) and
c(k) are related in the case of hidden-variable models. In-
deed, the average neighbor of a vertex of a weight-k vertex is
a(k). The probability that two such vertices connect scales as
a(k)2/n, when a(k) is sufficiently small. This probability can
be interpreted as the probability that two “average” neighbors
of a weight-k vertex connect. It turns out that this intuitive
reasoning provides the correct scaling of c(k) in some cases.
That is, c(k) ∼ a(k)2/n [23].

When studying real-world data sets, we can only observe
c̄(k) and ā(k), the local clustering coefficient and average
degree of the neighbors of a degree-k vertex, rather than
a weight-h vertex. Still, the property of the hidden-variable
model that degrees and weights are close makes the differ-
ence between these two statistics small in the large-network
limit [13].

In traditional hidden-variable models, the weights
h1, . . . , hn are assumed to be independent and following
some distribution P . The natural cutoff can then be calculated
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from the distribution P . In this paper, however, we only
specify partial information about the weight (i.e., degree)
distribution. We will assume that, for the weights, we know
the minimal value, their maximal value (the natural cutoff
hs), the mean, and the dispersion, first measured in variance
and later in terms of mean absolute deviation (MAD). Let h
denote a generic weight. We first assume that the weights are
sampled independently from a distribution such that (i) h = hi

has support supp(h) = [a, hc] with −∞ < a � hc < ∞, (ii)
E[h] = μ, and (iii) E[(h − μ)2] = σ 2. This defines the
ambiguity set

P (μ, σ 2) = {P : supp(h) ⊆ [a, hc],E[h] = μ,

E[(h − μ)2] = σ 2}. (7)

Hence, when we now analyze the hidden-variable model un-
der the assumption that the weight distribution belongs to
P (μ, σ 2), we perform a distributionally robust analysis of the
random graph model.

The variance of the degree distribution is often highly
affected by the choice of the natural cutoff. In power-law
random graphs, for example, the variance σ 2 grows as h3−τ

c .
Indeed, for τ ∈ (2, 3), the variance of the weights can be
computed as ∫ hc

1
x2−τ dx − μ2 ∼ h3−τ

c . (8)

The MAD, on the other hand, always satisfies the inequality
d < 2μ. Thus, as long as the average degree is finite, the
MAD will not grow as a function of hc.

In the rest of this paper, we will focus on the graph proper-
ties mentioned above, and first seek the weight distribution P
that solves

max
P∈P (μ,σ 2 )

EP [graph property], (9)

with P (μ, σ 2) as in (7). This means that we take a dis-
tributionally robust approach for the input weights of the
hidden-variable model under the assumption that their distri-
bution belongs to P (μ, σ 2). When the graph property (9) can
be viewed as a convex function of the generic weight random
variable h, (9) is optimized for a specific distribution with sup-
port on three points [30]. Indeed, due to the convex nature of
the function, an optimizer aims to put as much weight on the
extremal points a and hc, while still adhering to the constraints
on the average weight and its variance. This leads to a specific
three-point distribution with probability mass on a, hc, and μ.
However, in the setting we now consider with natural cutoff
hc >

√
μn, the connection probability (3) is not convex and

therefore most graph properties will also not be convex in the
hidden variables. In the next sections, we therefore apply a
primal-dual-based approach to find the distributionally robust
graph properties.

III. ROBUST DEGREE-DEGREE
CORRELATIONS BOUNDS

The definition of a(h) in (5) assumes that the hidden vari-
ables are known. Instead, we now assume that all hidden
variables are drawn from some probability distribution P , so

FIG. 2. The two possible tightest majorants for the function g(x).

that the expected value of a(h) can be computed as

EP [a(h)] = n

h
EP

[
h′ min

(
hh′

μn
, 1

)]
. (10)

We then search for the weight distribution P that solves

max
P∈P (μ,σ 2 )

EP [a(h)], (11)

with P (μ, σ 2) as in (7). Hence, when we now analyze the
hidden-variable model under the assumption that the weight
distribution belongs to P (μ, σ 2), we perform a robust analysis
for all distributions with a given mean, variance, and cutoff.
The optimization problem (11) can be written as

max
P (x)�0

∫
x

g(x)dP (x),

subject to
∫

x
x2dP (x) = μ2 + σ 2,

∫
x

xdP (x) = μ,

∫
x

dP (x) = 1, (12)

where g(x) = x min[hx/(μn), 1]. In optimization theory,
Eq. (12) is called a semi-infinite linear optimization problem
(LP). The Richter-Rogosinski Theorem (see, e.g., [36–38])
says there exists an extremal distribution for problem (12)
with, at most, three support points. While finding these points
in closed form is typically not possible for general semi-
infinite problems, next we show that this is possible for the
problem at hand by resorting to the dual problem; see, e.g.,
[29] and [39]. This dual problem of (12) is given by

min
λ1,λ2,λ3

λ1(μ2 + σ 2) + λ2μ + λ3,

subject to g(x) − λ1x2 − λ2x − λ3 � 0, ∀x ∈ [a, hc],
(13)

and aims to find the tightest quadratic majorant of g(x)
that minimizes λ1(μ2 + σ 2) + λ2μ + λ3. Now g(x) has a
quadratic part up to min(μn/h, hc), and a linear part. Figure 2
shows that this function has two possible tightest quadratic
majorants. The first one, F1(x), is given by λ1 = h/(μn), λ2 =
λ3 = 0 and has objective value h(μ2 + σ 2)/(μn). The second
one, F2(x), is given by λ2 = 1, λ1 = λ3 = 0 and has objective
value μ. Which of the two majorants has the smallest objective
value depends on h. For low values of h, the first majorant
gives the lowest objective value, whereas for high values of h,
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the linear one dominates. The changing point is when

h = μ2n/(μ2 + σ 2). (14)

The next step is to find a feasible solution for the primal
problem that yields the same objective value as the solution
to the dual problem. By weak duality of semi-infinite linear
programming, a feasible solution to the dual problem gives
a valid upper bound for the optimal primal solution value.
A feasible primal solution with an objective value equal to
this upper bound would show that strong duality holds. Next,
we provide a constructive approach, based on the condition of
complementary slackness, to find such a primal solution.

Assume that strong duality holds. The primal and dual
objectives are then equal for the primal maximizer P ∗ and the
dual minimizer (λ∗

1, λ
∗
2, λ

∗
3 ), and we can substitute the primal

constraints in the dual objective. Hence, we obtain the relation∫
x

g(x)dP ∗(x) =
∫

x
λ∗

1x2 + λ∗
2x + λ∗

3 dP ∗(x). (15)

Since λ1(μ2 + σ 2) + λ2μ + λ3 − g(x) � 0 pointwise by
weak duality, Eq. (15) implies that P ∗ is supported only on the
points where λ∗

1x2 + λ∗
2x + λ∗

3 coincides with g(x). We now
show that in both cases, a three-point distribution achieves the
dual objective value.

In the first case, h < μ2n/(μ2 + σ 2), and the dual objective
value is given by h(μ2 + σ 2)/(μn). Now consider the three-
point distribution [for ease of notation, we assume that a = 0,
and denote l = min(μn/h, hc)] on the points 0, μ, l , so indeed
the quadratic majorant and g(x) coincide. The probabilities
are chosen such that the moment conditions are satisfied. We
obtain

p0 = σ 2

lμ
, pμ = 1 − σ 2

lμ
− σ 2

l (l − μ)
, pl = σ 2

l (l − μ)
.

(16)

This is only a proper probability distribution when
σ 2/(lμ) + σ 2/[l (l − μ)] � 1, which can be rewritten as
σ 2 + μ2 � μl . We first assume that min(μn/h, hc) = μn/h,
so we need to check that σ 2 + μ2 � μ2n/h. This follows
directly from the assumption on h. When min(μn/h, hc) = hc,
we should satisfy σ 2 + μ2 � μhc. This is always the case,
as the maximal variance of a primal solution with mean μ

is given by the primal solution 1 − p0 = phc = μ/hc, giving
as variance σ 2 � μhc − μ2.

This three-point distribution gives as objective value for the
primal problem,(

1 − σ 2

lμ
− σ 2

l (l − μ)

)
μ2h

μn
+ σ 2

l (l − μ)

l2h

μn
= (σ 2 + μ2)h

μn
,

(17)
which is equal to the dual objective value.

Thus, by duality, this three-point degree distribution gen-
erates the extremal random graph for a(k), and the result that
for h < μ2n/(μ2 + σ 2),

max
P∈P∗(μ,σ 2 )

EP [a(h)] = μ2 + σ 2

μ
. (18)

In the second case, h > μ2n/(μ2 + σ 2), and the dual ob-
jective value is given by μ. Here, consider the three-point

distribution

p0 = 1 − pμn/h − phc , pμn/h = h2(−hcμ + μ2 + σ 2)

μn(μn − hch)
,

phc = μ2(h − n) + hσ 2

hc(hch − μn)
. (19)

This is only a proper distribution when σ 2 < hcμ − μ2, which
always holds by a similar reasoning as for the first case.
The second condition of σ 2 > hcμ − μ2 − μn/h2(hch − μn)
is more involved and is, in fact, not necessary. Indeed, in (19),
we chose the third point of the distribution at hc. However,
as the tightest majorant in Fig. 2 touches on an entire line, it
is also possible to choose the third point somewhere else in
[μn/h, hc] while achieving the same optimal value. Choosing
another point for the three-point distribution also results in
different conditions on σ 2. The lowest such constraint is when
p0 = 1 − pμn/h in (19), yielding σ 2 = μ2n/h − μ2, which
is ensured by our assumption on h. Under this three-point
distribution, E[X ] = μ, E[(X − μ)2] = σ 2 and the primal ob-
jective value E[g(X )] = μ.

Thus, by duality, the three-point distribution is the
variance-based extremal random graph for a(k), giving that
for h > μ2n/(μ2 + σ 2),

max
P∈P (μ,σ 2 )

EP [a(h)] = μn

h
. (20)

Notice that the three-point distribution (19) is not a unique
optimum, as the dual function F2(x) coincides with g(x) on
the entire interval [μn/h, hc]. Therefore, one can construct
an arbitrary (discrete, continuous, or mixed) probability dis-
tribution with support on the interval [μn/h, hc], as long as
the mean and variance conditions are satisfied. Similarly, the
three-point distribution (16) is also not unique.

This yields the following theorem:
Theorem 1. When p(h, h′) = min[hh′/(μn), 1] and

hc � n,

max
P∈P (μ,σ 2 )

EP [a(h)] =
{

μ2+σ 2

μ
, h < μ2n/(μ2 + σ 2)

μn
h , h > μ2n/(μ2 + σ 2).

(21)

The theorem distinguishes two regimes: one constant
regime for low h and a decaying regime for high enough h. In
the constant regime, vertices are not prone to degree-degree
correlations: all vertices have the same average nearest-
neighbor degree as long as h < μ2n/(μ2 + σ 2). Furthermore,
higher degree variance implies a lower threshold, and hence
more vertices that are subject to degree-degree correlations.
This is consistent with the intuition that degree-degree correla-
tions arise because high-degree vertices are forced to connect
to lower-degree vertices due to the lack of sufficiently many
high-degree vertices. When hc < μ2n/(μ2 + σ 2), it is possi-
ble to create entirely uncorrelated networks. This condition
is more general than the often used hc � √

n constraint for
uncorrelated networks that was found for power-law net-
works [25], as here we do not assume any specific weight
distribution.
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IV. ROBUST CLUSTERING BOUNDS

We now consider the probability that two randomly chosen
neighbors of a vertex of weight h are connected to one another
as well, c(h). Again, in (6) the hidden variables are assumed
to be fixed. We assume that the hidden variables are drawn
from some distribution P , so that the expected value of c(h)
becomes

EP [c(h)]

= n2

h2
EP

[
min

(
hh1

μn
, 1

)
min

(
hh2

μn
, 1

)
min

(
h1h2

μn
, 1

)]
.

(22)

Now, instead of optimizing over only one hidden variable as
in (12), we need to jointly optimize the weight distributions
of both neighbors. Under variance-based optimization, the
optimization problem for c(h) corresponding to (12) becomes

max
P (x)�0

∫
x1

∫
x2

g(x1, x2)dP (x2)dP (x1),

subject to
∫

x
x2dP (x) = μ2 + σ 2,

∫
x

xdP (x) = μ,

∫
x

dP (x) = 1, (23)

where

g(x1, x2) = min

(
x1x2

μn
, 1

)
min

(
x1h

μn
, 1

)
min

(
x2h

μn
, 1

)
.

(24)

It turns out that this optimization problem is difficult to
solve due to the constraint that the two variables x1 and x2 are
i.i.d. We therefore instead solve a relaxation of (23), where
we allow these two variables to be correlated or drawn from
different distributions. This relaxed problem takes the form

max
P (x1,x2 )�0

∫
x1

∫
x2

g(x1, x2)dP (x1, x2),

subject to
∫

x1

∫
x2

x2
1x2

2dP (x1, x2) = (μ2 + σ 2)2,

∫
x1

∫
x2

x1x2dP (x1, x2) = μ2,

∫
x1

∫
x2

dP (x1, x2) = 1, (25)

which again is a semi-infinite linear optimization problem.
Here, instead of optimizing over a single distribution from
which both weights are drawn, we optimize over a joint,
symmetric distribution over the weights of the other two ver-
tices involved in a triangle, P (x1, x2). As a consequence, it is
possible that the optimal weight distributions found by solving
the relaxed problem are correlated so that the two vertices
jointly optimize their weights to make a triangle formation
more likely. Interestingly, it turns out that this is not the case.
In Appendix 1, we show that the optimizer of the relaxed
optimization problem, which thus allows for correlations and
is easier to solve, is in fact an uncorrelated distribution and is
therefore also the solution of the original optimization prob-
lem (23). We are able to derive this optimizer because the dual

version of this problem,

min
λ1,λ2,λ3

λ1(μ2 + σ 2)2 + λ2μ
2 + λ3,

subject to g(x1, x2) − λ1x2
1x2

2 − λ2x1x2 − λ3 � 0,

∀x1, x2 ∈ [a, hc],

is relatively easy to solve. This gives the following theorem
on the distributionally robust optimizer for c(h):

Theorem 2. When p(h, h′) = min[hh′/(μn), 1] and σ 2 <

μ max(
√

μn, μn/h) − μ2,

max
P∈P (μ,σ 2 )

EP [c(h)]

=
⎧⎨
⎩

min

(
(μ2+σ 2 )2

μ3n , 1

)
, h < μ2n/(μ2 + σ 2)

μn
h2 , h > μ2n/(μ2 + σ 2).

(26)

This theorem only holds when σ 2 is not too large. We
conjecture that when σ 2 is larger than the range prescribed
by the theorem, a primal-dual gap of (A2) appears, indicating
that the optimization problem can no longer be solved through
primal-dual methods. Indeed, for larger σ 2, the best dual so-
lution remains feasible as it does not depend on σ 2. However,
it is then impossible to construct a probability distribution
with the required variance on the set of values where the dual
constraints are tight. This suggests that a primal-dual gap is
present in that case, as there is no primal feasible solution that
satisfies complementary slackness. For large σ 2, this implies
that the primal problem has to be solved without the help of
the dual problem, which makes the problem significantly more
challenging.

V. ROBUST CLIQUE COUNTS

Whereas a(k) and c(k) measure two- and three-point cor-
relations between nodes, we demonstrate in this section that
robust bounds can also be obtained for network statistics that
include more than three nodes. We focus on the number of
cliques of size k, denoted as N (Kk ), and use that

E[N (Kk )] =
∑

1�i1<i2···<ik

∏
u<v

p
(
hiu , hiv

)

=
∑

1�i1<i2···<ik

∏
u<v

min

(
hiu hiv

μn
, 1

)
, (27)

as a clique is present if and only if all possible edges between
nodes i1, i2, . . . , ik are present. To establish the variance-based
bound on the expected number of cliques, we formulate the
multivariate optimization problem,

max
P (x)�0

∫
x1

· · ·
∫

xk

g(x1, x2, . . . , xk )dP (x1) . . . dP (xk ),

subject to
∫

x
x2dP (x) = μ2 + σ 2,

∫
x

xdP (x) = μ,

∫
x

dP (x) = 1, (28)
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with

g(x1, . . . , xk ) =
∏

1�i< j�k

min

(
xix j

μn
, 1

)
.

As for clustering, this optimization problem appears in-
tractable due to the i.i.d. hidden variables. We therefore again
solve a relaxation of (28) instead that drops the i.i.d. as-
sumption. In Appendix 1, we solve this relaxed optimization
problem and prove the following robust bounds for clique
counts:

Theorem 3. When σ 2 � μ(
√

μn − μ), k > 3, and as
n → ∞,

max
P∈P (μ,σ 2 )

EP [N (Kk )] = (μ2 + σ 2)k

μkk!
[1 + o(1)]. (29)

Furthermore, for k = 3, σ 2 � μ(
√

μn − μ) and, for any n,

max
P∈P (μ,σ 2 )

EP [N (Kk )] = (μ2 + σ 2)k

μkk!
. (30)

This theorem shows that cliques significantly increase
when the variance grows, as is the case for heavy-tailed
weight distributions. The theorem only holds asymptotically
(except for k = 3), as we create primal and dual solutions
with a small gap between their respective optimal values that
vanishes as n → ∞. Whereas Theorems 1 and 2 gave exact
(nonasymptotic) results, here the relaxed optimization method
that provided exact results for Theorem 2 gives non-i.i.d.
weight distributions. Thus, this method does not provide ex-
act bounds on clique counts. Instead, we first solve the dual
problem and then construct i.i.d. primal weight distributions
that asymptotically achieve the dual value, and are therefore
asymptotically optimal.

As in Theorem 2, the theorem contains a condition on σ 2.
We conjecture that for larger σ 2, a larger primal-dual gap is
present that does not vanish in the large-network limit, so that
the optimization problem (28) cannot be solved through its
dual variant, similarly as for Theorem 2.

VI. MAD INSTEAD OF VARIANCE

We now turn to a second measure of dispersion: mean
absolute deviation. While the variance of a random variable
can be infinite, the MAD is always bounded by 2μ, so that
even in networks with heavy-tailed degree distributions, this
quantity remains finite. For maximizing based on MAD, the
ambiguity set now becomes

P (μ, d ) = {P : supp(h) ⊆ [a, hc],

E[h] = μ,E[|h − μ|] = d}. (31)

As for the variance-based approach, we then aim to find the
probability distribution P ∈ P (μ, d ) that maximizes the net-
work statistics a(h) and c(h). We can use the same approach
of constructing an optimization problem based on the con-
straints formed by the ambiguity set and finding the optimal
primal-dual solution. As shown in Appendix 2, we obtain the
following result for a(h):

FIG. 3. The function g(x, y).

Theorem 4. When p(h, h′) = min[hh′/(μn), 1], and hc →
∞ as n → ∞ and hc � n,

max
P∈P (μ,d )

EP [a(h)] = d

2μ
min

(
hc,

μn

h

)
[1 + o(1)]. (32)

This optimal value of a(h) is attained by the three-point
distribution,

p0 = d

2μ
, pμ = 1 − d

2μ
− d

2(l − μ)
, pl = d

2(l − μ)
,

(33)

where l = min(μn/h, hc).
To obtain results for c(k) with MAD as well, we need to

solve the optimization problem,

max
P (x)�0

∫
x1

∫
x2

g(x1, x2)dP (x2)dP (x1),

subject to
∫

x
|x − μ|dP (x) = d,

∫
x

xdP (x) = μ,

∫
x

dP (x) = 1, (34)

similarly to (23). Again, this optimization problem is diffi-
cult to solve due to the constraint that the two variables x1

and x2 are i.i.d. We could solve this problem by proceeding
as in Sec. IV, by writing an unconstrained version of this
optimization problem, where we allow the two variables to
be nonidentical or correlated. However, these techniques then
lead to the dual problem,

min
λ1,λ2,λ3

λ1d2 + λ2μ
2 + λ3,

subject to g(x1, x2) − λ1|x1 − μ||x2 − μ| − λ2x1x2 − λ3 � 0,

∀x1, x2 ∈ [a, hc].

Compared with (26), this dual function is no longer quadratic,
but a product of absolute values summed with a linear term.
The dual then tries to find the tightest majorant of this
two-dimensional function of the nonconvex function g(x1, x2)
illustrated in Fig. 3. However, finding the tightest majorant of
λ1|x1 − μ||x2 − μ| − λ2x1x2 − λ3 to a general function is not
obvious, as it is a function with a kink and different behavior
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FIG. 4. The function 2|x − 1||y − 1| + xy.

near the x and y axes from the line y = x, as illustrated in
Fig. 4. This makes it more difficult to find the values of
λ1, λ2, λ3 that find this tightest majorant.

Therefore, we take a different approach instead. We first
focus on the one-dimensional problem: for fixed x1, what is
the distribution of x2 that maximizes g(x1, x2)? This problem
can now be solved by a one-dimensional dual problem, which
is easy to solve, similarly as in Sec. III. We then take the dis-
tribution of the optimal x2 (which may depend on the value of
x1) and then optimize over the distribution of x1 as well. Now
this iterative approach may introduce correlations between the
distributions: it is possible that the optimal distribution for x1

is different from, or dependent on, the optimal distribution of
x2. Still, in some cases, it may be true that the output of this
less restrictive optimization problem gives an i.i.d. distribution
of x1 and x2. In that case, this method also solves (34). In
the case when g(x1, x2) is convex, this is known to be true.
Unfortunately, for the case of computing c(h), g(x1, x2) is
not convex. And, indeed, the iterative optimizer is not always
i.i.d. in this case. Still, we show that asymptotically, an i.i.d.
optimizer achieves the same maximal value of c(h). Applying
this iterative method, as shown in Appendix 2, leads to the
following results:

Theorem 5. When p(h, h′) = min[hh′/(μn), 1] and hc →
∞ as n → ∞,

max
P∈P (μ,d )

EP [c(h)]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, h � √
μn and

2μ(1 − √
μ/n) < d < 2μ(1 − h/n)

d2

4μ2 [1 + o(1)], h � √
μn and d < 2μ(1 − √

μ/n)
d2n

4μh2 [1 + o(1)],
√

μn � h � n.

(35)

While, from the perspective of i.i.d. weight sampling of the
random graph, it is natural to constrain the two vertices that
form a triangle together with the degree-h node to be sampled
from the same distribution, in the optimization problem it is
also possible to find the optimal pair of correlated distributions
over the two nodes that form a triangle together with the
weight-h node. In that case, the nodes that form a triangle
together with the weight-h node are both sampled from the
ambiguity set P(μ,d ), so that they still both have mean weight

μ and MAD d . However, the weights of the two nodes are
now allowed to be correlated.

In the proof of Theorem 5, we show that in the ranges
where Theorem 5 is valid, adding correlations between the
distributions of h1 and h2 does not make a difference in the
scaling for c(h). Indeed, the upper bound of 1 is always valid
for c(h), so that lifting the constraint on the i.i.d. distributions
of h1 and h2 cannot increase the optimal value of c(h). For
the second setting where

√
μn � h � n, we in fact show in

the proof of Theorem 5 that by optimizing c(h) over a set of
probability distributions on h1 and h2 which are allowed to be
correlated, we end up with i.i.d. distributions as the optimizer.
So here also lifting the constraint on the joint distribution will
not increase c(h). Furthermore, in the case h � √

μn and d
is small, allowing correlations only increases the non-leading-
order terms, so that asymptotically, c(h) cannot be increased
by allowing correlations between the distributions of h1

and h2.

VII. COMPARISON WITH OTHER NETWORKS

We now compare the extremal values of a(k) and c(k) to
several synthetic and real network data.

(a) Erdős-Rényi model. In the Erdős-Rényi model, hi =
μ,∀i, and all vertices connect with probability μ/n. Thus,
σ 2 = 0 and d = 0. The zero variance and MAD means that
there is only one distribution in the ambiguity sets (7) and
(31), which is hi = μ,∀i. Therefore, Theorems 1 and 4 predict
that the maximal value of a(h) = μ, which is the exact aver-
age weight of a neighbor in an Erdős-Rényi random graph, as
all vertices have weight μ. Furthermore, Theorems 2 and 5
predict that the maximal value of c(h) = μ/n, which is also
equal to c(h) in an Erdős Rényi model, as the probability
that two neighbors of a vertex connect is μ/n, the same as
the connection probability for all pairs of vertices. Thus, for
Erdős-Rényi random graphs, our bounds are tight.

(b) Poisson random graph. When the hidden variables have
a Poisson distribution with mean μ, the second moment of the
weight distribution is μ + μ2. For such networks, hh′ < μn
almost surely for all h � n. Thus, Eq. (10) gives E[a(h)] =
1 + μ. Applying Theorem 1 yields that the maximal possible
a(h) value among all networks with the same mean and vari-
ance of the weights also equals 1 + μ. Similarly, E[c(h)] =
(μ + μ2)2/(μ3n) for Poisson random graphs by Eq. (22),
while by Theorem 2, the maximal value of c(k) among
all power-law random graphs also equals (μ + μ2)2/(μ3n).
Thus, Poisson random graphs achieve the maximal bounds for
a(h) and c(h) exactly.

When looking at the MAD-based bounds, the picture
changes drastically. Indeed, for a Poisson random variable
with integer mean μ [40],

d = 2μμ+1e−μ/μ!, (36)

so that by Theorem 4 the maximal value of a(h) scales for low
h as hcμ

μe−μ/μ!, which can be much larger than the achieved
value of 1 + μ.

For c(k), Theorem 5 yields that for h low, the maximal
value of c(h) for random graphs with the same mean and
MAD as the Poisson random graph equals (μμe−μ/μ!)2,
which is an n-independent constant, in contrast to the achieved
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FIG. 5. Maximal scaling compared with the power law with the same parameters (dashed line) for n = 105 on (a) a(k), variance basis
(solid line); (b) a(k), MAD basis (solid line); (c) c(k), variance basis (solid line); and (d) c(k), MAD basis (solid line).

value of c(h) = (μ + μ2)2/(μ3n), which decays in n. Thus,
our variance-based bounds can be significantly lower than the
ones based on equal MAD.

(c) Comparing power law a(h) to extremal a(h). We now
turn to random graphs with power-law distributed weights. We
first compare the maximal scaling of a(h) given by Theorem
1 to the value of a(h) attained by the power-law weight distri-
bution,

P (h > x) = Cx1−τ . (37)

When sampling n i.i.d. weights from this distribution, the
maximal weight scales as hc = n1/(τ−1) with high probability.
In such power-law Chung-Lu models [23,24],

a(h) ∼
{

n(3−τ )/(τ−1), h � n(τ−2)/(τ−1)

(n/h)3−τ , h 
 n(τ−2)/(τ−1).
(38)

We now investigate how close this value of a(h) is to the
maximal possible values among all Chung-Lu models with
the same mean and variance as the power-law distribution. For
power-law distributed weights, σ 2 ∼ n(3−τ )/(τ−1), as derived
in (8). Thus, Theorem 1 yields

max
P∈P (μ,n(3−τ )/(τ−1) )

EP [a(h)] = μ2 + n(3−τ )/(τ−1)

μ

∼ n(3−τ )/(τ−1), (39)

when h < n(2τ−4)/(τ−1), while

max
P∈P (μ,n(3−τ )/(τ−1) )

EP [a(h)] = μn

h
, (40)

when h > n(2τ−4)/(τ−1). For large h, the scaling in (38) only
agrees with the value of μn/h of (40) for τ = 2. For low h, the
power-law value of a(h) of (38) agrees with the scaling of (39)
for all τ ∈ (2, 3). This indicates that a power-law distribution
asymptotically achieves the most extreme values of a(h) pos-
sible for h that is small among all random graphs with the
same mean and variance of the degree distribution. For larger
h, the extremal a(h) scaling is only attained for power-law
random graphs for τ = 2. Indeed, Fig. 5(a) illustrates that
the variance-based upper bound on a(k) is close to the value
achieved by a power-law Chung-Lu model when τ ≈ 2, and
that power-law graphs with higher degree exponents have a
closer gap with the maximal possible a(h) value.

We again compare a(h) of the power-law distribution (38)
to a matching extremal value, but now the extremal random
graph is based on a matching mean and MAD. For power laws
[30],

d = C
(
2μ2−τ − 1 − h2−τ

c

)
τ − 2

+ Cμ
( − 2μ1−τ + 1 + h1−τ

c

)
τ − 1

.

(41)

Thus, for τ > 2, d is approximately constant. Comparing
Theorem 4 where we take d constant and hc = n1/(τ−1) with
(38) shows that

max
P∈P∗(μ,d )

EP [a(h)] =
{ d

2μ
n1/(τ−1), h < μn(τ−2)/(τ−1)

dn
2h , h > μn(τ−2)/(τ−1).

(42)
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Comparing this with (38) shows that for τ = 2, the maxi-
mal degree-degree correlations among all Chung-Lu random
graphs with given MAD and μ scale the same as for the
power-law distribution. Still, Fig. 5(b) shows that the dif-
ferences in constants in the change point as well as in the
maximal scaling make the power law a(h) to be quite far
from the MAD-based bound, even for τ ≈ 2. Note also that
the MAD-based bounds sometimes drops below the actual
power-law value for large h. This is because we plot the values
of a(k) all the way up to h = n, while the (τ -dependent) cutoff
already lies at hc = n1/(τ−1), which is close to 400 for τ = 2.9,
for example. Thus, for all h in [1, hc], the MAD bound is a
valid upper bound.

(d) Comparing power law c(h) to extremal c(h). We now
turn to c(k). In power-law Chung-Lu models with cutoff hc =
n1/(τ−1) [23],

c(h) ∼
⎧⎨
⎩

n2−τ ln(n), h � n(τ−2)/(τ−1)

n2−τ ln(n/h), n(τ−2)/(τ−1) � h � √
n

h2τ−6n5−2τ , h 
 √
n.

(43)

We now compare this scaling to the scaling obtained by The-
orem 2. Using (8) shows that Theorem 2 predicts that

max
P∈P (μ,n(3−τ )/(τ−1) )

EP [c(h)] ∼ min(n(7−3τ )/(τ−1), 1) (44)

for small h, while it scales as n/h2 for large h. For τ = 2,
this coincides with (43). Therefore, Theorem 2 implies that
the maximal c(h) scaling among all Chung-Lu random graphs
with given σ 2 and μ for h 
 √

n is achieved by the power-law
distribution for τ = 2. However, for h � √

n, the power-law
distribution does not attain the largest possible value of c(h).
Figure 5(c) illustrates this. The power law c(k) is even in
its constant, very close to the variance-based maximal value
of c(k). For τ ≈ 2, the changing point between the constant
regime and the decaying regime becomes close, while for
larger values of τ , the difference in changing point is larger.

For the MAD-based optimizer, we can obtain similar state-
ments. Theorem 5 predicts that

max
P∈P∗(μ,d )

EP [c(h)] ∼ n/h2, (45)

for h that is sufficiently high. Therefore, Theorem 5 implies
that the maximal c(h) scaling among all Chung-Lu random
graphs with given MAD, hc, and μ for h 
 √

n is achieved
by the power-law distribution for τ = 2. Indeed, Fig. 5(d)
shows that the MAD-based optimal value of c(k) is close
to the power-law-based one for τ ≈ 2, but that the bound
can be far off otherwise. Furthermore, note that for τ = 2.1,
the MAD-based optimal bound drops below the power-law
achieved value. This is because of finite-size effects that are
not included in Theorem 5.

(e) Comparing power-law clique counts to extremal clique
counts. We now compare the maximal amount of cliques
predicted by Theorem 3 to the amount of cliques achieved by
a power-law random graph. When 2 < τ < 3, under a cutoff
at b = √

μn, the expected number of cliques in a power-law
random graph with degree-exponent τ equals [41, Eq. (1.7)]

Epl [NKk ] ≈ nk/2(3−τ )μk/2(1−τ )

k!

( C

k − τ

)k

. (46)

Now under a cutoff at b = √
μn, for power-law random

graphs, σ 2 = C
3−τ

√
μn3−τ . Plugging in σ 2 = C

3−τ

√
μn3−τ

from the power-law distribution into (29) yields

max
P∈P∗

(μ,σ2 )

EP [NKk ] = nk/2(3−τ )μk/2(1−τ )

k!

( C

3 − τ

)k

. (47)

This agrees in terms of scaling in n and μ with the power-law
Chung-Lu number of cliques scaling of (46). So this proves
that for variance-based clique optimization, power laws con-
tain the most number of cliques in terms of scaling in n when
using a cutoff at b = √

μn. Still, the leading constant in (47)
is higher than the one in (46) for k > 3, so that the extremal
random graph for cliques still achieves a higher total number
of cliques in the leading-order constant.

When hc = n1/(τ−1), then Epl [Kk] ∼ nk(3−τ )/2. Further-
more, in that setting, σ 2 ∼ n(3−τ )/(τ−1), while μ does not grow
in n. Therefore, in this case, Theorem 3 does not apply for
τ < 7/3, as σ 2 � √

n when τ < 7/3, so that the condition
of Theorem 3 does not apply. For τ > 7/3, plugging in the
power-law value of σ 2 ∼ n(3−τ )/(τ−1) into Theorem 3 yields

max
P∈P∗(μ,σ 2 )

EP [N (Kk )] ∼ nk(3−τ )/(τ−1), (48)

which is larger than the power-law scaling of nk(3−τ )/2. There-
fore, power-law random graphs are not the graphs that contain
the most cliques among all random graphs with the same mean
and variance.

(f) Data. We now apply our bounds for a(k) and c(k) to
three real-world network data sets. Figure 6 compares the
variance-based upper bound of Theorem 1 with empirical
observations. For all data sets, the true value of a(k) exceeds
the variance-based maximizer at some point. The MAD-based
maximizer, on the other hand, remains an upper bound for
a(k) in almost all data sets. This highlights the importance
of the right choice of comparison model: The hidden-variable
model with fitted variance cannot explain the degree-degree
correlations in these data sets, while the same model with
fitted MAD can.

Figure 7 shows three real-world networks c(k) and the
variance- and MAD-based bounds. The c(k) values of the
Gowalla data set are close to, or below, the MAD and
the variance-based optimizer, respectively. This suggests that
these data sets can be suitably modeled by some hidden-
variable model that matches the c(k) distribution of this data
set. For the two other data sets, on the other hand, the value
of c(k) in the data sets is higher than can be achieved by any
hidden-variable model. Therefore, no hidden-variable model
is able to match these data sets in terms of c(k), which is likely
caused by the locally treelike nature of the hidden-variable
model.

VIII. CONCLUSIONS AND DISCUSSION

Our robust network perspective, in terms of ambiguity and
partial information on the degree distribution, comes with sub-
stantial mathematical challenges. We created an optimization
framework for identifying, within some ambiguity set, the
extreme degree distribution that generates the upper bound
for the degree-degree correlations and clustering. We there-
fore had to combine probabilistic models (random graphs)
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FIG. 6. a(k) and MAD and variance-based bounds for three real-world networks: (a) Enron email network [42], (b) Pretty Good Privacy
network [43], and (c) Gowalla social network [44].

with optimization models (stochastic programs). For success-
fully applying our robust perspective, it is crucial to solve a
given stochastic program in closed form. Here we distinguish
between one-dimensional (1D) programs such as the semi-
infinite LP for the expected degree-degree correlation, and
2D programs such as for the expected clustering. For the 1D
programs with both variance and MAD information, we were
able to apply standard primal-dual techniques, solving the
dual problem with the tightest majorant, and indeed finding
a closed-form extremal distribution.

The 2D programs for expected clustering proved to be
more challenging, being semi-infinite programs with two i.i.d.
random variables. This i.i.d. assumption creates nonlinear
conditions that prohibit the usage of standard primal-dual
techniques. For variance information, we therefore applied a
relaxation technique that replaces the original program with
its counterpart that allows correlations. That relaxed program
proved solvable with the primal-dual technique, despite the
additional challenges of 2D instead of 1D. Surprisingly, the
found extremal joint distribution was a product-form distri-
bution after all, so that we could thus show that the relaxed
program has the same solution as the original program. We
showed that similar relaxations for programs of higher dimen-
sions could also be used to establish tight (asymptotic) bounds
for clique counts.

However, such relaxations proved cumbersome, if not in-
tractable, for MAD information. In that case, we opted for
a different relaxation, in which we solve the 2D program
in two steps: first finding the worst-case distributions of

variable 1, and then, given this worst-case distribution, finding
the worst-case distribution of variable 2. This relaxation also
allows correlation between the random variables, but possibly
of a different nature. This second type of relaxation turned
out to give worst-case distributions that become independent
(product-form) distributions when the network size grows to
infinity. Hence, in this way, we could solve the original 2D
MAD program asymptotically for n → ∞.

This paper forms an important step towards a more
complete theory of distributionally robust random graphs
(DRRGs). This theory exchanges full-information random
graphs with partial-information models, for instance regarding
the degree distribution. This means that the theory applies to
a large class of distributions and can possibly explain com-
plex network phenomena in a more universal manner, less
dependent on the specific distributional assumptions. Hence,
we consider this a robust way to study complex networks.

Here we mention a few open problems and research di-
rections. For solving the 2D program, we have introduced two
relaxations, one for variance and one for MAD. Do both relax-
ations work for both variance and MAD? Can we understand
when the two relaxations are equivalent and when they are
not? Do these relaxations also work in higher-dimensional
stochastic programs, with more than two i.i.d. random vari-
ables? In this paper, we have successfully applied one such
higher-dimensional relaxation for cliques of arbitrary size.

Another avenue for future research concerns model ex-
tensions. We considered the Chung-Lu-type random graph, a
tractable model that can accommodate a wide range of degree

FIG. 7. c(k) and MAD- and variance-based bounds for three real-world networks: (a) Enron email network [42], (b) Pretty Good Privacy
network [43], and (c) Gowalla social network [44].
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sequences. Drawbacks of this model are its locally treelike
nature and the slow convergence to the large-network limit
[41]. This motivates one to consider extended models such
as random geometric graphs [45] or generalizations of the
popular hyperbolic random graph [46,47], where the con-
nection probability of two vertices scales as the product of
their weights, divided by their distance. What is the maximal
value of c(k) for given mean and variance on the degrees and
given mean and variance on the interdistances? This question
will lead to a more involved optimization problem with more
variables due to the underlying geometry. Such upper bounds
for increasing model complexity could detect what level of
complexity is necessary to model a specific network property
correctly.

Furthermore, while we investigated robust degree distri-
butions, one can also think of other network properties. For
example, in temporal network models, one can obtain re-
sults for robust edge time stamps. For hypergraphs, one can
think of robust hyperdegrees or robust positions for geometric
models. We believe that this framework can provide robust
upper bounds on several network properties and quantify the
sensitivity of network models to specific assumptions on their
parameters.

Finally, it is worthwhile to compare extremal random
graphs as studied in this paper with entropy-maximizing
random graph ensembles [48]. While we maximize a given
network property (such as clustering or degree correlations),
maximum entropy random graphs maximize the entropy in-
stead and then compute the value of the property. This calls
for the investigation of classes of degree distributions and
network properties, whether or not extremal random graph
and maximum entropy random graphs are comparable.
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APPENDIX: PROOFS

1. Proof of the variance-based maximizer
for c(k) and the number of cliques

Proof of Theorem 2. The optimization problem (23) is
equivalent to

max
P (x)�0

∫
x1

∫
x2

g(x1, x2)dP (x2)dP (x1),

subject to
∫

x1

∫
x2

x2
1x2

2dP (x2)dP (x1) = (μ2 + σ 2)2,

∫
x1

∫
x2

x1x2dP (x2)dP (x1) = μ2,

∫
x1

∫
x2

dP (x2)dP (x1) = 1. (A1)

We now consider a relaxed version of this optimization prob-
lem. Instead of drawing from a single measure P for both x1

and x2, we allow for a dual measure P (x1, x2), where we only
require the product of the means and second moments to be
equal to μ2 and (μ2 + σ 2)2, respectively. We thus drop the
i.i.d. assumption for now. This gives the problem

max
P (x1,x2 )�0

∫
x1

∫
x2

g(x1, x2)dP (x1, x2),

subject to
∫

x1

∫
x2

x2
1x2

2dP (x1, x2) = (μ2 + σ 2)2,

∫
x1

∫
x2

x1x2dP (x1, x2) = μ2,

∫
x1

∫
x2

dP (x1, x2) = 1. (A2)

The dual problem then becomes

min
λ1,λ2,λ3

λ1(μ2 + σ 2)2 + λ2μ
2 + λ3,

subject to g(x1, x2) − λ1x2
1x2

2 − λ2x1x2 − λ3 � 0,

∀x1, x2 ∈ [a, hc],

with

g(x1, x2) = min

(
x1x2

μn
, 1

)
min

(
x1h

μn
, 1

)
min

(
x2h

μn
, 1

)
.

(A3)

We will now solve the optimization problem by construct-
ing primal and dual solutions that achieve the same objective
value, and therefore optimize (A2). Furthermore, the con-
structed optimal probability distribution turns out to be of
product form, so that they must also be optimizers of the
original, more constrained optimization problem (A1). These
primal and dual solutions depend on h, n, μ, and σ , in the
following cases:

Case 1. h � √
μn. We take the dual solution λ1 =

h2/(μn)3, λ2 = λ3 = 0. This gives as objective value (μ2 +
σ 2)2h2/(μn)3.

When σ 2 � (
√

μn − μ)μ, for the primal problem, con-
sider the three-point distribution,

p0 = σ 2

√
μnμ

, pμ = 1 − σ 2

μ(
√

μn − μ)
,

p√
μn = σ 2

√
μn(

√
μn − μ)

. (A4)

This is a proper distribution by the condition on σ 2. Then,

E[g(X1, X2)]

= h2

(μn)3

[
p2

μμ4 + 2pμ p√
μnμ

2(μn) + p2√
μn(μn)2]

= h2

(μn)3
(pμμ2 + p√

μnμn)2 = h2

(μn)3
(μ2 + σ 2)2. (A5)

Thus, by strong duality, this is the optimizer of (23).
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When σ 2 > (
√

μn − μ)μ, consider the three-point distri-
bution,

p0 = 1 − p√
μn − pμn/h,

p√
μn = μ2 + σ 2 − μn/h · μ√

μn(
√

μn − μn/h)
,

pμn/h = μ2 + σ 2 − √
μn · μ

μn/h(μn/h − √
μn)

. (A6)

This is only a proper distribution when σ 2 < (μn/h − μ)μ.
This three-point distribution gives E[c(h)] = 1, so that it
achieves the maximum c(h). Therefore, we can immediately
conclude that this primal solution is optimal.

Case 2.
√

μn < h < μ2n/(μ2 + σ 2). We take as the dual
solution again λ1 = h2/(μn)3, λ2 = λ3 = 0. This gives as the
objective value (μ2 + σ 2)2h2/(μn)3.

For the primal problem, consider the three-point distribu-
tion,

p0 = σ 2

μ(μn/h)
, pμ = 1 − σ 2

μ(μn/h − μ)
,

pμn/h = σ 2

μn/h(μn/h − μ)
. (A7)

Again, this is only a distribution when σ 2 � μ(μn/h − μ),
which is ensured by the condition on h. Then,

E[g(X1, X2)]

= h2

(μn)3

[
p2

μμ4 + 2pμ pμn/hμ
2(μn)2/h2 + p2

μn/h(μn/h)4
]

= h2

(μn)3
[pμμ2 + pμn/h(μn/h)2]2 = h2

(μn)3
(μ2 + σ 2)2.

(A8)

Thus, the primal solution achieves the same value as the dual
solution. Therefore, by strong duality, this is the optimizer of
(23).

Case 3. h � μ2n/(μ2 + σ 2). We take as the dual solution
λ2 = 1/(μn), λ1 = λ3 = 0. This gives as objective value μ/n.

For the primal problem, consider again the three-point
distribution that is given in (A6). This is only a proper
distribution when σ 2 > (μn/h − μ)μ, which is satisfied by
our condition on σ 2, and σ 2 � (

√
μn − μ)μ. Under this

three-point distribution, E[X ] = μ, E[(X − μ)2] = σ 2 and
E[g(X1, X2)] = μ/n. Thus, by strong duality, this is the op-
timal solution. �

Proof of Theorem 3. The relaxed optimization problem
corresponding to (28) gives the dual problem

min
λ1,λ2,λ3

λ1(μ2 + σ 2)k + λ2μ
k + λ3,

subject to g(x1, . . . , xk ) − λ1x2
1 · · · x2

k − λ2x1x2

· · · xk − λ3 � 0,

∀x1, . . . , xk ∈ [a, hc],

with

g(x1, . . . , xk ) =
∏

1�i< j�k

min

(
xix j

μn
, 1

)
. (A9)

Consider the dual solution λ1 = 1/(μn)k , giving as the objec-
tive value (μ2 + σ 2)k/(μn)k .

Consider the three-point distribution,

p0 = 1 − pm − p√
μn, pm = μ

√
μn − μ2 − σ 2

m(
√

μn − m)
,

p√
μn = μ2 + σ 2 − mμ√

μn(
√

μn − m)
, (A10)

with m = μ(1+k)/4n(3−k)/4. Note that m <
√

μn for k > 3, and
m = μ for k = 3, and that this is only a proper distribution
when σ 2 � μ(

√
μn − μ). Now,

E[g(X1, . . . , Xk )] = E
[
X k−1

1

]k

(μn)k(k−1)/2
. (A11)

Furthermore,

E
[
X k−1

1

] =
(
μ

k+1
4 n

3−k
4

)k−2
(μ

√
μn − μ2 − σ 2)

√
μn − μ

k+1
4 n

3−k
4

+
√

μnk−2(
μ2 + σ 2 − μ

k+5
4 n

3
4 − k

4
)

√
μn − μ

k+1
4 n

3−k
4

. (A12)

Now when k > 3, then n(3−k)/4 = o(1). Therefore, for k > 3,

E
[
X k−1

1

] =
√

μnk−2(μ2 + σ 2)√
μn

[1 + o(1)]. (A13)

Thus, also,

E[g(X1, . . . , Xk )] =
√

μn(k−3)k (μ2 + σ 2)k

(μn)k(k−1)/2
[1 + o(1)]

= (μ2 + σ 2)k

(μn)k
[1 + o(1)], (A14)

making the three-point distribution asymptotically optimal, as
it asymptotically achieves the same value as the dual solution.
Furthermore, for k = 3, E[X 2] = μ2 + σ 2, by the conditions
in P (μ, σ 2). Thus, for k = 3,

E[g(X1, . . . , Xk )] = (μ2 + σ 2)3

(μn)3
, (A15)

which is the exact same value as the dual objective value.
Hence, by strong duality, this is the optimal solution. �

2. Proofs for MAD-based maximizers of a(k) and c(k)

Proof of Theorem 4. The function h′ min( hh′
μn , 1) is piece-

wise convex in h′. In particular, it is quadratic up to l =
min(μn/h, hc) 
 μ, where it has slope 2, and it is linear with
slope 1 after that.

Thus, to optimize over the distribution of h′, we need to
solve

max
P∈P (μ,d )

∫
x

f (x)dP (x),

subject to
∫

x
|x − μ|dP (x) = d,

∫
x

xdP (x) = μ,

∫
x

dP (x) = 1, (A16)
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where f (x) = x min( hx
μn , 1). Similarly to the derivation of [28,

Eq. (6)], this results in the dual problem

min
λ1,λ2,λ3

λ1d + λ2μ + λ3,

subject to f (x) − λ1|x − μ| − λ2x − λ3 � 0, ∀x ∈ [0, hs].
(A17)

For simplicity of notation, we assume that a = 0. Thus, this
dual problem aims to find the tightest piecewise linear ma-
jorant of f (x) with a kink at μ that minimizes the objective
value. Consider the majorant F1(x) = hl

2μn |x − μ| + ( hl
2μn +

h
n )x − hl

2n . Now F1(x) has as its objective value,

hl

2μn
d +

(
hl

2μn
+ h

n

)
μ − hl

2n
= μh

n
+ hdl

2μn
. (A18)

By weak duality of semi-infinite linear programming, we
know that a feasible solution to the dual problem provides us
with a valid upper bound for the optimal primal solution value.
Thus, we now find a feasible primal solution with an objective
value equal to this upper bound results in the achievement of
strong duality. As the tightest majorant of the dual problem
touches f (x) at the points a, μ, and l = min(μn/h, hc), we
consider the three-point distribution,

p0 = d

2μ
, pμ = 1 − d

2μ
− d

2(l − μ)
,

pl = d

2(l − μ)
, (A19)

which is a distribution since μn/h 
 μ. This yields, as the
objective value for the primal problem,

μ2h

μn

(
1 − d

2μ
− d

2(l − μ)

)
+ l2h

μn

d

2(l − μ)
= μh

n
+ hdl

2μn
.

(A20)

Thus, we have strong duality as the primal objective from
(A20) and the dual optimal values are the same.

Therefore,

EP [a(h)] = n

h

(
μh

n
+ hdl

2μn

)
= μ + dl

2μ
. (A21)

Now when hc tends to infinity, the second term dominates as
l = min(hc, μn/h) 
 1 when h � n and

EP [a(h)] = d

2μ
min

(
hc,

μn

h

)
[1 + o(1)]. (A22)

�
Proof of Theorem 5.
Case 1. h � √

μn and 2μ(1 − √
μ/n) < d < 2μ(1 −

h/n). In this case, consider the three-point distribution,

p0 = d

2μ
, p√

μn = (d − 2μ)l + 2μ2

2μ(
√

μn − l )
,

pl = (d − 2μ)
√

μn + 2μ2

2μ(l − √
μn)

, (A23)

for l = μn/h, which is a proper distribution under the condi-
tion 2μ(1 − √

μ/n) < d < 2μ(1 − h/n). For this three-point

FIG. 8. The tightest majorant for f (x) describing the optimizer
over h1 of c(h).

distribution,

EP [c(h)] = n2

h2

(
p2√

μn

μnh2

(μn)2
+ 2pl p√

μn

√
μnh

μn
+ p2

l

)
= 1.

(A24)

As c(h) is a probability, we have E[c(h)] � 1, so that it coin-
cides with the upper bound.

Case 2. h 
 √
μn. We now apply the three-point optimiza-

tion problem in two steps: first for the optimal distribution of
hi, then for h j . We will show that these two optimal distribu-
tions are identical and independent, so that this method shows
that optimizing the distribution of hi and h j while constraining
them to be equal yields this same optimal distribution.

The function we would like to optimize is

E

[
min

(
hh1

μn
, 1

)
min

(
hh2

μn
, 1

)
min

(
h1h2

μn
, 1

)]
. (A25)

Step 1. Optimizing over h1. If we optimize only over the
distribution of h1 and fix h2, this is equivalent to optimizing

E

[
min

(
hh1

μn
, 1

)
min

(
h1h2

μn
, 1

)]
. (A26)

Thus, we again want to maximize (A16) and therefore
minimize its dual problem (A17), but now with f (x) =
min( hx

μn , 1) min( xh2
μn , 1). We again focus on the dual problem,

which is again equivalent to minimizing λ1d + λ2μ + λ3 over
all tightest majorants of f (x). Now f (x) is again piecewise
convex: it is quadratic in h1 for h1 < min(μn/h, μn/h2),
linear for h1 ∈ [min(μn/h, μn/h2), max(μn/h, μn/h2)], and
constant for h1 ∈ [max(μn/h, μn/h2), hc]. Thus, f (x) is
shaped as the function in Fig. 8 (where, for simplicity, a = 0).

In the next computations, we assume, for simplicity of
notation, that a = 0. Now the tightest majorant of Fig. 8,
F1(x), can be parametrized by λ1 = min(h, h2)/(2μn), λ2 =
min(h, h2)/(2μn) + hh2/(μn2), and λ3 = − min(h, h2)/(2n).
This gives, as the objective value for the dual program (A17),

d
min(h, h2)

2μn
+ μ

(
min(h, h2)

2μn
+ hh2

μn2

)
− min(h, h2)

2n

= d

2μn
min(h, h2) + hh2

n2
. (A27)
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FIG. 9. The tightest majorant for f (x) describing the optimizer
over h2 of c(h).

We now again consider the primal problem (A16). The
solution to the dual problem (A17), F1(x), has three touching
points of f (x): at 0, μ, and min(μn/h2, μn/h). Thus, we will
now show that c(h) is maximized over h1 by the three-point
distribution,

p0 = d

2μ
,

pμ = 1 − d

2μ
− d

2[min(μn/h2, μn/h) − μ]
,

pmin(μn/h2,μn/h) = d

2[min(μn/h2, μn/h) − μ]
. (A28)

This gives an objective value of (A16) of

0 · d

2μ
+ μ2hh2

(μn)2

(
1 − d

2μ
− d

2[min(μn/h2, μn/h) − μ]

)

+ min(μn/h2, μn/h)2hh2

(μn)2
· d

2[min(μn/h2, μn/h) − μ]

= d

2μn
min(h, h2) + hh2

n2
. (A29)

Thus, the objective value of the three-point distribution is
equal to the objective value of the dual problem in (A27).
Thus, by strong duality, (A28) is the optimal distribution
maximizing (A26).

Step 2. Optimizing over h2. We now plug the optimal three-
point distribution of h1, (A28), into (A25) and optimize only
over the distribution of h2. We then need to optimize

E

[(
1 − d

2μ
− d

2[min(μn/h2, μn/h) − μ]

)

× hh2

n2
min

(
hh2

μn
, 1

)]

+ E

[
d

2[min(μn/h2, μn/h) − μ]

× min

(
h

h2
,

h2

h

)
min

(
hh2

μn
, 1

)]
. (A30)

This is a function in h2 that looks like Fig. 9: first
a convex part, then a linear part, and then again a con-
vex part. The tightest majorant F1(x) is depicted in Fig. 9
as well. F1(x) is characterized by λ1 = C̃h/[2(nμ)2], λ2 =
C̃{h2/(μ2n3) − h/[2(nμ)2]} and λ3 = −C̃h/(2n2μ), with
C̃ = μ2 + dnμ/(2h). This gives, as the dual objective,

λ1d + λ2μ + λ3 = (dn + 2hμ)2

4μn3
. (A31)

We now consider the three-point distribution for h2 on the
touching points 0, μ, and μn/h:

p0 = d

2μ
, pμ = 1 − d

2μ
− d

2(μn/h − μ)
,

pμn/h = d

2(μn/h − μ)
. (A32)

This gives, as the objective value for the primal problem,

E

[(
1 − d

2μ
− d

2(μn/h − μ)

)
h2

μn3
h2

2

]

+ E

[
d

2(μn/h − μ)

h2
2

μn

]
= (dn + 2hμ)2

4μn3
, (A33)

so that by strong duality, this is the optimal three-point dis-
tribution for h2. As h 
 √

μn, this means that h2 < h for all
three values of the three-point distribution. Then, the three-
point distribution for (A28) reduces to (A32).

Thus, by optimizing the distributions of h1 and h2 sepa-
rately, we obtain the same three-point distribution for both.
Therefore, the optimization of the distributions of h1 and h2

where they are constrained to have the same distribution also
gives the three-point distribution (A32) as its solution.

Indeed,

max
x,y:x=y

f (x, y) � max
y

max
x

f (x, y), (A34)

as all combinations f (x, x) are also encountered on the right-
hand side. Furthermore, let x∗ and y∗ denote the optimizers
obtained in the right-hand side, and suppose that x∗ = y∗.
Then,

max
x,y:x=y

f (x, y) � f (x∗, y∗) = max
y

max
x

f (x, y). (A35)

Thus, when optimizing the distributions of h1 and h2 sepa-
rately yields an optimizer where both distributions are equal,
then this is also the optimization of the distributions of h1 and
h2 where they are constrained to have the same distribution.

This gives, for c(h),

max
P∈P (μ,d )

EP [c(h)] = n2

h2

(dn + 2hμ)2

4μn3

= d2n

4μh2
[1 + o(1)]. (A36)

Case 3. h � √
μn and d < 2μ(1 − μ/h). We optimize

c(h) here by again first optimizing over the distribution of hi

only, and then over the distribution of h j . Therefore, up until
(A30), we follow the same steps for optimizing over hi. We
then optimize for the distribution of hj . Consider the majorant
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of the dual problem F̃1(x) described by λ1 = h2(dn+2hμ)
4μ2n3 , λ2 =

h(h+2μ)(dn+2hμ)
4μ2n3 , and λ3 = − h2(dn+2hμ)

4μn3 , giving, as the dual ob-
jective value,

λ1d + λ2μ + λ3 = h(dh + 2μ2)(dn + 2hμ)

4μ2n3
. (A37)

For the primal problem, consider the three-point distribution
for h2 of

p0 = d

2μ
, pμ = 1 − d

2μ
− d

2(h − μ)
,

ph = d

2(h − μ)
, (A38)

which is a proper distribution as long as d < 2μ(1 − μ/h).
Plugging this into (A30) for the distribution of hj gives

E

[(
1 − d

2μ
− d

2(μn/h − μ)

)
h2

μn3
h2

2

]

+ E

[
d

2(μn/h − μ)

h2
2

μn

]

= h(dh + 2μ2)(dn + 2hμ)

4μ2n3
, (A39)

so that by strong duality, this is the optimal distribution for hj .
This yields, for c(h), that

max
P1,P2∈P (μ,d )

EP1,P2 [c(h)] = n2

h2

h(dh + 2μ2)(dn + 2hμ)

4μ2n3

= d2

4μ2
[1 + o(1)]. (A40)

However, the maximal value of c(h) is now attained by two
different distributions for hi and h j , while our objective was to
maximize c(h) with i.i.d. distribution for hi and h j . We there-
fore now consider the uncorrelated three-point distribution P3

for hi and h j of

p0 = d

2μ
, pμ = 1 − d

2μ
− d

2(
√

μn − μ)
,

p√
μn = d

2(
√

μn − μ)
, (A41)

which is a proper distribution as long as d < 2μ(1 − √
μ/n).

This yields, as expected, the value for c(h) of

EP3 [c(h)] = n2

h2

h2

(μn)3
EP3 [h2]2

= 1

μ3n

(
1

2
d
√

μn + μ2

)2

= d2

4μ2
[1 + o(1)], (A42)

which is the same leading-order term as in (A40), where
correlations between hi and h j are allowed. Since

max
P1,P2∈P (μ,d )

EP1,P2 [c(h)] � EP3 [c(h)], (A43)

P3 is asymptotically optimal. Furthermore, an increase in
d does not affect the set of feasible dual solutions for the
unconstrained problem. Thus, (A37) is still an upper bound
of the maximal c(h). As by (A40) this dual value is asymp-
totically equal to d2/(4μ2), and (A42) achieves the same
value asymptotically, this must imply that P3 is asymptotically
optimal when it is a proper probability distribution, thus for all
d < 2μ(1 − √

μ/n). �
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