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Topological resonance has been revealed in degree-heterogeneous scale-free networks for weak signal ampli-
fication, but not in degree-homogeneous all-to-all networks [Acebrón et al., Phys. Rev. Lett. 99, 128701 (2007)].
Here, we show that when the coupling distance of the all-to-all networks is reduced from global to local, i.e.,
converting all-to-all networks into rings, we can observe a resonant response to a weak signal similar to scale-free
networks. We find that such a resonance effect induced by ring topology is robust across a wide range of ring
sizes and signal frequencies. We further show that at intermediate coupling strength, oscillators in the rings can
form separate synchronous clusters that compete with each other, resulting in large amplitude oscillations of
boundary nodes between clusters and thus giving rise to the resonant signal amplification. Finally, we propose a
structure of a three-node feed-forward motif simplified from the observed cluster synchronization competition to
analyze the mechanism underlying the resonance behavior, which corresponds well with the numerical results.
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I. INTRODUCTION

Nature is full of nonlinear systems and signals, and the
distinct response of these systems to diverse signals leads to a
variety of observed phenomena [1–4]. Therefore, understand-
ing how nonlinear systems respond to signals is important
in multiple fields [5–9]. Due to its importance, numerous
attempts have been devoted to exploring the mechanisms un-
derlying the detection of weak signals in nonlinear systems.
Stochastic resonance (SR) is a widely accepted mechanism
with which nonlinear systems can amplify and detect weak
signals by taking advantage of accompanying noise [10–12].
The mechanism of SR can be captured in an overdamped
bistable oscillator, a nonlinear system with two stable states
separated by a potential barrier [12–14]. When noise is too
small, the bistable system vibrates at one of the two states and
responds faintly to a weak input signal. In contrast, if noise
is too large, the bistable system will switch between the two
stable states at random, driven by the excessive noise over-
whelming the signal. When noise is in an intermediate level,
the switching events become regular and nearly synchronous
with the signal. Thus, SR is a cooperative effect of random
noise and weak signals.

Individual nonlinear systems are often connected to form
networks [15–18]. Compared to a single-bistable system, the
SR effect is dramatically improved in network-connected
bistable systems [19–23]. This is known as array-enhanced
SR, and its mechanism is from the dynamic feedback in-
duced by coupling [19,20]. Moreover, different network
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configurations also deeply affect the SR effect. For instance,
small-world networks with a fraction of long-range short-
cuts can enhance the performance of SR [24,25]; scale-free
networks with a few highly connected hub nodes can gen-
erate a double SR [26,27]. Besides external noise, inherent
disorder (quenched noise) originating from the units com-
posing the ensemble may play a similarly constructive role
of noise in optimizing the system response to weak signals.
This effect is termed diversity-induced resonance [28]. Sub-
sequent studies have shown that such a resonance effect is
very general and appears in bistable, excitable, physical, and
social systems, suggesting that diversity-induced resonance
does not depend on the source of the disorder [29–31]. Re-
cently, it was revealed that the heterogeneous topology of
scale-free networks is a structural disorder that allows the
networks to amplify weak signals without noise, i.e., topolog-
ical resonance [32–34]. Specifically, in scale-free networks,
most nodes (leaf nodes) have very few link connections (de-
grees), while a few nodes (hub nodes) have many connections,
following a power-law degree distribution. Because of the
heterogeneous connections, the collective driven from the leaf
nodes assist the hub nodes in overcoming the potential bar-
riers, leading to a resonant signal response in the hub nodes.
Topological resonance, on the other hand, does not occur in
degree-homogeneous all-to-all networks in which all nodes
have the same degree with a delta functionlike degree dis-
tribution, and no source of disorder exists in this case [32].
This finding raises the question whether a resonance effect of
signal amplification can be observed in degree-homogeneous
networks and, if so, what kind of network is appropriate and
where the disorder comes from.

In this paper, we show that an equivalent weak signal
amplification can be obtained in degree-homogeneous rings.
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We construct a network in which the nodes are arranged as
a ring. By reducing the coupling distance, the network can
be changed from an all-to-all topology (as in Ref. [32]) to
a ring structure (nearest-neighbor coupling). We observe a
resonance behavior, i.e., the maximum response of the ring
to a weak signal appears for intermediate coupling strength,
analogous to scale-free networks. Through extensive tests, we
demonstrate that this resonance effect is robust for various
ring sizes and signal frequencies. Further, we find that cluster
synchronization and the competition between different clus-
ters underlie the observed resonance behavior. At last, this
resonance behavior is analyzed utilizing a three-node feed-
forward motif.

II. MODEL

We consider a regular ring of N identical bistable units,
each of which is connected to R nearest neighbors, and sub-
jected to the same external periodic signal. The corresponding
dynamics of the units are

ẋi = xi − x3
i + λ

j=i+R∑
j=i−R

(x j − xi ) + A sin(ωt ), i = 1, . . . , N,

(1)
where λ � 0 is the coupling strength, and R ∈ [1, N/2] is the
coupling distance. The interaction between units is limited
to the nearest neighbors (local coupling) for R = 1 and all-
to-all (global coupling) for R = N/2; thus, the intermediate
distances 0 < R < N/2 correspond to the intermediate cou-
plings. A and ω are the intensity and frequency of the external
signal, respectively. A single isolated unit (λ = 0) vibrates
slightly around one of its two stable fixed points xs = ±1
when A is small (subthreshold). In contrast, it oscillates signif-
icantly around its unstable fixed point xu = 0 when A is large
(suprathreshold). The transition from small-amplitude vibra-
tion to large-amplitude oscillation occurs discontinuously at
Ac = √

4/27 for low ω [13,35]. However, there is no apparent
threshold intensity Ac for high ω, as the transition becomes
continuous with A [36]. This study aims to explore whether a
resonance effect of signal amplification can appear in degree-
homogeneous networks taking the regular ring as a testing
example, where both coupling distance and strength are con-
sidered key parameters.

Since all units oscillate at the same frequency following the
external periodic signal, we may characterize their dynamics
by the oscillating amplitudes

gi = maxxi − minxi

2
, (2)

and the centers

ci = maxxi + minxi

2
. (3)

According to Eq. (2), we define the response of the ring in
terms of the maximum amplitude of the units [32,33]:

G = gL

A
, (4)

where L signifies the index of the unit with the largest am-
plitude, i.e., gL = maxN

i=1gi. G > 1 and G < 1 correspond
to amplified signal response and damped signal response,
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FIG. 1. Signal response G versus coupling strength λ for cou-
pling distance R = 1, 3, 5, N/2. Insets: (a) resonance peak Gm versus
coupling distance R, (b) average index L versus coupling strength λ.
Parameters N = 50, A = 0.3, and ω = 2π/50 are considered.

respectively. Since network function is closely related to net-
work synchronization [37–39], we define an order parameter
ρ to measure the coherence of the units in the ring [40,41]:

ρ = 1

2RN

〈
N∑

i=1

j=i+R∑
j=i−R

H (xix j )

〉
t

, (5)

where 〈·〉 is the average over time and H (·) is the Heavi-
side step function that returns zero for negative input and
one for nonnegative input. The ring is fully asynchronous
with ρ = 0.5 when all units vibrate randomly about different
centers xs = ±1 since the probability of two adjacent units
vibrating around the same center is 0.5. Instead, the ring is
synchronous with ρ = 1 when all units vibrate around the
same center xs = 1 or xs = −1.

In numerical simulations, the initial states of the bistable
units are chosen randomly from xs = ±1; the obtained signal
response G and order parameter ρ are averaged over 1000
realizations with different initial states.

III. SIMULATIONS

We start from a fully connected ring, i.e., an all-to-all
network. Consider a ring of bistable units with N = 50 and
R = N/2 forced by a subthreshold signal with A = 0.3 and
ω = 2π/50. As shown in Fig. 1, the ring generates a con-
stant response (G ≈ 0.5) to the subthreshold signal, consistent
with the finding in [32]. This damped response is because all
units in the ring are fully synchronized with ρ = 1, even for
tiny coupling strength λ ≈ 0 [see Fig. 2]. Thus, the all-to-all
network behaves as a single isolated unit [i.e., Eq. (1) with
λ = 0], producing a damped signal response. With the reduc-
tion of coupling distance R, the all-to-all network gradually
becomes a ring, and the response to the subthreshold signal
is also shown in Fig. 1. For local coupling (R = 1), the signal
response G is significantly amplified (G > 1) at intermediate
coupling strength, exhibiting the typical feature of resonance.
For intermediate coupling ranges (R = 3 and R = 5), the
resonance effect gradually fades, i.e., the resonance peak
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FIG. 2. Order parameter ρ versus coupling strength λ for cou-
pling distance R = 1, 3, 5, N/2 (with the same parameters used in
Fig. 1). Insets (a)–(d) are the typical partial synchronization patterns
of the ring in the synchronization process, where solid pink circles
represent cluster I, in which the units vibrate around xs = 1, solid
blue circles represent cluster II, in which the units vibrate around
xs = −1, and solid cyan circles represent cluster III, in which the
units oscillate around xu = 0.

Gm falls, and the coupling interval for signal amplification
(G > 1) also shrinks. The signal response G changes from
signal amplification (Gm > 1) to degradation (Gm < 1) [see
the inset (a) in Fig. 1] with a further increase of the coupling
distance. Meanwhile, the average index of the unit with the
largest amplitude remains constant at a value close to L ≈ N/2
[see the inset (b) in Fig. 1]. These observations demonstrate
that the resonance effect of signal amplification can occur in
degree-homogeneous rings with short-distance couplings, and
all units in the rings have an equal chance to be the resonator
(with the maximum signal response).

Figure 2 shows the order parameter ρ corresponding to
the signal response G as described in Fig. 1. For all-to-all
coupling (R = N/2), the onset of complete synchronization
ρ = 1 occurs at λc ≈ 0. For intermediate and local couplings,
the critical coupling strength λc increases as R decreases and
reaches the maximum when R = 1. These different values of
λc for complete synchronization correspond to the various
coupling intervals for signal amplification shown in Fig. 1.
Taking the local coupling (R = 1) as an example, the insets in
Fig. 2 illustrate four typical partial synchronization patterns
in the path to complete synchronization. For a tiny coupling
strength, the units are distributed randomly around two centers
xs = ±1 [see inset (a) in Fig. 2]. When the coupling strength
exceeds λ1 = 0.04, the units synchronize with adjacent neigh-
bors, forming two synchronization clusters [see inset (b) in
Fig. 2]. The first (cluster I) is composed of the units that
vibrate around xs = 1, whereas the second (cluster II) is com-
posed of the units that vibrate around xs = −1. Each cluster is
not spatially consecutive, but alternates along the ring. With
an even stronger coupling λ2 = 0.09, the units at the cluster
boundaries begin to hop back and forth between clusters I
and II [see inset (c) in Fig. 2]. They gradually grow in size to
form the third type of cluster (cluster III) with the increase of
coupling strength [see inset (d) in Fig. 2]. However, excessive
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FIG. 3. Scale ratio r of cluster III to the ring in (a) and success
rate p of forming cluster III in (b) versus coupling strength λ for
coupling distance R = 1, 3, 5. Parameters are the same as in Fig. 1.

coupling strength eventually causes the ring to attain com-
plete synchronization. Accordingly, neither asynchronization
ρ = 0.5 nor complete synchronization ρ = 1 benefits sig-
nal amplification, and only cluster synchronization (partial
synchronization) 0.5 < ρ < 1 enhances the amplification of
weak signal.

To investigate the dynamic details, we calculate and show
in Fig. 3(a) the scale ratio r = N0/N describing the proportion
of cluster III as a function of the coupling strength λ, where N0

stands for the number of units belonging to cluster III. We set a
threshold θ = 0.1 and consider the unit in cluster III when its
oscillating center |ci| � θ . Figure 3(a) shows that the scale ra-
tio r rises from r = 0 to r ≈ 1/3 when the coupling strength λ

increases to λc; after this peak, the scale ratio returns to r = 0
as the ring attains complete synchronization. Furthermore, the
coupling interval for r > 0 reduces as the coupling distance
R increases. Figure 3(b) shows the success rate p of forming
cluster III (i.e., r > 0) over many realizations. By comparing
Figs. 3(a) and 3(b), the success rate p steadily decreases as
λ and R increase, indicating that cluster III of small scale
(r ≈ 1/10) is more general in rings than large scale (r ≈ 1/3).

Figure 4 presents the robustness of the resonance effect ob-
served in rings with short-distance couplings for various ring
sizes and signal frequencies. As shown in Fig. 4(a), the signal
response of the ring with local coupling is resonant for both
small and large N . The height of the resonance peak Gm and
its width (the width of the peak at half height) increase with
N . This is due to the fact that a larger ring requires a stronger
coupling to establish synchronization. Figure 4(b) shows that
the resonance peak Gm saturates at large N , and the saturation
rate decreases with increasing the coupling distance R. This
is because a large coupling distance R enables the ring to
synchronize, reducing the signal response of cluster III. Simi-
larly, the ring with local coupling generates the resonant signal
response for various signal frequencies, see Fig. 4(c). As ω

lowers, the height of the resonance peak Gm grows, while the
peaks width decreases. Moreover, as seen in Fig. 4(d), the
resonance peak Gm saturates at low ω, and this trend holds true
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FIG. 4. (a) Signal response G versus coupling strength λ for ring
size N = 20, 100, 150, with fixed A = 0.3, ω = 2π/50, and R = 1.
(b) Resonance peak Gm versus ring size N , with fixed A = 0.3 and
ω = 2π/50. (c) Signal response G versus coupling strength λ for
signal frequency ω = 2π/10, 2π/25, 2π/100, with fixed A = 0.3
and R = 1. (d) Resonance peak Gm versus signal frequency ω, with
fixed N = 50 and R = 1.

for different signal intensities. Note that the low Gm at high ω

results from cluster III oscillating too quickly and avoiding
wide-range jumps. These features imply that the resonance
effect of signal amplification in degree-homogeneous rings is
robust to ring size and signal frequency.

IV. ANALYSIS

To give an analytical insight into our findings, we consider
the simple case of the ring with local coupling R = 1. As
seen in Fig. 2, the ring with local coupling evolves via a
two-step process of cluster synchronization for signal am-
plification. The first step occurs at λ < λ1, where the ring
tends to form two-cluster partial synchronization; the second
happens at λ � λ1, and the ring develops into three-cluster
partial synchronization. During these two-step synchroniza-
tion processes, the ring can be simplified by a feed-forward
motif composed of three bistable units [42–44]:

ẏ1 = y1 − y3
1 + A sin(ωt ),

ẏ2 = y2 − y3
2 + A sin(ωt ),

ẏ3 = y3 − y3
3 + λ(y1 + y2 − 2y3) + A sin(ωt ), (6)

where units one and two are the nearest neighbors of unit three
who have separately joined clusters I and II and attempt to
absorb unit three. Thus, units one and two have more stable
dynamics, while unit three has less influence on them. Given
this, the three units form a feed-forward motif, and the ring
with local coupling can be regarded as a collection of three-
node feed-forward motifs.

Figure 5 compares the signal response of the feed-forward
motif to the ring with N = 50 and R = 1. When λ < λ2, the
motif provides a nearly equal signal response to the ring;
and when λ � λ2, it shows a qualitatively similar tendency
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FIG. 5. Signal responses G, Gmotif, and Gring, as a function of the
coupling strength λ. Black squares denote the numerical G of the ring
with N = 50 and R = 1, red circles denote the numerical G of the
feed-forward motif, blue solid line denotes the analytical Gmotif, and
green dotted line denotes the analytical Gring. Insets (a) and (b) are
two schematic sketches of the feed-forward motif for λ < λ1 and
λ1 � λ < λ2, respectively. Subthreshold periodic signal of A = 0.3
and ω = 2π/50 is considered.

of the signal response of the ring. The disparity at λ � λ2

is due to two factors: (i) the interactions between units in
the feed-forward motif are unidirectional, but they are bidi-
rectional in the ring; and (ii) the signal response becomes
more sensitive to the initial state of the ring as the coupling
strength increases while the feed-forward motif is not [see
Fig. 3(b)]. Nonetheless, the simple feed-forward motif cap-
tures the essential characteristic of the resonancelike signal
response of the ring and has the advantage of being solvable.
In the following, we use the feed-forward motif to analyze the
mechanism of the resonant response of the ring with R = 1.

A. Case I: λ < λ1

Inset (a) in Fig. 5 gives a schematic sketch of the feed-
forward motif for λ < λ1, with units one and two oscillating
around the same center xs = 1, and unit three oscillating
around the other center of xs = −1. Since units one and two
are isolated in the feed-forward motif and the signal intensity
A is subthreshold, we may use the linearization method to
determine their solutions, which are

y1,2(t ) = xs + 2A

4 + ω2
sin(ωt ) − ωA

4 + ω2
cos(ωt ). (7)

As mentioned earlier, the signal response of the ring with
global coupling is equal to that of an isolated unit when λ > 0;
so Eq. 7 yields

Gglobal = Gsingle = 1√
4 + ω2

, (8)

which is a damped signal response and is independent of the
coupling strength λ.

Because units one and two are in the same cluster, i.e., y1 =
y2, the dynamics of unit three becomes as follows:

ẏ3 = (1 − 2λ)y3 − y3
3 + 2λ + AB sin(ωt + φ1), (9)
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where B =
√

(4λ + 4 + ω2)2 + 4ω2λ2/(4 + ω2) and φ1 de-
notes the phase shift. In Eq. (9), the periodic signal
AB sin(ωt + φ1) changes from subthreshold to suprathreshold
as the coupling strength exceeds a threshold coupling strength
λ′

1, satisfying [35](
2Rλ′

1 + AB

2

)2

=
(

1 − 2Rλ′
1

3

)3

. (10)

For A = 0.3 and ω = 2π/50, the threshold λ′
1 ≈ 0.025 which

nears the numerical result λ1 = 0.04 for the ring with R = 1.
Accordingly, the signal AB sin(ωt + φ1) is subthreshold when
λ < λ′

1, and we may solve Eq. (9) by the linearization method,
yielding

y3(t ) = xs + AB√
4(1 + λ)2 + ω2

sin(ωt + φ2), (11)

where φ2 denotes some phase shift. Equation (11) represents
a damped signal response to the subthreshold signal since
the amplitude of y3 is AB/

√
4(1 + λ)2 + ω2 ≈ A/2 for ω =

2π/50 and λ < λ′
1.

B. Case II: λ � λ1

According to Eq. (10), the signal AB sin(ωt + φ1) in
Eq. (9) turns to suprathreshold at λ = λ′

1, which enables unit
three to jump from the initial oscillation center xs = −1 to
xs = 1; once unit three enters the area of xs = 1, it becomes
completely synchronous with units one and two, forming a
cluster. This cluster aggregation process occurs at every site
of the ring in a structure like inset (a) in Fig. 5. As a result,
the ring transits from spatial asynchronization into two-cluster
(clusters I and II) partial synchronization at λ′

1. Clusters I and
II compete for large sizes as the coupling strength λ increases.
Due to the contrast inputs from these two clusters, the units
at the cluster boundaries fluctuate considerably, leading to a
large-amplitude oscillation. This mechanism of cluster syn-
chronization competition accounts for the signal amplification
in rings.

Inset (b) in Fig. 5 represents a schematic sketch of the
feedforward at λ′

1, where units one and three belong to cluster
I and unit two belongs to cluster II. Because y1 �= y2, we get

y1 + y2 = 4A

4 + ω2
sin(ωt ) − 2ωA

4 + ω2
cos(ωt ). (12)

Substituting it into Eq. (6), the dynamics of unit three can be
expressed as

ẏ3 = (1 − 2λ)y3 − y3
3 + AB sin(ωt + φ1). (13)

Similarly, the signal AB sin(ωt + φ1) changes form subthresh-
old to suprathreshold in Eq. (13) as the coupling strength
reaches a threshold λ′

2. Following Eq. (10), the threshold λ′
2

satisfies (
AB

2

)2

=
(

1 − 2λ′
2

3

)3

. (14)

When A = 0.3 and ω = 2π/50, the threshold λ′
2 ≈ 0.06

which is close to the numerical result λ2 = 0.09. Accord-
ingly, the signal AB sin(ωt + φ1) remains subthreshold for
λ′

1 � λ < λ′
2. Within this coupling interval, the approximated

solution of Eq. (13) can be obtained again by using the lin-
earization method, which takes the form of

y3(t ) = ±√
1 − 2λ + AB√

4(1 − 2λ)2 + ω2
sin(ωt + φ3),

(15)
where φ3 stands for some phase shift.

When λ � λ′
2, the signal AB sin(ωt + φ1) in Eq. (13) be-

comes suprathreshold, and unit three starts to oscillate about
xu = 0 with a large amplitude. The explanation is that the cou-
pling strength λ � λ′

2 greatly promotes the synchronization
competition between units one and two, which reduces the
potential barrier separating the two fixed points xs = ±1 of
unit three, turning the subthreshold signal into a suprathresh-
old signal. To solve Eq. (13), we assume that the frequency
ω is so low that the periodic signal acting on unit three can
be regarded as a square wave ±AB. With this assumption, the
oscillation amplitude I of unit three can be estimated by the
real root of the cubic equation (1 − 2λ)y3 − y3

3 ± AB = 0. If
λ′

2 � λ < 0.5, the root is

I1 = 2

√
1 − 2λ

3
cosh

⎡
⎣1

3
arcosh

⎛
⎝

√
27A2B2

4(1 − 2λ)3

⎞
⎠

⎤
⎦, (16)

and if λ > 0.5, the root becomes

I2 = 2

√
2λ − 1

3
sinh

⎡
⎣1

3
arsinh

⎛
⎝

√
27A2B2

4(2λ − 1)3

⎞
⎠

⎤
⎦. (17)

Using Eqs. (16) and (17), the solution of Eq. (13) can be
expressed as y3(t ) = I1,2 sin(ωt ), i.e., large oscillations about
xu = 0.

From Eqs. (11), (15), (16), and (17), we get the analytical
signal response of the feed-forward motif as

Gmotif =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B√
4(1 + λ)2 + ω2

, if λ < λ′
1,

B√
4(1 − 2λ)2 + ω2

, if λ′
1 � λ < λ′

2,

I1

A
, if λ′

2 � λ < 0.5,

I2

A
, if λ > 0.5.

(18)

Figure 5 shows the prediction of Eq. (18), which agrees well
with the result obtained numerically from Eq. (6). Based on
Eq. (18), we may estimate the signal response of the ring with
R = 1 by taking the success rate p into account, yielding

Gring =
{

Gmotif, if p = 0,

pGmotif + (1 − p)Gsingle, if p > 0.
(19)

In Fig. 5, we calculate the signal response of Eq. (19) by
using the numerical result of p shown in Fig. 3(b). We see
that Eq. (19) can better estimate the signal response of the
ring with R = 1.
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V. SUMMARY

In conclusion, we have extended the topological resonance
from degree-heterogeneous scale-free networks to degree-
homogeneous rings. We have shown that the resonant signal
amplification in regular rings is a general phenomenon across
a wide range of ring sizes and signal frequencies. Utilizing
a three-node feed-forward motif, we have analyzed the res-
onance mechanism, which agrees well with the numerical
result of a ring with local coupling. Here, the mechanism is
somewhat different from that of scale-free networks. In scale-
free networks, the leaf nodes linked to the hub nodes can be
divided into two synchronous clusters according to their initial
states. The forcing signal from the global sum of the leaf
nodes lowers the effective potential barrier of the hub nodes,
enabling the hub nodes to respond substantially to a weak
input signal. Thus, the resonance effect of signal amplification
in scale-free networks arises from the cooperation between
the leaf nodes. In rings with short-distance couplings, two
synchronous clusters are formed by the coupling strength. In
addition, the two clusters tend to synchronize, causing the
nodes located at the cluster boundaries to switch between

clusters. Therefore, the resonant signal amplification in rings
results from a competition between cluster synchronization.
This competition could be considered a kind of disorder
brought about by partial synchronization of the rings with
short-distance couplings and intermediate coupling strength.
Moreover, unlike scale-free networks where only hub nodes
amplify weak signals, all nodes have the same opportunity for
signal amplification in rings. Since rings (loops) are prevalent
in real networks [45–47], our findings suggest that rings, along
with scale-free structures, play essential roles in information
processing in networked systems.
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