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Structured interactions as a stabilizing mechanism for competitive ecological communities
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How large ecosystems can create and maintain the remarkable biodiversity we see in nature is probably one
of the biggest open questions in science, attracting attention from different fields, from theoretical ecology to
mathematics and physics. In this context, modeling the stable coexistence of species competing for limited
resources is a particularly challenging task. From a mathematical point of view, coexistence in competitive
dynamics can be achieved when dominance among species forms intransitive loops. However, these relationships
usually lead to species’ relative abundances neutrally cycling without converging to a stable equilibrium.
Although in recent years several mechanisms have been proposed, models able to explain species coexistence
in competitive communities are still limited. Here we identify locality in the interactions as one of the simplest
mechanisms leading to stable species coexistence. We consider a simplified ecosystem where individuals of
each species lay on a spatial network and interactions are possible only between nodes within a certain distance.
Varying such distance allows to interpolate between local and global competition. Our results demonstrate,
within the scope of our model, that species coexist reaching a stable equilibrium when two conditions are met:
individuals are embedded in space and can only interact with other individuals within a short distance. On the
contrary, when one of these ingredients is missing, large oscillations and neutral cycles emerge.

DOI: 10.1103/PhysRevE.106.064307

I. INTRODUCTION

The stability of ecosystems is a long-standing question
in ecology [1–3]. Despite their complexity, ecological sys-
tems present remarkable biodiversity that persists for long
periods of time. This fact has attracted large attention from
several fields in the context of complex systems, in many
cases bringing tools from statistical physics or the physics
of disordered systems [4,5]. Throughout the years, multiple
mechanisms have been proposed to explain this persistence,
including models based on random interactions [1] and niche
theory [2,6]. In particular for competitive communities, in-
transitivity [7–11] or higher-order interactions [12–15] have
been identified as relevant ingredients to sustain biodiversity.

Most mathematical models for competitive communities
establish a hierarchy among species, where the superior one
will drive all the others to extinction, an effect called the
competitive exclusion principle [16]. Despite of it, several
mechanisms have been proposed to understand the multiplic-
ity of species observed in natural systems. In particular, the
absence of a dominant species can be explained if dominance
among them is established as in a “rock-paper-scissors” tour-
nament, where species i outcompetes j and j beats k, but k is
superior to i, forming intransitive cycles. That is, intransitivity
may play an important role in the promotion of species coex-
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istence [7,10], while the structure of the dominance among
species may shape their abundance [8]. Moreover, intransitive
tournaments can be defined in probabilistic terms where one
species outcompetes the other with certain probability, allow-
ing for endogenous stochasticity in the dynamics.

Concerning stability, the presence of large oscillations in
populations is generally considered to be negative for biodi-
versity maintenance since species can easily become extinct
by external perturbations. Models implementing intransitive
dominance often lead species abundances to neutrally cycle
around an equilibrium point, something that is unlikely to
occur in nature. To overcome this, one of the many approaches
that have been proposed is the inclusion of so-called higher-
order interactions, interactions in which the effect of one
species on another is modulated by further species [13,14],
leading to convergence to equilibrium, stabilizing the dynam-
ics [12]. This and other approaches focus on interactions
between species and ignore that, within species, single indi-
viduals can compete in diverse ways with multiple partners,
whose identity can change in time and also in space (i.e.,
ignoring structured interactions).

However, spatial heterogeneity can also have an important
impact on species coexistence [17–20]. The spatial arrange-
ment of individuals can significantly affect the magnitude of
their mutual influences, and hence the resulting dynamics.
For example, transitions from global to local oscillations have
been observed for rock-scissors-paper games on networks
with different rewirings of the connections, keeping constant
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the number of interactions of each individual [21]. In the
same way, the nature of ecological interactions may also shape
the spatial distribution of individuals. Diverse works identify
space as a driver of coexistence, but it is typically only in-
tended to affect biotic or environmental rates [18,20]. The
spatial patterns that arise are determined by numerous control-
ling factors, which can be related to spatial disturbances [19],
self-organization processes [22], early warning signals of
ecological transitions [23], or space-dependent ecological in-
teractions [18]. Among the ecological processes that depend
on spatial location, seed dispersal may have consequences in
ecosystem’s coexistence and diversity [24,25] as well growth
of sessile organisms as corals [11]. From an empirical point
of view, an experimental setting of three strains of E. Coli
confirms that locality of processes can promote diversity with
nonhierarchical competition [9]. In the same way, competition
for space in fungi with high levels of intransitivity fosters co-
existence among dissimilar species [10]. Furthermore, in coral
reefs, the nonhierarchical patterns that arise for competition
for space can determine the final dominant species [11]. These
works reveal that space and intransitivity are fundamental
ingredients to promote biodiversity. However, even if their
effects have been in the spotlight for years [9], the question
of their role in the emergence and maintenance of stability
in competitive intransitive communities, as a way to produce
structured interactions, has not been fully explored.

Here, considering the competitive dynamics that arise
from the spatial proximity between sessile individuals, we
demonstrate that space has a stabilizing effect on competitive
communities similar to that induced by higher-order interac-
tions. As a starting point, we study simplified competitive
dynamics where competition for resources takes place be-
tween pairs of individuals (pairwise interactions) and it is
ruled by probabilistic intransitive cycles. We then explicitly
introduce space into this framework by defining an interac-
tion network between individuals. Its nodes represent single
individuals of different species and links are drawn according
to their distance. Positioning individuals in space limits com-
petition to only adjacent neighbors, effectively reducing their
mixing. Finally, varying the distance at which links are created
allows us to interpolate between local and global interactions
and study their effect on the dynamics. In the case of global
competition, we recover the classical mean-field assumption
when each individual can interact with everyone else in the
system. This representation provides a suitable context to test
whether the spatial distribution of individuals, together with
the range of competitive interactions, may be candidate mech-
anisms for the maintenance of biodiversity, as an alternative to
higher-order interactions.

Extensive numerical simulations of our model and of an
analytical approximation of the system’s dynamics prove that,
when we consider only local competition, species abundances
naturally converge to the equilibrium without the need of
introducing other control mechanisms. These results are built
on the fact that there is an underlying spatial structure and are
not attainable by considering interactions of a given individual
with just a small number of randomly chosen competitors.
On the other side, when the range at which interactions occur
increases, abundances start to oscillate in cycles of amplitude
increasing with the interaction range. The stabilizing effect of

space can be explained by analyzing spatial patterns formed
by the species when interactions are local.

In Sec. II we define our model, and describe the results
of its numerical simulations in Sec. III. We summarize our
conclusions in Sec. IV. The paper is completed by two
Appendixes that contain some analytical approaches to the
model.

II. COMPETITIVE MODEL

We consider an isolated community with a fixed large
number of individuals N , each belonging to one of g different
species, and model the effect of space in two ways. First,
space affects the arrangement of individuals, which we take
into account within a network representation: each individual
occupies a node, that symbolizes a fixed spatial location. A
node only hosts one individual at a time. These locations
can be regularly spaced or assigned at random. Second, two
individuals compete if there is a link between them. Links are
created according to the interaction range, where short ranges
lead to local interactions between nearby nodes. Long-range
interactions, instead, result in global competition and loss of
spatial correlations.

A. Dynamical model

In order to focus on the interplay between space and
stability, we keep the number of involved processes to the
minimum. Only two ecological processes are present, namely,
deaths with an identical rate for all species and competition for
the vacant location that an individual leaves when it dies. Un-
der these assumptions, our model is suitable for communities
of organisms that are permanently attached to one place. Addi-
tionally, our target communities are those mainly governed by
local interactions as shrubs, grasslands, and plants with clonal
growth [18]. Hence, we describe the model and illustrate our
findings through the example of plants competing in a forest.
Each plant lives in a fertile region that becomes immediately
available after its death. In that situation, two randomly se-
lected individuals, among all the plants within the interaction
range, compete for dispersing their seedlings. This is done
via a dominance-matrix approach, as described below. Finally,
the winner occupies the vacant node with a descendant of the
same species [Fig. 1(a)] that becomes mature in the next time
step.

The probability that a seed of species i wins in a compe-
tition with species j, Hi j , is encoded in the g × g dominance
matrix H . The values of Hi j for i > j are drawn uniformly at
random, and we then set Hji = 1 − Hi j and Hii = 0.5. Within
this setting, the system reaches coexistence when H presents
intransitive dominance cycles (that occur when Hi j > Hjk >

Hki > 0.5 for some triad i, j, k), in accordance with [12,26].
Specifically, and for sake of reproducibility, in our numerical
simulations we employ the following matrix:

H =

⎛
⎜⎝

0.5 0.34 0.76

0.66 0.5 0.25

0.24 0.75 0.5

⎞
⎟⎠. (1)

Moreover, given the form of H , the ecosystem is constrained
in the long term to have an odd number of species [12]. When
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FIG. 1. Schematic representation of the interaction networks and competitive dynamics. (a) Diagram of the model. A random plant is
selected to die with a probability 1/N , leaving a vacant fertile region (i.e., an empty node). Two (highlighted in the middle panel) of the
three neighbors are selected at random. Finally, the winner is chosen according to the probabilities of the species dominance matrix H , and
its descendant sprouts in the vacant node. (b)–(d) Illustration of the three spatial interaction networks considered. The neighborhood of the
black node is depicted (in green) for different interaction ranges. (b) A 2D lattice with a regular distribution of individuals. The left side of the
panel depicts the neighborhood for the smallest possible interaction range while the right side highlights the neighborhood when the smallest
interaction range has been increased by one unit. (c) In a random geometric graph, the coordinates of the individuals are uniformly set at
random in the unit square and two nodes are connected if their Euclidean distance is less or equal than RRGG = rsmall (left side of the panel)
or RRGG = rlarge (right side of the panel). (d) Erdős-Rényi graphs have no spatial structure. Each pair of nodes connects with probability p
independently of their distance. The left and right sides of the panel illustrate the same spatial arrangement as in (c), but the neighbors of the
black node are determined at random by the linking probabilities p = 0.2 and 0.4, respectively.

one species vanishes, another extinction event must occur to
maintain the odd number of species.

B. Interactions’ structure

To explore the effect of spatial arrangement, we employ
three different types of networks: a two-dimensional (2D)
square lattice, a random geometric graph [27], and an Erdős-
Rényi graph [28]. Each network defines a certain type of
spatial distribution.

A 2D square lattice is our baseline for a highly or-
dered space because of its simplicity and wide use in

ecology [18,19,29]. Nodes are regularly distributed on the
unit square and are at a discrete, constant distance apart
from each other. The nearest neighbors of a node are consid-
ered to be the eight adjacent nodes (with periodic boundary
conditions) [Fig. 1(b)]. This network, since nodes are reg-
ularly spaced and connected, can generate strong spatial
correlations.

In addition to lattices, we consider a random geometric
graph (RGG) that conserves the spatial structure but in a
disordered manner, as the N nodes are uniformly distributed in
the unit square and two of them are linked if their Euclidean
distance is smaller or equal to a particular interaction range
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RRGG [Fig. 1(c)] allowing us to study continuous distances and
variability in the number of neighbors [30–32].

Finally, we consider nonspatial interactions through Erdős-
Rényi graphs (ER), where nodes are connected at random
with probability p and, hence, the location of individuals does
not affect their linking probability [Fig. 1(d)]. In this case,
spatial correlations are completely destroyed, although each
node still has a finite number of neighbors.

Summing up, the ER graph is our null model since it has no
spatial structure, while we include the RGG as a compromise
between unstructured and regularly spaced interactions.

We tune the competition from local to global in the differ-
ent networks by means of the interaction range. This range
determines the individuals that participate in the competition,
i.e., who interacts with whom. With short-range interactions,
only nearby nodes compete. As it increases, more distant
nodes enter the competition until the neighborhood size is
large enough to dissolve the effect of location and consider the
system well mixed. In particular, for square lattices, this leads
to connections between not only the closest nodes, but also
the second, the third groups of neighbors, etc. Meanwhile, in-
creasing the interaction range in a RGG means increasing the
distance RRGG. Finally, position or distances between nodes do
not enter into the construction of ER networks. In this case, the
connection probability p serves as a proxy for the interaction
range. Increasing p generates larger neighborhoods, albeit
their location is at random. In order to use a quantity that
can be compared with the other networks, it is convenient to
quantify the interaction range by the mean degree 〈k〉 = pN .
For every network, we trivially get all-to-all competition with
the largest interaction range.

III. RESULTS

Once our model has been defined, we start analyzing it
through extensive Monte Carlo simulations. At the beginning
of each simulation, the species within each node is assigned
at random with a uniform probability 1/g. We simulate the
system using an asynchronous update scheme, where a gener-
ation is defined as N updates to ensure that, on average, every
node has experienced a death event. Finally, we keep track
of the proportion or relative abundance of individuals of each
species in the system, xi(t ) ≡ N−1 ∑N

ν ni,ν , where ni,ν takes
the value 1 if and only if species i is present at node ν. Each
node can host only one individual of a single species, which
implies that

∑g
i ni,ν = 1, ∀ ν. Since the total number of nodes

in the system is constant and equal to the total number of
individuals N , the macroscopic quantities xi are also average
total spatial densities.

Since we have
∑g

i xi(t ) = 1 for every generation t , the rel-
ative abundances of all species can be represented by a point
in the (g − 1)-simplex {(x1, . . . , xg)|xi � 0 and

∑g
i=1 xi = 1},

whose vertices correspond to single-species populations. As
time evolves, the point follows a trajectory on the simplex that
characterizes the macroscopic state of the system.

A. Temporal evolution

We begin our analysis by inspecting the temporal evolu-
tion of species’ abundances in the simplest situation of three

competing species g = 3. Unless otherwise stated, we use
always the same matrix H given in Eq. (1), which gives results
representative of any other randomly generated dominance
matrix with intransitive cycles. We find different behaviors
depending on the spatial distribution of species and the dis-
tance at which they interact. Species in communities with
no spatial structure [all-to-all interactions, Fig. 2(a); same
result for ER graphs] cycle on the simplex. The same wide
oscillations [Fig. 2(b)] can also be seen if we consider long-
range interactions in structured communities (RGG and 2D
lattice). This first result is in line with the prediction of the
mean-field approximation (see Appendix A). However, the
amplitude of the observed oscillations is independent of the
initial conditions, indicating that these oscillations are of the
limit-cycle type, qualitatively different from the neutral ones
predicted by the mean-field theory.

For the two spatial networks considered, decreasing the
interaction range leads to a reduction in the amplitude of
the oscillations until, for a sufficiently short-range, species’
abundances only slightly fluctuate around an equilibrium state
[Fig. 2(c)].

Their value at this point is, in all cases analyzed, close
to the equilibrium fixed point obtained from the mean-
field approximation [which for the matrix H in Eq. (1) is
(x1, x2, x3) = (0.374, 0.383, 0.243)]. These values also coin-
cide with the temporal average of the relative abundances in
the oscillatory case for the same matrix H .

These latter results reveal a nontrivial dependency of the
dynamics on the interaction range, and demand a deeper
analysis. For this purpose, in the next subsections, we system-
atically study the effect of the interaction range and structure
on species’ dynamics.

B. Dynamical behavior depends on structured interactions

As a first step, we need a measure to characterize the
behavior of the system for each structure and interaction
range. Because of the noisy character of the dynamics in the
stochastic simulations, the amplitude of the oscillations is not
a robust indicator. Instead, we consider the area encircled by
the system’s trajectory on the simplex. If the system fluctuates
with small amplitude around some equilibrium abundances,
the trajectory occupies a small area [Fig. 2(f)], whereas larger
oscillations would cover broader areas [Figs. 2(d) and 2(e)].

Once defined, our metric to characterize the stability of the
dynamics, we can study the effect of space by keeping H fixed
in all the simulations and varying the underlying network
structure (the type of graph) and the interaction range. Since
we cannot properly define distances in ER graphs, we use the
degree as a proxy of interaction range for that graph. This
equivalence can be made as the interaction range not only
defines the distance at which nodes compete, but also their
degree. In that way, we are ready to compare the two spatial
networks with the ER graphs.

To start with, we focus on the effect of the interaction
network but without any spatial arrangement by considering
the ER graphs with increasing average degree, i.e., increasing
p (blue points in Fig. 3). We find that the dynamics show large
oscillations for all values of the degree. That is, the size of the
neighborhood does not affect the dynamics.
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FIG. 2. (a)–(c) Temporal evolution of the species relative abundances for a 3-species system, comparing different interaction schemes.
In each panel, the ecosystem is represented by a RGG of N = 104 nodes. Relative abundances x1, x2, x3 are plotted after the transient has
vanished. (a) All-to-all interactions: the range is set to cover the entire plane (RRRG = Rmax = √

2), hence, individuals can compete for any
vacant node. (b) Long-range interactions: we set RRGG = 0.15 leading to an average degree 〈k〉 � 706. (c) Short-range interaction: RRGG = 0.03
and 〈k〉 � 28. (d)–(f) Trajectories in the phase space represented on the standard 2-simplex (the portion of the x1 + x2 + x3 = 1 plane in which
x1, x2, x3 � 0). The plots show a view perpendicular to the simplex, and correspond to the time evolution of the left panels. The color code
represents time evolution. With all-to-all and long-range interactions [(d) and (e)], abundances oscillate in large cycles around what seems to
be an equilibrium point (represented by a black cross). With short-range interactions (f), abundances remain confined in a small region around
the equilibrium.

However, this picture drastically changes when we con-
sider spatially structured interactions. We recover the results
of the ER networks for large ranges (large average degrees)
in both the RGG and the 2D lattice. However, the system
stabilizes around the equilibrium point when we decrease the
interaction range, covering a tiny area in the phase space.
The transition between these two regimes takes place when
the average degree of both networks is within the range 50 �
〈k〉 � 100 for N = 104 nodes.

To summarize, the intuitive picture that arises from these
results is the following: when we consider long-range interac-
tions, e.g., large degrees, we obtain large oscillations, which
are similar to the ones obtained for nonspatial networks (ER).
In all cases, the amplitude and period of the oscillations are
independent of the initial conditions, i.e., the oscillations are
of the limit-cycle type. The mean-field approximation (see
Appendix A), which is expected to be valid in the limit of
long-range interaction, correctly predicts oscillatory behavior.
But it fails to reproduce the limit-cycle character, predicting
neutral oscillations instead. When we restrict competition to
small neighborhoods (small degrees) we find that the dynam-
ics stabilizes around some fixed point x∗.

Finally, to test the robustness of our results we also studied
how the parameters of the model affect this behavior. We find

that varying the number of individuals only slightly modifies
the shape of the curve: for larger N it becomes more gradual.
However, the results are qualitatively the same. Regarding the
number of species, we obtained similar findings when g = 5,
the only difference being a larger extinction probability with
long-range interactions.

C. Spatial configurations

So far we have only considered the trends of the global
relative abundances xi, quantities that are influenced by, but do
not explicitly display information on, the spatial distribution
of individuals. To better understand the mechanism behind the
reported behavior, we show in Fig. 4 two different snapshots
of the spatial organization of a 3-species system in a 2D square
lattice for two different interaction ranges (short and long).
Videos showing the temporal evolution of the two regimes are
available as Supplemental Material [33].

With short ranges [Fig. 4(a)], species self-organize in
monospecific patches. Changes in species relative abundances
can only take place along the borders, where different species
meet. A death event inside the patch does not contribute to
relative abundance variations because competition is among
same-species individuals. In this way, patches are more robust
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FIG. 3. (a) Average area inside the trajectory on the 2-simplex of
the (x1, x2, x3) point of a 3-species community [see Figs 2(d)–2(f)]
as a function of average degree 〈k〉, for different networks. The total
number of individuals is N = 104, and the same dominance matrix H
is used for all networks. The points represent the mean area obtained
over 50 realizations, each simulated in different networks. Areas have
been calculated excluding the 5% of out-layer points in the trajectory.
Shaded areas indicate 95% confidence interval.

to invasion from other species, decelerating the dynamics of
the system and hence the possibility of heavy oscillations.
Differently, with long-range interactions [Fig. 4(b)], the un-
structured and statistically homogeneous solution predicted
by mean-field theory appears: vacant nodes can be reached by
any species blocking the formation of single-species clusters.
The absence of patches prevents the community from reaching
a steady state, with intransitive cycles generating large-scale
oscillations.

Taken together, these latter results suggest that short-range
interactions reduce the effective competition in the system
by decreasing the probability of an encounter between indi-
viduals of different species. To confirm this hypothesis, we
calculate the average probability 〈Pi j〉 that two species i and
j compete for a vacant node in the short-range regime and
compare it with the expected value Pi j in the all-to-all case.
〈Pi j〉 has been obtained numerically by recording the number
of times species i and j have been selected for competition
and then averaging over the duration of the simulation. For all-
to-all interactions, Pi j is given by the product of the relative
abundances of species i and j at the mean-field equilibrium
abundances Pi j = x∗

i x∗
j (see Appendix A). For our example

system we have x∗ = (0.374, 0.383, 0.243), so that

Pi j =

⎛
⎜⎝

0.1399 0.1432 0.0909

0.1432 0.1467 0.0931

0.0909 0.0931 0.0590

⎞
⎟⎠. (2)

The computation of matrix 〈Pi j〉 for Eq. (1), in a RGG with
short-range interactions (RRGG = 0.022 and 〈k〉 � 15) gives

the following result:

〈Pi j〉 =

⎛
⎜⎝

0.2160 0.0965 0.0597

0.0965 0.2241 0.0659

0.0597 0.0659 0.1156

⎞
⎟⎠. (3)

We see that, when compared to the all-to-all case, for short-
range interactions, same-species competition has a higher
probability to occur [〈Pii〉, highlighted in boldface in Eq. (3)]
than different-species competition (the off-diagonal terms).
This demonstrates that spatial inhomogeneities reduce the
effective interspecific competition. Finally, as a further con-
firmation of this mechanism, in Appendix B we show that a
toy model, based on the mean-field formulation of the model
but where interspecific interactions are reduced and intraspe-
cific ones are increased, presents the same shift in stability
observed in our spatial models.

D. Stability and fluctuations

Once clarified the mechanism behind the stabilization of
the dynamics for short interaction ranges, we conclude our
analysis by probing further the stability of the fixed point for
the macroscopic variables xi, and by studying the nature of the
fluctuations around it that are seen in the simulations.

To check the stability of the equilibrium reached, we study
the system’s response to pulse perturbations of different mag-
nitudes. In our model, this translates into imposing a sudden
change in species’ relative abundances and measuring the time
needed to recover the original state. More specifically, the
relative abundance of a species, picked up at random, is sud-
denly increased to values up to the 90% of the entire system’s
size, while all other species’ abundances are proportionately
reduced. Figure 5(a) shows the results for a RGG for RRGG =
0.03 (short range), with a 90% perturbation of one species’
relative abundance, demonstrating that, even with such a large
disruption, the dynamics bounces back to the equilibrium as
the perturbation decays exponentially in time. Although, for
finite systems, it is also probable that perturbations lead to the
extinction of one or more species. In Fig. 5(b) we measure the
probability of extinction of one species, measured as fraction
of simulations where, at least, one species gets extinct after
the perturbation, for a N = 104 community arranged in a RGG
and increasing mean degree. In line with our previous results,
extinction almost certainly occurs for large degrees for a 90%
perturbation. On the contrary, when we reduce the interaction
range, the probability falls to less than 10%.

Finally, we study the characteristics of the fluctuations
around the equilibrium for both the stable and the unstable
regimes. To do so, we focus on how the size of fluctuations
in the relative abundance of each species (defined as their
coefficient of variation, σi/〈xi〉) scales with the size of the
system. In Fig. 6 we show the scaling for one species in a
RGG. For small degrees (〈k〉 = 15 ± 2), we find an exponent
of 0.47, pretty close to the 0.5 expected in case of residual
fluctuations arising from many nearly uncorrelated domains
and the stochastic noise due to the finite size of the system.
This rules out the possibility that the observed fluctuations
originate from the presence of oscillatory behavior of small
amplitude. In turn, for the unstable case (large degrees, 〈k〉 =
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FIG. 4. Spatial organization of a 3-species community in a 2D lattice of N = 104 for short- and long-range interactions with the dominance
matrix given in Eq. (1). Individuals of each species are depicted in a different color. (a) Short-range interactions: when a plant dies only the
eight closest neighbors at distance one compete for a vacant node [see the left network from Fig. 1(b)]. (b) Long-range interactions: the 360
individuals at distance less or equal to 9 from a vacant node participate in the competition. Videos for the two ranges of interactions are
available in the Supplemental Material [33].

980 ± 190) we observe an exponent of 0.14. In this case,
fluctuations are a genuine ecological signal that emerges from
the interactions in a high-mixing environment.

IV. DISCUSSION AND CONCLUSIONS

Many efforts have been made to explain the remarkable
robustness observed by natural ecosystems in terms of bio-
diversity. These efforts include niche and neutral models and
higher-order interactions. Here, considering a minimal model
for intransitive competitive communities, we have proved that
spatial interactions alone lead to the stability of multispecies
systems.

In particular, making use of extensive numerical simula-
tions we have studied a simple model where multiple species
compete in a structured space in intransitive dominance cy-
cles. Analyzing different spatial arrangements, ranging from
regular lattices to random connections that cancel out the
effect of space, our results show that spatial interactions
limited to nearest neighbors lead to stable coexistence of
different species, while for long-range interactions species’
relative abundances indefinitely oscillate. By taking into
account the spatial organization of the individuals, we dis-
covered that local interactions allow species to survive by
forming monospecific patches where competition only takes
place at their borders and, as result, decreasing the effective

(b)(a)

FIG. 5. (a) Time evolution of the recovery from a 90% pulse perturbation in a 3-species community for the dominance matrix H of
Eq. (1). The relative abundance of one species (blue) is artificially modified from its equilibrium value to be the 90% of the whole population,
whereas other species’ relative abundances (in gray) are proportionally decreased. The simulation is performed in a RGG of 104 individuals
and RRGG = 0.03. The red line represents the fit of the local maxima of the relative abundance (blue crosses) to the function ae−α + b with
α = 0.018, a = 0.53 and b = 0.38. (b) For the same setting than in (a), we have varied the interaction range to obtain how the extinction
probability varies with the average degree. Each bar corresponds to the mean over 50 different networks with 95% confidence intervals shown
as error bars.
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FIG. 6. Scaling of fluctuations, measured by the coefficient of
variation of species 1 (σ1/〈x1〉) with the system size N for a RGG
with 3 species. Each point is the result of 10 different realiza-
tions where the variance and mean relative abundance of species
1 have been calculated over at least �t = 108 time steps after the
transient. Short-range interactions correspond to an average degree
〈k〉 = 15 ± 2, and we find a decrease of the relative fluctuations
with system size as σ1/〈x1〉 ∼ N−0.47, consistent with a scenario of
uncorrelated domains. For a situation of long-range interactions we
set 〈k〉 = 980 ± 190, giving a scaling of the relative fluctuations as
N−0.14.

competition experienced by each individual. This latter effect
generates a deceleration of the dynamics, effectively damping
out fluctuations. These last results, however, are not matched
by mean-field approximations, as described in Appendix A.
This is not surprising since the dynamics depends strongly on
the nature of the spatial correlations created by the finite-range
interactions.

In conclusion, even if our results are obtained with a sim-
plified model, taken together our findings help to explain
the role of space in maintaining stable spatial coexistence in
natural ecosystems. In this sense, a restricted interaction range
goes against the coherent and neutral oscillatory behavior
usually produced by intransitive interactions. While in real
ecosystems many simultaneous mechanisms may be at play,
as for example higher-order interactions, spatial effects are
probably the simplest and most widely present of them, and
thus they need to be considered when addressing ecological
coexistence.
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APPENDIX A: ANALYTICAL FORMULATION

Along with a numerical implementation of the dynamics,
it is also possible to provide a mathematical description of the
model, which we set up in this Appendix. In Appendix A 1 we
establish the basic equations for the moments of the popula-
tion variables. Appendix A 2 develops a standard mean-field
approximation for statistically homogeneous systems. We
stress that it is not able to reproduce the main numerical
findings for our model, but gives a baseline to interpret the
results. Appendix A 3 extends the mean-field approximation
to allow for spatial inhomogeneity in the species distribution.
The results still do not match with the numerical observations,
but give some hints on the reduced stability of homogeneous
oscillations when the interaction range is small.

1. Moment equations

An analytical description of the stochastic dynamics de-
fined in the main text can be given (after a trivial replacement
of the discrete-time dynamics by a continuous-time one) by
the master equation for the time-dependent probability of the
system state. It allows us to derive equations for the expected
relative abundance of each species at a given node as well as
for the two-node correlations.

The model state can be specified by giving {Zν}, where
Zν = 1, 2, . . . , g specifies the species that occupies node ν ∈
�, with � being the set of nodes of the network. However,
we find more convenient to parametrize the model as fol-
lows. Let ni,ν ∈ {0, 1} be the number of individuals of species
i ∈ {1, . . . , g} at node ν ∈ �, i.e., ni,ν = 1 for one and only
one i, identifying the species present at ν, and 0 for the other
values of i (absent species). The state of the system can be
characterized by the set of vectors S = {Sν}N

ν=1, with Sν =
{n1,ν , . . . , ng,ν}. This state evolves as follows: (i) with a rate
r, a randomly chosen individual (say, located at ν) dies, then
(ii) two neighbors of the dead individual (thus pertaining to the
set Pν of neighbors of ν) are chosen at random and compete to
generate the offspring: a winner species is selected according
to the probabilities in the dominance matrix H . And (iii) this
offspring is immediately located at the vacant node. Following
standard procedures (for, example, see [34,35]) the master
equation for the probability p(S, t ) of finding the system in
a state S at time t can be written as

∂

∂t
p(S, t ) =

N∑
ν=1

∑
i, j

(E+
i,νE−

j,ν − 1)πν (i → j)p(S, t ), (A1)

where the operators E± act on an arbitrary state function f (S)
as

E±
i,ν f (S) = f ({n1,1, . . . , ng,1}, . . . ,

{n1,ν , . . . , ni,ν ± 1, . . . , ng,ν}, . . . ,
{n1,N , . . . , ng,N } ). (A2)
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πν (i → j) is the rate at which an individual of species i is
replaced by one of species j at site ν, given by

πν (i → j) = r
ni,ν

N

2

kν (kν − 1)

∑
λ,μ∈Pν

μ �=λ

∑
k

n j,λnk,μHjk, (A3)

where kν is the degree of node ν, i.e., the number of nodes in
Pν .

From the master equation we can derive equations for the
moments of the distribution, which can be easily measured
from the numerical simulations. The simplest nontrivial mo-
ment is the expected number of individuals of species i at
node ν, 〈ni,ν〉. Its equation is readily obtained from the master
equation after multiplying it by ni,ν and summing over all
possible values of S:

d

ds
〈ni,ν〉 = 1

kν (kν − 1)

∑
j

∑
λ,μ∈Pν

μ �=λ

Hi j〈ni,λn j,μ〉 − 1

2
〈ni,ν〉,

(A4)

where we have introduced a new timescale s ≡ 2r
N t .

From this equation we can write the dynamics for the ex-
pected value of the macroscopic variable xi(s) ≡ N−1 ∑

ν ni,ν

as
d

ds
〈xi(s)〉 =

∑
j

Hi jPi j (s) − 1

2
〈xi(s)〉, (A5)

where we have introduced the symmetric matrix

Pi j (s) = 1

N

∑
ν

1

kν (kν − 1)

∑
λ,μ∈Pν

μ �=λ

〈ni,λn j,μ〉. (A6)

This matrix can be interpreted as the probability of sampling
at time s a pair of individuals of species i and j when deciding
the replacement of a dead individual somewhere in the system.
It satisfies

∑
i j Pi j (s) = 1 and, in a homogeneous network

(kν = k, ∀ ν),
∑g

j=1 Pi j (s) = 〈xi(s)〉.
As for the second-order moments, both for μ ∈ Pν and for

μ /∈ Pν , their equations read as
d

ds
〈ni,νn j,μ〉 = 1

kν (kν − 1)

∑
l

∑
δ,λ∈Pν
δ �=λ

Hil〈ni,λnl,δn j,μ〉

+ 1

kμ(kμ − 1)

∑
l

∑
δ,λ∈Pν
δ �=λ

Hjl〈n j,λnl,δni,ν〉

−〈ni,νn j,μ〉. (A7)

In general, it can be seen that the moment equations form a
hierarchy, namely, that the equation for a moment of order o
depends on the moments of order o + 1. Hence, they cannot
be solved in closed form, except if introducing some approxi-
mation.

2. Homogeneous mean-field approximation

The simplest of such approximations is the mean-field
approach. It is conveniently done in the simplified case in
which the network is spatially homogeneous, i.e., all the
nodes have the same degree: kν = k, ∀ ν. In this situation, we
can search for statistically homogeneous solutions: 〈ni,ν (s)〉 =
ρi(s), ∀ ν. We can relate these time-dependent moments ρi(s)

to the macroscopic variables xi(s) ≡ N−1 ∑
ν ni,ν (s) [note that∑g

i=1 xi(s) = 1]. Indeed we have 〈xi〉 = N−1 ∑
ν ρi = ρi, or

〈xi〉 = 〈ni,ν〉.
The mean-field approximation, which is exact in the case

of all-to-all interactions in an infinite system, and expected to
be accurate both for large enough interaction range (mean de-
gree) and for unstructured interactions, consists in neglecting
fluctuations and correlations:

〈ni,ν〉 = 〈xi〉 � xi, ∀ ν ∈ � (A8)

〈ni,νn j,μ〉 � 〈ni,ν〉〈n j,μ〉 � xix j, ∀ ν �= μ ∈ �. (A9)

We have also Pi j ≈ xix j . Introduction of these expressions into
Eq. (A4) leads to a closed evolution equation for xi:

d

ds
xi =

(∑
l

Hi jx j − 1

2

)
xi. (A10)

This mean-field equation has been studied before (e.g., [12]).
We summarize here the main results. First, the dynam-

ics (A10) maintains in time the property
∑

i xi = 1, if the
initial condition satisfies it. This can be seen by defining X ≡∑

i xi, calculating dX/ds, using that Hi j = (Hi j + Hi j )/2 =
(1 − Hji + Hi j )/2, and noticing that

∑
i j (Hi j − Hji )xix j = 0

and
∑

i j xix j = X 2. Thus, the sum of relative abundances sat-
isfies

dX

ds
= 1

2
(X 2 − X ), (A11)

which maintains X (t ) = 1, ∀ t , if X (0) = 1.
Second, Eq. (A10) has several equilibria or fixed points.

Many of them are of the “absorbing” or “boundary” type, i.e.,
steady solutions of (A10) in which xi = 0 for some i, so that
the corresponding species are extinct. In addition, if g is odd,
there is generically [12] an interior equilibrium xi(t ) = x∗

i ,
∀ t , in which all species coexist with nonvanishing relative
abundances x∗

i . At this fixed point the relative abundances are
given by

g∑
j=1

Hi jx
∗
j = 1

2
⇒ x∗

i = 1

2

∑
j

(H−1)i j, (A12)

where H−1 is the inverse of the dominance matrix, which
always exists when it describes an intransitive loop. The
properties of the boundary fixed points can be analyzed by
recognizing that they can be considered interior equilibria in
a system with a smaller number g of species.

Third, the dynamics from arbitrary initial conditions in
which all xi are nonvanishing (and for generic H) leads to a
transient in which some of the species may become extinct.
The remaining ones, an odd number, cycle neutrally around
the interior fixed point (A12) in which the rows and columns
corresponding to the extinct species have been removed from
H [12]. The stability of this interior equilibrium is always
neutral: relative abundances of surviving species describe pe-
riodic closed orbits around it, with an amplitude and period
that is determined by the initial condition and without being
attracted nor repelled by the fixed point. This can be seen [12]
by noticing that the quantity

V (x1, . . . , xg) = −
g∑

i=1

x∗
i ln

xi

x∗
i

(A13)
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is a constant of motion, and thus it foliates the (g − 1)-simplex
on which the dynamics occurs into invariant hypersurfaces
that turn out to contain concentric closed orbits around the
interior equilibrium.

The neutral character of the oscillations is not realistic from
the biological point of view, and structurally unstable from
the mathematical point of view. It is a consequence of the
mean-field approximation, and we expect such neutral cycling
to be broken under corrections to mean field, or under the
full dynamics with finite range of interaction. This is indeed
what is seen in our numerical simulations for the full model
with three species: either the fixed point becomes attracting,
or the neutral cycles are replaced by a single attracting limit
cycle, with amplitude and period independent of the initial
conditions.

In addition to its nonrobust prediction of neutral cycling
of the species, the mean-field approximation is not able to ex-
plain our main numerical finding: that the fixed point becomes
stable for short-range interactions. From the observations of

Sec. III C and Fig. 4 it is likely that the stabilization of the
fixed point arises from the fact that the relative abundances
xi are macroscopic quantities that become averaged and non-
fluctuating when the microscopic structure contains many
different domains, as in Fig. 4(a). Thus, it is pertinent trying to
extend the mean-field formalism to describe the microscopic
spatially dependent configurations, as done in the following
section.

3. Local mean field and spatial stability

In this section we consider the species locations to be at
the nodes of a two-dimensional square lattice. Then the node
index ν can be considered to be a discrete two-dimensional
vector ν. For regular networks such as this one, the mean-field
approximation can be made local in space. This involves re-
moving correlations as 〈ni,νni,ν〉 � 〈ni,ν〉〈ni,ν〉 while keeping
the dependence of the mean quantities on the node location.

Under this approximation, Eq. (A4) can be written as

d

ds
ρi(ν, s) = 1

k(k − 1)

∑
j

Hi j

[(∑
λ∈Pν

ρi(λ, s)

)(∑
μ∈Pν

ρ j (μ, s)

)
−

∑
λ∈Pν

ρi(λ, s)ρ j (λ, s)

]
− 1

2
ρi(ν, s). (A14)

We have used the notation 〈ni,ν〉 ≡ ρi(ν, s). Note that this equation reduces to Eq. (A10) when ρi is homogeneous: ρi(ν, s) =
xi(s), ∀ ν.

This new formulation allows us to assess the stability of particular solutions against spatially dependent perturbations. For
example, we can focus on the stability of a homogeneous but time-dependent solution ρi(ν, s) = xi(s) which verifies Eq. (A10).
To do so, we seek a solution to Eq. (A14) of the form

ρi(ν, s) = xi(s) + δi(ν, s), (A15)

and linearize to first order in δ. With this, Eq. (A14) becomes

dδi(ν, s)

ds
=

∑
j

Hi j

k

[
x j (s)

∑
λ∈Pν

δi(λ, s) + xi(s)
∑
λ∈Pν

δ j (λ, s)

]
− 1

2
δi(ν, s). (A16)

We introduce the Fourier transform of the perturbation: δ̂i(q, s) = ∑
ν eiq·νδi(ν, s), in terms of which Eq. (A16) reads as

d δ̂i(q, s)

ds
=

[
−1 + 2F (q)

∑
j

Hi jx j (s)

]
δ̂i(q, s) + F (q)xi(s)

∑
j

Hi j δ̂ j (q, s). (A17)

We have introduced the quantity

F (q) ≡ 1

k

∑
λ∈P0

eiq·λ, (A18)

which satisfies F (q = 0) = 1, |F (q)| � 1, and F (q) → 0 as
|q| → ∞. Note that this quantity contains information on the
interaction range through the dependence on P0 (i.e., through
the set of neighbors of the origin).

The simplest case to analyze is the stability of the interior
equilibrium point, i.e., xi(s) = x∗

i , ∀ s, as given by Eq. (A12).
In this case, Eq. (A17) is a linear system with constant coef-
ficients, hence, the stability depends on the eigenvalues of the
matrix of coefficients Mi j = F (q)x∗

i Hi j + [F (q) − 1]δi j/2. In
fact, because of Eq. (A11), there is always an unstable eigen-
value 1

2 for perturbations that bring the dynamics out of the
simplex. Thus, it is convenient to restrict the dynamics to the
simplex by using

∑g
j=1 δ j = 0, and then the matrix of the

coefficients of Eq. (A17) restricted to the first g − 1 dimen-
sions is Mi j = F (q)x∗

i (Hi j − Hig) + [F (q) − 1]δi j/2, i, j =
1, . . . , g − 1.

For example, for g = 3, the two eigenvalues of M restricted
to the simplex can be explicitly calculated and read as

λ± = −1 − F

2
± i

F

2

√
(2H12 − 1)(2H13 − 1)(2H23 − 1)

1 − 2(H12 − H13 + H23)
.

(A19)
The argument of the square root is always positive when H
presents intransitive dominance cycles. Hence,

Re[λ±] = −1 − F (q)

2
� 0 (A20)

and the equality holds if and only if q = 0. This means that,
within the mean-field approximation, the steady and homo-
geneous solution ρi(ν, s) = x∗

i is linearly stable against small
spatial perturbations, except for homogeneous perturbations,
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in which stability is marginal (a fact that we already knew
from the more general nonlinear arguments in Appendix A 2).
Thus, the local mean-field dynamics of Eq. (A14) leads, for
inhomogeneous initial conditions close to the interior fixed
point, to a homogenization of the configuration, which then
proceeds to cycle neutrally around the fixed point. This is
confirmed by direct numerical simulation of Eq. (A14). These
results hold for any value of the interaction range, contained
in F (q). Thus, this local mean-field theory is not able to
explain the results from our stochastic model with structured
interactions. Namely, a transition from persistent inhomoge-
neous configurations at short interaction range, which produce
a fully attracting fixed point for the macroscopic variable
xi(s) = ∑

ν ρ(ν, s), to a situation with oscillatory dynamics
that produces a repelling fixed point and limit-cycle oscilla-
tions for xi(s) at large interaction range.

Nevertheless, we can still use the local mean field to gain
further insight into the dynamics, for example, by analyzing
the stability with respect to inhomogeneous perturbations of
a homogeneous periodic solution xi(s) of Eq. (A10). In this
case the stability equation (A17) is a linear equation with
periodic coefficients, which can be analyzed with Floquet
theory. The solutions can be written as a linear combination
of the functions [36]

fi(s)epis, i = 1, . . . , g − 1 (A21)

where fi(s) are periodic (and hence bounded) functions of
time, with the same period T as the functions xi(s), and pi are
the Floquet exponents given in terms of the eigenvalues �i

of the fundamental matrix 
(s) of system (A17), satisfying

(0) = I , as

�i = epiT . (A22)

When all pi are negative, the perturbations decay and the
homogeneous solution xi(s) is recovered as time advances. We
have numerically evaluated pi for the case of three species,
g = 3, and some values of the parameters of the system. For
all cases considered, pi has always negative real parts (except
for homogeneous perturbations, for which one finds neutral
stability), meaning that any initial inhomogeneous perturba-
tion tends to disappear. This agrees with direct simulation
results of Eq. (A14). Thus, the long-term behavior of the local
mean-field approach reduces to the standard homogeneous
mean-field treatment of Appendix A 2. In contrast, simulation
of the stochastic model shows domains of the different species
for short interaction range.

However, the stability strength is not the same for all
parameter values. Let M(s) be the matrix of time-dependent
coefficients of the system (A17). A necessary, but not suf-
ficient, condition for the homogeneous solutions xi(s) to be
unstable is that some eigenvalue of M(s) has positive real
part for some time s ∈ [0, T ] (see a proof of a similar result
in [35]). During these times, even if the trajectory turns out to
be linearly stable, its stability is reduced and more susceptible
to noninfinitesimal perturbations or noise. For the case of
three species g = 3, and the interaction matrix H given again
by Eq. (1), we have seen that the matrix M(s) has eigen-
values with positive real parts, for some possible periodic
trajectories xi(s), provided F (q) � 0.67. Since the maximum

of F (q) occurs at zero wave number and the width of this
function decreases with increasing k, the band of wave num-
ber identified as “less stable” shrinks as the interaction range,
quantified by k increases. This is an indication (although not
a proof) that homogeneous periodic solutions would be more
robust for long-range interactions, and instabilities giving rise
to inhomogeneous configurations are more likely to occur
for short-range interactions. It is interesting to note that the
times at which the matrix M(s) has more positive real part
of eigenvalues coincide with the times at which some of the
components of the oscillatory solution xi(s) approach zero.

On general grounds, the local mean-field approximation
should represent some kind of coarse graining of the original
stochastic system, and should be completed by noise terms
to gain accuracy. Under short-range interactions, appropri-
ate noise terms would be able to break the synchronization
between distant locations, and reproduce the domain struc-
ture observed in the Monte Carlo simulations. However, we
find difficult to write analytical expressions for these noise
terms that would respect all the proper statistical constraints
[for example: reflect the multiplicative nature of birth-death
fluctuations, keep in time that

∑
i ρi(ν, s) = 1, etc.]. Also, the

complexity of such model would not be lower than the original
individual-based one. Thus, we have not developed further
this possibility.

APPENDIX B: EFFECT OF INTRODUCING
CORRELATIONS BEYOND MEAN FIELD

In Sec. III C we demonstrated that short-range interactions
lead to the emergence of monospecific clusters, effectively
increasing intraspecific competition and stabilizing the dy-
namics. As a further way to confirm that the decline of
interspecific competition is able to change the stability of the
equilibrium, making it stable for sufficiently reduced compe-
tition between distinct species, we have studied a toy model
which shares characteristics with our community model. It
is built by noticing that 〈Pi j〉 is just the time average of the
matrix Pi j (s) in Eq. (A6) of Appendix A. A way to correct
the mean-field approximation Pi j ≈ xix j is to introduce some
correlations, Pi j ≈ ci jxix j , making some ansatz for ci j and
introducing it into the exact equation (A5) (with 〈xi〉 ≈ xi).
We have explored the behavior of such model in which cor-
relations are implemented by ci j = 1 − ε if i �= j and cii =
1 + ε′, with ε, ε′ > 0, resulting in an enhanced intraspecific
competition with respect to interspecific competition as ε and
ε′ are increased. With this choice of ci j the resulting matrix
Pi j does not have the proper statistical properties. In particular
the model does not respect that

∑
i xi = 1, ∀ s. However,

this problem can be fixed by constraining the dynamics
onto the simplex by subtracting to Eq. (A5), for each species
i, the same term g−1 ∑

i Gi, where Gi is the right-hand side of
Eq. (A5). It should be clear that this is not a systematic ap-
proximation to our original system, but a toy model useful to
check the impact of varying the intraspecific and interspecific
competition balance. For example, for ε′ = 0.01 and the same
dominance matrix used in the rest of the paper, we have found
that a Hopf bifurcation occurs at ε = εc ≈ 0.019 75, so that
relative species abundances undergo limit-cycle oscillations
for ε < εc but the fixed point becomes stable and attracting
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when the interspecific competition is further reduced, ε > εc.
These are the same types of states and the same transition that

is encountered in our stochastic model when decreasing the
interaction range.
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