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Despite the recently exhibited importance of higher-order interactions for various processes, few flexible (null)
models are available. In particular, most studies on hypergraphs focus on a small set of theoretical models. Here,
we introduce a class of models for random hypergraphs which displays a similar level of flexibility of complex
network models and where the main ingredient is the probability that a node belongs to a hyperedge. When
this probability is a constant, we obtain a random hypergraph in the same spirit as the Erdos-Renyi graph. This
framework also allows us to introduce different ingredients such as the preferential attachment for hypergraphs,
or spatial random hypergraphs. In particular, we show that for the Erdos-Renyi case there is a transition threshold
scaling as 1/+/EN where N is the number of nodes and E the number of hyperedges. We also discuss a random
geometric hypergraph which displays a percolation transition for a threshold distance scaling as r ~ 1/ VE. For
these various models, we provide results for the most interesting measures, and also introduce new ones in the
spatial case for characterizing the geometrical properties of hyperedges. These different models might serve as

benchmarks useful for analyzing empirical data.
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I. INTRODUCTION

Complex networks became increasingly important for de-
scribing a large number of processes and were the subject of
many studies for more than 20 years now [1-3]. Recent analy-
sis of complex systems [4—7], however, showed that networks
provide a limited view. Indeed, networks (or graphs) describe
a set of pairwise interactions and exclude any higher-order
interactions involving groups of more than two units. With
the increasing amount of data, many higher-order interac-
tions were observed in a large variety of contexts, including
systems biology [8], face-to-face systems [9], collaboration
teams and networks [10,11], ecosystems [12], the human
brain [13,14], document clusters in information networks,
multicast groups in communication networks, etc. [15,16].
Modeling these higher-order interactions with graphs might
lead to erroneous interpretations, calling for the need of a
more flexible framework. In addition, these higher-order inter-
actions are highly relevant for all possible processes that take
place in these systems [6]. These processes include contagion
where a disease can spread in a nondyadic way [17-19],
diffusion [20,21], cooperative processes [22], and synchro-
nization [23-25]. Models for hypergraphs—null or spatial, for
example—are then much needed for analyzing processes that
involve the interaction between more than two nodes.

In order to go beyond usual graphs, a natural extension con-
sists in allowing edges that can connect an arbitrary number of
nodes. These “hyperedges” constructed over a set of vertices
define what is called a hypergraph [26,27]. More formally,
a hypergraph is defined as H = (V, E) where V is a set of
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elements (the vertices or nodes) and E is the set of hyperedges
where each hyperedge is a nonempty subset of V (a simple
example is shown in Fig. 1). For a directed hypergraph, the
hyperedges are not sets, but an ordered pair of subsets of V,
constituting the tail and head of the hyperedge [28-30].

The number N = |V| of vertices is called the order of the
hypergraph, and the number of hyperedges M = |E| is usually
called the size of the hypergraph. The size of a hyperedge
le;] is the number of its vertices. The degree of a vertex is
then simply given by the number of hyperedges to which it is
connected. A simpler hypergraph considered in many studies
is obtained when all hyperedges have the same cardinality
d and is then called a d-uniform hypergraph (the rank of a
hypergraph is r = maxg |e| and the antirank 7 = ming |e|, and
when both quantities are equal the hypergraph is uniform). A
two-uniform hypergraph is then a standard graph.

Many measures are available for hypergraphs. Walks,
paths, and centrality measures can be defined and other mea-
sures such as the clustering coefficient can be extended to
hypergraphs [5,16,31-33]. A recent study investigated the oc-
curence of higher-order motifs [34] and community detection
was also considered [35,36]. New measures can, however, be
defined and we will discuss in particular the statistics of the
intersection between two hyperedges as being the number of
nodes they have in common [36]. For spatial hypergraphs, the
geometrical structure of hyperedges is naturally of interest and
we will discuss some quantities that characterize it.

It has already been noted in [16] that few flexible null
models were proposed in the context of interactions occur-
ring within groups of vertices of arbitrary size. In [16,37],
a null model for hypergraphs at fixed node degree and edge
dimensions is proposed. This generalizes to hypergraphs the
usual configuration model [38]. Other models for higher-order

©2022 American Physical Society
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FIG. 1. Classical representation of a hypergraph. We have here
|[V| =N =10 vertices and E = 3 hyperedges. The hyperedges are
eo=1{0,1}, e, ={2,3,4,5,8}, and e, = {0, 6,7, 9, 10}, with sizes
2, 5, and 5, respectively. All the nodes have degree k = 1, except for
nodes 0, 1, 2, and 8 which have a degree k = 2.

interactions were described in the review [5] such as bipar-
tite models, exponential graph models, or motifs models, but
in general hypergraph models are less developed. Most of
these models are introduced in the mathematical literature
and are usually thought of as immediate generalizations of
classical graph models. In many of these models, it is usually
assumed that all hyperedges have the same size, which is a
strong constraint. We note that an interesting hypernetwork
growth model was proposed in [39] where both the idea of hy-
peredge growth and hyperedge preferential attachment were
introduced.

Here, the goal is to present a mechanism that can gen-
erate (in a simple way and with low complexity) a family
of different hypergraphs and which displays the same level
of flexibility of complex network models. We propose here
such a framework and introduce a class of models that relies
on a single ingredient: the probability that a node belongs
to a hyperedge. We will consider various illustrations of this
class of models. We will start with the simplest one that
could be seen as some sort of “Erdos-Renyi hypergraph”, and
also discuss preferential attachment. We then introduce space
in different ways and in particular discuss in more detail a
random geometric hypergraph where the probability that a
vertex belongs to a hyperedge is one if its distance is less
than a threshold, zero otherwise. For all these illustrations,
we analyze simple measures (such as the degree of vertices or
sizes of the hyperedges), the structural transition for the giant
component, and also introduce new measures. In particular,
for spatial hypergraphs, we characterize the spatial properties
of hyperedges.

II. A CLASS OF HYPERGRAPH MODELS

Hypergraphs can be represented as bipartite graphs be-
tween the nodes and hyperedges (see Fig. 2 for an example).

Vertices

Hyperedges

€1 €9 €3 €4 €5

FIG. 2. Example of a small hypergraph with N = 4 vertices and
E =5 hyperedges represented as a bipartite graph. The degree of
the vertices are k; =2, k, = 1, k3 = 3, and k4 = 2, and the sizes
of the hyperedges are |e;| = 2, |es| = 1, |es| = 3, and |e4| = |es| =
1. There are two connected components in this hypergraph {1, 2, 3}
and {4}. The intersection between some of the hyperedges is: e; N
e; = {3}, ey Nes = {1, 3}, etc. The sum Z,. k; is equal to the sum of
hyperedge sizes ) ; lej| and equal to the number of links.

In this representation the links between nodes and hyperedges
indicate a membership relation: there is a link between node
i and hyperedge e if i € e. The main idea of the class of
models discussed here is to introduce the connection proba-
bility P(v € e) that a node v belongs to a hyperedge e. This
is directly related to the incidence matrix / of the hypergraph
whichis a N x E matrix with elements J;, equal to one if i € e
and zero otherwise. This connection probability can be written
under the form

Plvee)=F(ed,e),..), (D

where F is, in general, a function of the hyperedge e, its
vertices, or some distance between v and e (we will see
various examples below). We note here that in contrast with
a remark in [35] that it is “unclear how to impose properties
on a hypergraph when a bipartite representation is used”,
we actually believe that this representation provides a simple
framework for introducing various mechanisms. We could
even think of a generalization of Eq. (1) in the spirit of the
hidden-variable model for networks. In these models, some
characteristics are assigned to nodes such as fitnesses [40,41]
or coordinates in a latent space [42—44]. The connection func-
tion F in Eq. (1) could in principle depend on these hidden
variables. For example, if each vertex v has a fitness n,, a
hyperedge composed of vertices v;,, v;,, . .., v;, has then a fit-
ness which will be a function of the fitnesses of all its vertices
n(e) = G(ni,, ni,» - - - » Ni, ), and the connection function could
then be chosen as

P(v € e) = F(n(e)). 2)

In this article, we will essentially consider the case where
the function depends on some properties of the hyperedege
e, including its position in space.

This definition [Eq. (1)] is obviously very general and we
will focus here on different functions. First, we will consider
the constant case F = p € [0, 1] which reminds us of the
Erdos-Renyi model [45]. We will then consider the preferen-
tial attachment case where the function F' depends on the size
of the hyperedge. We then end this paper by considering cases
where the nodes are in a 2D space (we will mainly consider
the D = 2 case but the generalization to larger dimensions is
trivial) and where the function F' depends on a distance (to
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be defined) between the vertex v and the edge e. For all these
models, we will present the result for usual measures but also
develop new measures tailored to spatial hypergraphs.
Throughout this work, we denote by N the order of the
hypergraph (which is the number of nodes) and E the number
of hyperedges. For all the models considered here, we will
assume that the number E of hyperedges is given. Once an
initial set of hyperedges is given (in cases studied here, the
initial hyperedges comprise single nodes chosen at random),
we can iterate over all nodes and apply Eq. (1). Once all nodes
are tested, we get the final hypergraph that we measure. The
simplest measure is the degree k; of a node i (which is the
number of hyperedges to which it belongs). The degree can
also be computed as the sum of row elements of the incidence
matrix L,: k; = ), I, (see, for example, the review [5]). The
size m; = |e;| of the hyperedge [ is the number of nodes
it contains. Naturally, the average degree and size (and the
distribution of k and m) are important quantities, and it should
be noted that they are not independent. Indeed, if we use the
links in the bipartite representation of the hypergraph (i.e.,
there is a link between node i and hyperedge e if i € ¢, see
Fig. 2), their number L can be expressed in two different ways
asL =) ki = }_;le;|. This relation can be rewritten as

N{k) = E(m), 3)

where (k) denotes the average degree and (m) the average size
of hyperedges. The distributions P(k) and P(m) are then natu-
ral objects to study. We will also focus on other quantities: the
intersection between two hyperedges (a quantity that is trivial
for graphs and equal to one), and for spatial hypergraphs the
spatial extension s(e) of a hyperedge e. We will also discuss
connectivity properties of these hypergraphs and in particular
we will focus on abrupt structural changes characterized by
the emergence of a giant component (that will need to be
defined) scaling with N.

III. THE SIMPLEST RANDOM HYPERGRAPH
A. Definition

There is no unique definition of random hypergraphs
and various generalization of the classical Erdos-Renyi
graph were proposed (see for example [11]). In particu-
lar, mathematicians like to think of a set of all possible
hypergraphs—given some parameters (number of nodes,
etc)—and to consider a uniform distribution over this set
[46]. More specifically, many papers focus on k-uniform hy-
pergraphs for which the size of hyperedges is constant and
equal to k. Given a set of V vertices and a set of sub-
sets of these vertices we can construct the natural analog of
Erdos-Renyi graphs [45]: each k-tuple of vertices is a hyper-
edge with probability p [47] (more formally, the set H*(n, p)
denotes the random k-uniform hypergraph with vertex set
[7] = {1, 2, ..., n} in which each of the (Z) possible edges is
present independently with probability p). In other studies,
every hypergraph of E hyperedges on N nodes has the same
probability [48] (the classical Erdos-Renyi random graph is
then recovered in the case k = 2). This type of model was
discussed by mathematicians in particular about the phase
transition for the giant component [4,46,47,49-51]. Fork = 2,

we recover usual graphs and from Erdos and Renyi [45],
we know that there is a transition for £ = ¢N with ¢ = 1/2
(which corresponds to an average degree (k) = 2E/M = 1).
This transition is characterized by an abrupt structural change
with the emergence of a giant component. The general result
for k-uniform hypergraphs obtained in [49] is similar and
states that a giant component appears for c = 1/k(k — 1). We
refer the reader interested in some mathematical aspects of
this problem to the book [52].

Here, we will construct an “Erdos-Renyi hypergraph” in
the context of Eq. (1). For the usual Erdos-Renyi graph, the
connection probability between two nodes is constant, and
similarly for the hypergraph we will then assume that for each
vertex v € V and for each hyperedge e, there is a constant
probability p that v belongs to e. If this probability is constant
and equal to p, we can then write

P(vee)=p, (4)

where p € [0, 1]. Starting from a set of N nodes, we choose
a random set of E hyperedges (which are £ nodes chosen
at random), and recursively add nodes to these hyperedges
following the rule of Eq. (4).

B. Degree and size

This random hypergraph is a very simple model and most
properties are trivial. In particular, the degree k and size m
distributions are easy to compute and are binomials

E

Pk =k) = (k)pk(l -V, (5)
N

P(le;] = m) = ( )p’"(l —p)E (6)
m

and the average degree is then (k) = pE and the average
hyperedge size (m) = pN.

If nodes are in space—in the disk of radius ry for example
(we will see below in more details examples of spatial hy-
pergraphs constructed over such a set)—we can compute the
average spatial extent of a hyperedge e; given by

1

m;(m; — 1)

s(e;) = Z de(vj, vp), (N

vj,v€e;

where m; = |e;| is the size of the hyperedge and where
dg (v, vy) is the euclidean distance between nodes v; and v;.
In the Erdos-Renyi hypergraph case, the nodes of hyperedges
are distributed uniformly and the extent is given by the aver-
age distance between randomly chosen nodes in the disk [53]

1287‘0
457 °

which is verified in our numerical simulations (figure not
shown).

®)

§ =50 =

C. Hyperedge intersection

The intersection / between two hyperedges e; and ¢; is the
number of nodes they have in common [54] and is denoted by

I=|€iﬂ€j|, (9)
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FIG. 3. (a) Average intersection (/) versus N. The line is a linear
fit of slope p? (here p = 0.1 and results were obtained by averaging
over 100 configurations). (b) Probability distribution P(I) of the
intersection between hyperedges defined in Eq. (9). Simulations were
obtained for N = 1000, E = 100, p = 0.1 and averaged over 100
configurations.

where | - | denotes the cardinal of a set. For the random hyper-
graph discussed here, the probability that a given node belongs
to two different hyperedges is p?. The average intersection
is then given by (I) = p?N which we verified by simulations
[see Fig. 3(a)]. The probability distribution of the intersection
I between two hyperedges is then a binomial of parameters N
and p?

lezro::(f)p”(l—p%Nﬂ% (10)

which can be verified numerically [see Fig. 3(b)].

We can go further and define the intersection /;; of two hy-
peredges of size j and [, respectively [54]. The intersection /;;
is then a random variable and can be expressed for the random
hypergraph defined here. Indeed, the probability P(I;; = k) is
given by the number N;; (k) of events where the intersection of
a subset of size j and a subset of size [ is of size k (see Fig. 4).
The number N;; (k) is then given by the following multinomial
coefficient

N!
Nj(k) = —~—— - Y
KW= —k)WN —j—1+k)!
and the corresponding  probability is = Pj(k) =

Nji(k)/ 3"y Njy(k) (if needed a large N analysis could
then be performed).

N-j-l+k

()"

FIG. 4. Schematic illustration of the intersection between two
hyperedges of respective sizes j and /.

D. Giant component

We now consider the behavior of the giant component
when p varies. This problem actually motivated many studies
of random graphs, starting with the original paper by Erdos
and Renyi [45]. In order to define the giant component we
assume that all nodes in the same hyperedge are connected
to each other (equivalently that each hyperedge is a complete
graph) and that two hyperedges are connected if their inter-
section is at least equal to one. Other definitions are possible
using the concept of a high-order hypergraph walk [33]. A hy-
pergraph walk is called a s walk where the order s controls the
minimum edge intersection over which the walk takes place.
A one-walk is then the usual walk and this is the connectivity
that we are using here for defining the giant component: two
nodes are connected if there is at least one one-walk between
them (see [33] for a discussion about larger values of s).

In the case of random hypergraphs considered here, the
nodes in each hyperedge form a connected clique and the
giant component problem lies essentially in the connection
between the hyperedges. The probability that there is at least
one intersection between two hyperedges is given by

PA=1)=1-(1-p)"
~ p*N, (12)

for p?’N <« 1. If the number of hyperedges E is large, there
is a giant component in the hypergraph if the E hyperedges
constitute a giant component. The classical result for Erdos-
Renyi random graph states that there is a giant component
appearing at average degree equal to one which leads here to
the condition p2NE = 1. The threshold then behaves as

1
De NE

We note that this result obtained by a simple argument has
been already found by more rigorous methods for random
bipartite graphs in [55].

13)

IV. PREFERENTIAL ATTACHMENT FOR HYPERGRAPHS

The preferential model for networks states that the prob-
ability that a new node n connects to an existing one i is
proportional to the degree k; of i [56]. It might be interesting
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to extend this reinforcement mechanism to hypergraphs. Few
studies discussed this apart from the notable exception of [39]
and [37,57,58]. In the model proposed by [39], two impor-
tant ingredients were introduced for the growth of a random
hypergraph. First, at every time step, a new hyperedge e is
constructed (either with m new nodes and a randomly chosen
node in the existing hypergraph or from a random number of
nodes selected at random in the existing hypergraph and a new
node such as in [59]). Second, they introduced a hyperedge
preferential attachment where the hyperedge e is connected to
an existing node i with probability proportional to the degree
of i (also called hyperdegree in this study) [39]. This was
generalized in [60]. In [39], it was shown that the hypergraph
constructed in this way shares many similar features with
complex networks such as scale-free property of the degree
distribution, etc. [39,59].

Clearly, there are several ways to introduce preferential
attachment in the hypergraph formation, but in the framework
defined by Eq. (1), the natural choice is to write the connection
probability as a function of the hyperedge size m = |e] :

P(v ee)=Fllel], (14)
and the simplest function is the linear one

le;|

2 lejl’

which introduces a rich-get-richer process through the size
of hyperedges. Other choices could include, for example, the
average degree of nodes contained in the hyperedge e, etc.

In this simple model, the degree of each vertex is k =1 (a
simple generalization would consist in taking for each vertex n
possible connections to different hyperedges). The probability
that a given vertex connects to a given hyperedge is given
by Eq. (15) and this problem is exactly a Polya urn with E
colors. The limiting distribution for large time (and therefore
at large number of nodes N) can be shown to be the Dirichlet
multinomial distribution [61]

Pvee)= 15)

P(my,my,...,mglag,an,...,QE)
_ D)™ +1) ﬁ T(m; + a;) 6
(N + ap) ['(aj)T(m; + 1),

j=1

where m; = |e;|, o; denotes the initial size of hyperedge j,
ap = Y. a, and T'(x) is the gamma function. In particular,
if we start with all the hyperedges having the same size, the
limiting distribution is uniform. More generally, it shows that
in this case the limiting distribution depends crucially on the
initial structure of hyperedges, which certainly renders the
empirical identification of a preferential attachment mecha-
nism difficult.

This multinomial Dirichlet distribution is a bit difficult to
test but we can easily compute its first two cumulants. Indeed,
for an initial condition given by o, «y, ..., o, the average
size of edge m; is given by

(m;) = NZ—O (17)

o Simulation
— Theory 1

<m>

10F E
. e Y ]
0.01 0.1
E/N
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. o Simulation
10°E
E — Theory
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.

<m >-<m>
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10'F

Ll L
0.01 0.1
E/N

FIG. 5. Comparison of simulations and theoretical results ob-
tained from the multinomial Dirichlet distribution Eq. (16) for the
uniform case. The symbols are obtained for numerical simulations
for N = 1000 (averages are computed over 1000 configurations) and
the line represent the theoretical result Egs. (17), (18). (a) Average
hyperedge size versus the number E of hyperedges. (b) Variance of
the hyperedge size versus E.

For the variance, we note that the marginal distribution is a
Beta-Binomial which then leads to the result

o o, \ N + g
Var(m;) =N—(1— — (18)
073} oy ) 1+

In the uniform case (all the «;s are equal to some value o), we
then obtain (m;) = N/E, and Var(m) = N/E(1 — 1/E)(N +
Ea)(1 + Ea). We can test this result by varying £ for exam-
ple, and we obtain the results shown in Fig. 5. The agreement
between the numerical simulation and these results is excel-
lent in the case of the average [Fig. 5(a)]. In the case of the
variance, we observe a small deviation from the theoretical
result for £ becoming closer to NV. In this case, the average size
of the hyperedge can be small (of order N/E) and fluctuations
can be large (the deviation then decreases with the number of
configurations).

V. RANDOM SPATIAL HYPERGRAPHS

It is reasonable to think that in some instances, introducing
space is necessary. For example, contagion among a group
of individuals naturally involves space through the proximity
needed to transmit an infectious disease. Other systems where
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FIG. 6. Schematic illustration of the choice when constructing a
spatial hypergraph. A new node v enters the hypergraph and will
connect to the hyperedge e. The problem is how to compute the
distance d (v, e) between the node and the hyperedge.

space is relevant (communications networks, neural networks,
etc) and where higher-order interactions take place can be
described by what we could call “spatial hypergraphs” and
we will discuss here some simple examples of such objects,

We assume that the N nodes are distributed uniformly on
a disk of radius ry. Each node i has a position x; and it is
then natural to consider a model defined by the following
connection probability

P(vee)=F[d(v,e)], 19)

where F is a given function, and d (v, ) measures the distance
between the vertex v and the hyperedge e. There are many
choices for defining d(v, e) and many models are possible
(Fig. 6).

It is obviously hopeless (and probably useless, too) to try
to explore all possible cases, and we will focus on two main
models. First, we will assume that the function F' decreases
with the distance as an exponential F(d) ~ exp(—d/r.). We
will then consider a model close—in spirit at least—to the
random geometric graph [62].

A. Exponential case

We consider the case where F is an exponential function
decreasing with distance (we expect similar results for other
decreasing functions). This corresponds to the intuitive idea
that it is more difficult for a node to belong to a distant
hyperedge. The range of the exponential is denoted by r, and
the connection probability then reads as

P(v € e) = pe d@elre, (20)

where p € [0, 1] and d(v, e) is a measure of the distance
between the node v and the hyperedge e. When r. > ry,
the exponential term is essentially one, space is then irrele-
vant and we recover the random hypergraph model discussed
above. For the distance d(v, e), many choices are possible,
such as the average over all nodes, the minimum or maximum
distance among the nodes, and we will essentially present the
results for the average distance

d(v,e) = %Zd};(v,w), 1)

wee

where m = |e| is the size of the hyperedge e and dg (v, w) is
the euclidean distance between v and w.

0.8 B

0.6 4

04H

FIG. 7. Average degree (k), hyperedge size m, intersection (I),
and hyperedge extent (s) versus r./ro and normalized by their
value for the random hypergraph (for p = 0.1, N € [100, 1000],
E € [100, N], 100 configurations).

For r. > ry we recover the random hypergraph for which
we know most quantities. We can then rescale the average
degree by pE, the average hyperedge size by pN, the average
intersection by Np?, and the average spatial extent of hyper-
edges by 128ry/45m. These quantities versus r, are shown in
Fig. 7. The total number of links is givenby }  k; = 3, leil,
which implies that (m)/pN = (k)/pE as observed in Fig. 7.
Also, and as expected, all these quantities grow with r,, but at
different speeds.

We can consider other choices for the distance d(v, e)
instead of Eq. (21). For example, the minimum distance is also
a reasonable choice that can make sense for some systems

d(v,e) = m;n deg (v, w). (22)

Also, in the case where we define the centroid c(e)
of the hyperedge with coordinates (x.(e),y.(e)) =
1/]e| Ziee(x(i),y(i)), the distance can be computed from
this centroid

d(v,e) =d(v, c(e)). (23)

The corresponding hypergraph model bears some similarity
with the k-means clustering method (see for example [63]).
This method partitions N observations into k clusters, with
the rule that each node belongs to the cluster with the nearest
centroid location. In the hypergraph case, each time a new
node is attached to a hyperedge, the centroid position is re-
calculated, as in the Lloyd algorithm [64]. We averaged here
over all possible initial positions of the hyperedges, but as in
the k-means clustering case, some further work is probably
needed in order to understand the effect of initialization on
the resulting hypergraph structure.

We compare the convergence to the random case of the
average spatial extent of hyperedges (s) for these three dif-
ferent choices Eqgs. (21), (22), and (23) and the results for (s)
versus 7. are shown in Fig. 8. We observe different speeds
to convergence to the random case. In particular, the cases
Egs. (21) and (23) behave similarly, while the case Eq. (22)
seems to converge in a much faster way. The average spatial
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FIG. 8. One minus the average normalized spatial extent of hy-
peredges 1 — (s)/so versus r. shown in loglog (results are obtained
for E =100, N = 1000 and 100 configurations). A power law fit
over the last decade gives an exponent going from 1.2 to 1.5 for the
different cases.

extent of hyperedges thus seems to be very sensitive to the
choice of the connection probability.

B. A random geometric hypergraph
1. Definition

The random geometric graph is a classical spatial graph
introduced by Gilbert [62] where nodes are located in the
2D plane and are connected if their distance is less than a
threshold r. (for mathematical properties of this object, see
[65]). If we denote by p = N/A the density of nodes in the
area A, the average degree is given by

(k) = prr?. 24)

There is a critical value k. for this quantity, above which there
is a giant cluster of size of order N. The value of k. is not
exactly known but is approximately given by k. ~ 4.5 (see
for example [66] and references therein).

There are various possibilities to extend to hypergraphs this
idea of the random geometric graph. For example, in [35],
the authors added hyperedges connecting all nodes that are
at a distance less than a threshold r,. Varying this threshold 7,
then gives a sequence of hyperedges included in each other. In
the framework discussed here, we choose for the connection
function the following form

P(vee)=0@.—d(v,e)), (25)

where d(v, e) is a distance between the vertex v and the hy-
peredge e (0(x) is the Heaviside function). As in the previous
section, there are several possible choices for defining d(v, e)
and here we choose

d(v,e) = max d(v, w). (26)

This choice corresponds to the intuitive idea that a vertex
belongs to a hyperedge if all of its vertices are close enough
(and at a distance less than r,.).

0.6 _

’ o <k>/E

o <m>/N
Quadratic fit

FIG. 9. Average hyperedge size (m)/N and degree (k)/E nor-
malized by the number of nodes and the number of hyperedges,
respectively. The line is a quadratic fit of the form ar? where a =
0.25 here (N = 1000, E = 100, 100 configurations).

2. Average degree and size

Some properties of this “random geometric hypergraph”
can be discussed with simple scaling arguments. First, the
probability that a vertex belongs to a hyperedge is (for a
uniform distribution of nodes) given by 7 r2 /7 r (here the size
of the disk is ryp = 1). The average degree is then

(k) = Er?. (27

Similarly, the average size of the hyperedges is given by the
number of nodes in their vicinity at a distance less than r,.
Their size is then simply given by

(m) ~ pr? ~ Nr2. (28)

These results are consistent with the general relation (m) /N =
(k)/E, and imply a behavior 2. Both these results are per-
fectly verified in numerical simulations (in Fig. 9 we show the
quadratic fit).

3. Hyperedge intersection

The average extent of a hyperedge here is trivially given
by (s) &~ r. and is not a very interesting measure here. More
interesting is the intersection / between two hyperedges. In or-
der to estimate this quantity, we first consider the area A(r, £)
defined by the intersection of two disks with the same radius r
and separated by a distance £. Its expression can be found by
elementary geometry

£
A(r, €) = 2cos™ ' (¢/2r)r* — Em (29)

for £ < 2r and A = 0 for £ > 2r. The probability p; that a
node belongs to the intersection of two hyperedges separated
by a typical distance £ ~ 1/+/E is then given by

_A(re, 1/VE)

2
Try

pi (30)
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FIG. 10. Average intersection (/) rescaled by N versus r,. for
various values of N from 200 to 1000 (here £ = 100). We observe
for large 7. > 1/+/E a good collapse behaving as r2. The straight
line meant as a guide to the eye is a power law with exponent two.

and the average intersection is (I) = p;N. It is zero for r. <
1/+/E and for large r. behaves as (I) ~ N r2. We thus plot
(I)/N versus r. and we indeed observe a quadratic behavior

for large r. (see Fig. 10).

4. Giant component: Transition

As discussed for the random hypergraph defined above,
we need a definition for the connectivity in order to compute
the giant component. As above, we will consider one-walks
and that all nodes in the same hyperedge are connected to
each other (equivalently that each hyperedge is a clique or a
complete subgraph) and that two hyperedges are connected if
their intersection is at least equal to one. With this definition,
we can compute the largest component and see how it varies
with r.. We obtain the result shown in Fig. 11(a) displaying
an abrupt transition for a value r. = r}. In order to estimate
this threshold r, we propose the following argument. The
hyperedges can be seen as different clusters of size r., and
the existence of a giant component can then be mapped to the
problem of continuum percolation of E disks of radius r,. It
is well known (see for example [67]) that percolation in this
case is reached for

Ppa = 1, 3D

where pp = E /A is the density of disk (here A is the total area
given by A = nrg) and a = 7r? is the area of the disks. The
threshold quantity 7, has been estimated numerically and is
approximately 1, ~ 1.12 for 2D continuum percolation (see
for example [68]). The critical value for r} is then behaving

for large E as
o
ri~ — (32)
VE

This result is consistent with simulations shown in Fig. 11(b).

VI. DISCUSSION

The observed relevance of higher-order interactions in
empirical data pushed the scientists interested in complex

| | . 1]
0 0.05 0.1 0.15 0.2

-2
10 7 IR T

T T

1075

FIG. 11. (a) Size G of the giant component normalized by the
number of nodes N versus the interaction range r. for the random
geometric hypergraph defined in Eq. (25) (here N = 2000, E = 100,
and averaged over 100 configurations). (b) Critical radius value r
versus E. The line is a power law fit of the form r} ~ 1/E™ with
7 A~ 0.45 (r> = 0.95). Simulations are done for 100 configurations
and N = 5000.

systems to go beyond usual graphs and to consider random
hypergraphs (or other models). It could even be possible that
in the future, we have to extend hypergraphs to multilay-
ered structures as discussed in [58,69]. The literature about
hypergraph modeling is very heterogeneous, and sometimes
difficult to grasp, and didn’t reach the state-of-the-art observed
for complex networks.

Here, we contributed to the modeling of these higher-
order interactions and explored a particular class of random
hypergraphs where the number of hyperedges is given and
where their size is determined by some sort of hidden-variable
modeling. Many alternatives are certainly possible, but the
main advantage of this framework is its flexibility (with the
drawback of fixing the number of hyperedges, a constraint
that could probably be lift off in future models). An important
purpose of this article is to highlight the vast space of possible
hypergraph models that are left to be explored.

Many directions for future studies can be envisioned. In
particular, for spatial hypergraphs, it would be interesting to
generalize the standard models of graphs such as the Gabriel
or Delaunay graphs, beta-skeletons, etc. Such models could
in particular be helpful for understanding the impact of space
on some processes over hypergraphs such as contagion or
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diffusion, for example. It would also be interesting to con-
sider hypergraph models based on optimal considerations. For
example, can we construct the equivalent of the minimum
spanning tree for spatial hypergraphs, or more generally, can
we define optimal hypergraphs? The field of hypergraphs is
certainly not as mature as complex networks but the recently
revealed interest in these higher-order interaction structures

will certainly trigger many interesting studies and we can hope
to see beautiful results in the future.
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