
PHYSICAL REVIEW E 106, 064301 (2022)

Feature learning and network structure from noisy node activity data
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In the studies of network structures, much attention has been devoted to developing approaches to reconstruct
networks and predict missing links when edge-related information is given. However, such approaches are
not applicable when we are only given noisy node activity data with missing values. This work presents an
unsupervised learning framework to learn node vectors and construct networks from such node activity data.
First, we design a scheme to generate random node sequences from node context sets, which are generated from
node activity data. Then, a three-layer neural network is adopted training the node sequences to obtain node
vectors, which allow us to construct networks and capture nodes with synergistic roles. Furthermore, we present
an entropy-based approach to select the most meaningful neighbors for each node in the resulting network.
Finally, the effectiveness of the method is validated through both synthetic and real data.
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I. INTRODUCTION

A network is a system-level view of pairwise inter-
actions between nodes, genes, or elements in a complex
system [1–14]. The first step in analyzing a networked sys-
tem is to construct the network from data obtained with
different technologies. In most cases, network structures can
be determined through direct measurements, meaning that
pairwise relationships between nodes can be observed di-
rectly. For instance, the edges in friendship networks can be
probed through various ways, including using questionnaires,
checking Facebook or Twitter friendship, and investigating
face-to-face interactions [15–19]. As another example, edges
in web graphs can be directly determined by checking if
hyperlinks exist between web pages. However, there are cases
where the relationships between nodes cannot be observed
directly [20]. Instead, we may only have node activity data
that reflect the properties of nodes from various aspects. In
these cases, we need to estimate the underlying network struc-
ture from nodal data. Such a problem exists in many areas,
including the construction of financial, biological, and climate
networks [21–31]. In these areas, measurements of pairwise
relationships are not always feasible [6,20,32]. Instead, we
can conduct various experiments to measure node activities
under different conditions [33].

This work develops a model to learn node representa-
tions from noisy and heterogeneous data and proposes an
entropy-based method to extract network structures. Specif-
ically, we investigate the problems of feature learning and
network construction for gene co-expression data. Differ-
ent high throughput technologies, including microarray and
RNA-sequencing, allow simultaneously evaluating thousands
of gene expression data. Usually, the data can be organized
into a matrix that consists of rows representing N genes
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(nodes) and columns representing M experimental conditions.
To construct a network from such expression data, we need to
consider three problems. (1) The expression data, measured
through different experimental technologies, are distributed
in various ranges. For example, the raw expression values
obtained from different versions of RNA-sequencing in dif-
ferent labs are dispersed from zero to tens of thousands and
do not follow any specific distribution. (2) Missing values
are frequently present in the dataset. Some experiments may
only test a subset of genes for specific purposes, or some
experimental data for some genes (nodes) are not available.
(3) The levels of noise are not constant. For instance, the
environments, such as humidity, temperature, and light inten-
sity, could potentially influence the accuracy of the devices
and the measured node activity data. The method for network
construction is not allowed to be affected by missing values
and noisy data.

There are diverse approaches aiming at constructing net-
works from nodal data. A significant volume of works uses
the correlation coefficient to measure the degree to which a
pair of nodes is related, and edges are selected by thresholding
the correlation coefficients [34–36]. However, the drawbacks
of the correlation methods are that: (1) the expression data
are required to follow a (quasi-) normal distribution, (2) the
correlation coefficients are significantly affected by outliers,
and (3) the number of measured conditions and missing values
substantially affect the results [34,35]. Mutual information
(MI) and its variants are also used to construct gene co-
expression networks. The MI models do not require the data
to follow the normal distribution. Still, the MI models are
even more complex, since we are expected to find the joint
probability distribution for every pair of genes [37]. We need
to solve the problems mentioned above before applying either
of the two methods. To solve problems (1) and (3), some
researchers have proposed using rescaling and normalization
methodologies to obtain quasinormal distributed data from
the raw node activity data [38]. According to Ref. [39], the
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number of experimental conditions significantly influences
the correlation coefficients under the null hypothesis that two
nodes are not correlated. Theoretical analysis shows that cor-
relations based on ten conditions tend to be higher than those
computed with 50 conditions. Missing values lead to node
pairs with a different number of paired elements, meaning
that the node pairs with fewer paired elements are more likely
to have high correlation coefficients. Therefore, some works
use imputation or interpolation to solve problem (2) [40,41].
The complex data processing procedures pose a severe chal-
lenge for the principle of parsimony when we further study
the resulting network structure [42].

Edge selection is another issue we need to consider when
constructing networks from node activity data. Both correla-
tion and MI methods return coefficients between −1 and 1.
Many researchers construct unweighted networks by applying
a threshold to select edges of the network corresponding to
node pairs with the highest coefficients. However, choosing
a threshold is always tricky since a high threshold could
generate singleton nodes, while a low threshold generates
networks with many weakly connected node pairs [38,43].
Though the problem can be solved by fixing the minimum
number of neighbors of each node, the choice of the threshold
influences the node degree distribution, meaning that nodes’
roles in the resulting network are related to the choice of
thresholds. As an alternative, we propose an entropy-based
network construction method, which has better performance
in maintaining nodes’ roles (e.g., hubs and leaf nodes) and
avoiding isolating nodes.

This paper proposes a neural network-based method to
extract node representations, and presents an entropy-based
approach to construct networks from noisy node activity data.
Inspired by the application of neural networks in natural
language processing (NLP) [44–49], we propose generating
node sequences from node activity data to simulate sentences
in documents. The neural network model can embed node
sequences into vectors of identical dimensions, which allow
us to study node features and construct networks. The main
contributions of the paper are as follows: First, we design a
simple and direct data processing scheme to generate random
node sequences from M conditions. In our approach, the raw
data are not required to follow any specific distribution. Thus,
rescaling and normalization are obsolete. In addition, the M
conditions are processed separately, meaning that negative
impacts from missing data and outliers can be minimized.
Second, the node sequences are trained with a three-layer neu-
ral network model, which builds on the hypothesis that nodes
with similar properties tend to have similar neighbors [49]. As
a result, similar nodes have similar values in the trained node
vectors. Third, we propose an entropy-based method to extract
the corresponding network where selected edges can recover
node roles [50,51]. Finally, we demonstrate the validity of the
proposed approach experimentally using synthetic and real
data.

II. APPROACH

In this section, we define the context set, node se-
quence generation, and the entropy-based method for network
construction.

In human language, words in similar contexts tend to have
similar meanings [44]. That is, words with similar meanings
usually show in similar neighborhoods. We can use NLP mod-
els to learn node representations if we have node sequences
in which nodes with similar measurements are in similar
contexts. The measurements of nodes in different conditions
represent different properties, similar to words in various
topics that may have different meanings. Building on these
observations, we design a scalable node sequence generation
strategy to process the M conditions separately.

A. Generate context sets from node activity data

Suppose the N nodes are measured in M conditions. Given
a node vi (i � N), we assume its value in the ωth condition is
vi(ω). We define the context set of node vi in the ωth condition
as

Cω(vi ) = {
v j : |v j (ω) − vi(ω)| � δω

i

}
, (1)

where the tolerance δω
i can be a parameter such that δω

i =
βωvi(ω). By employing the parameter βω, we can tune the size
of the context set per the error levels of different technologies.
In this work, we skip the generation of context set Cω(vi ) when
a missing value is present in the ωth condition for node vi, and
we do not predict the missing values from other conditions.

Formally, the context set of node vi is composed of nodes
with measurements falling in the range [vi(ω) − δω

i , vi(ω) +
δω

i ]. Therefore, the number of elements of the intersection
set Cω(vi) ∩ Cω(vk ) is related to the measurements of the
two nodes vi and vk . For example, assume the measurements
of the three nodes vx, vy, and vz in the ωth condition are,
respectively, vx(ω) = 1000, vy(ω) = 990, and vz(ω) = 950. It
is clear that vy(ω) is closer to vx(ω) than vz(ω), i.e., |vx(ω) −
vy(ω)| < |vx(ω) − vz(ω)|. Therefore, we have the following
inequality:

|Cω(vx ) ∩ Cω(vy)| � |Cω(vx ) ∩ Cω(vz )|, (2)

where | · | denotes the cardinality of the intersection set. The
context set Cω(vy) recapitulates more elements of Cω(vx ) than
the context set Cω(vz ). For any node v j ∈ Cω(vx ), we have the
probability

P[v j ∈ Cω(vy)] � P[v j ∈ Cω(vz )]. (3)

Furthermore, we assume Gω(vi ) is a set consisting of nodes
whose context set contains node vi, such that

Gω(vi ) = {v j : vi ∈ Cω(v j )}. (4)

Based on the same example above, we can say that there
are more context sets containing simultaneously vx and vy than
containing simultaneously vx and vz. Therefore, we have

|Gω(vx ) ∩ Gω(vy)| � |Gω(vx ) ∩ Gω(vz )|, (5)

meaning that the nodes with closer values are more likely to
be present in the same context sets. Similarly, for any node
v j ∈ Gω(vx ), we have the probability

P[v j ∈ Gω(vy)] � P[v j ∈ Gω(vz )]. (6)

In the generation of node sequences, we always sample the
subsequent node from the context set of the current node. For
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example, given a node sequence l , suppose the ith node is vx,
i.e., li = vx. Then, we have a node sequence

{· · · , li−1 ∈ Gω(vx ), li = vx, li+1 ∈ Cω(vx ), · · · }. (7)

Based on Eqs. (3) and (6), li+1 tends to be in Cω(vy) with
higher probability than Cω(vz ), and li−1 is more likely to be in
Gω(vy) than in Gω(vz ). That is, the context nodes of vx tend
to be the context nodes of vy rather than vz, since vy(ω) is
closer to vx(ω) than vz(ω). Therefore, in the generated node
sequences, we can say that nodes with closer values tend to
appear in similar contexts.

B. Generate random node sequences

The simplest way to generate node sequences from context
sets would be to randomly sample the next node from the
context set of the current node, which is exactly the first order
Markov chain [52]. Assume the ith node of a node sequence
is li, the next node li+1 ∈ Cω(li ) is chosen with probability

p(li+1 | li) = 1

|Cω(li)| . (8)

Under this assumption, the nodes in the context set Cω(li)
have an equal probability of being chosen as the subsequent
node.

Alternatively, we can generate biased random node se-
quences. Suppose we have just traversed node li−1, and now
we reside at node li. The probability of sampling the next
node li+1 is biased by the previous node li−1. Therefore, we
introduce a parameter ρ, and the unnormalized probability of
the next node is

p(li+1 | li, li−1) =
{

1 if if li+1 ∈ Cω(li−1) ∪ {li−1},
ρ else, (9)

where li+1 ∈ Cω(li ). The sampling strategy is similar to a
second-order Markov chain [52], in which the probability of
adding the next node is not only influenced by the current node
but also the previous node. A low value of ρ boosts the rate of
sampling an element from Cω(li−1). On the contrary, a high
value of ρ controls the probability of exploring a node far
from li−1. Higher ρ allows sampling a node in Cω(li ) but not
in Cω(li−1). If ρ = 1, then Eq. (9) is equivalent to Eq. (8).

In the ωth condition, we generate K random node se-
quences starting from each node. Repeating the process for all
the M conditions, we obtain a corpus T containing KNM −
KZ node sequences, where Z represents the number of miss-
ing values.

The goal of generating random node sequences is to feed
the corpus T to a three-layer neural networks to obtain node
vectors [47–49,53,54]. Please refer to Appendix A for more
information about the neural network model.

C. Construct network from trained node vectors

After training the neural network model, we obtain N vec-
tors for the N nodes. With the node vectors, we can predict
relationships between the nodes, visualize the global struc-
tures of the nodes, and construct a corresponding network.

A conventional way to select the edges is by global
thresholding the cosine similarities to filter out weak links
and obtain a backbone of the underlying network. Globally

thresholding edges (GTE) is widely used in determining gene
co-expression networks [36]. However, the drawback of the
GTE is that some nodes could be isolated from the network
if the threshold is high. Though we can force isolated nodes
connected to some other nodes, the degree distribution of
the constructed network is still affected by the selection of
threshold, meaning that the roles of nodes in the network are
sensible to the choice of threshold. To avoid these issues, we
propose a Rényi entropy-based method (REM) to extract a
network from the trained node vectors [50,55–59].

Once we have the node vectors, we can compute the cosine
similarity to quantify the connection strength for each pair of
nodes. Here, we define S0(vi ) as the initial neighbor set of
node vi. S0(vi ) is composed of nodes that are positively similar
to vi, i.e., S0(vi ) = {v j : s(vi, v j ) > 0}, where s(vi, v j ) is the
cosine similarity between vi and v j . The network constructed
from S0(vi), ∀i < N is not helpful in real applications because
most node pairs are weakly connected.

Inspired by the application of entropy in ecology, we regard
the nodes in the set S0(vi) are the states of the system vi. Then,
we associate each state with a probability, which is computed
from the similarity values, such that

s0
i (v j ) = s(vi, v j )∑

v j∈S0(vi ) s(vi, v j )
. (10)

In information theory, entropy depicts the diversity and
randomness of a system [51]. The Rényi entropy for node vi

with order α is

H1
α (vi ) = 1

1 − α
ln

∑
v j∈S0(vi )

(
s0

i ( j)
)α

, (11)

where α > 0. Note that the Rényi entropy converges to
the Shannon entropy in the case α → 1, i.e., H1

α (vi ) =∑
v j∈S0(vi ) s0

i (v j ) log s0
i (v j ). For any α, the entropy H1

α (vi )

varies from zero to ln |S0(vi )|. In the case of a certain event,
i.e., ∃ v j ∈ S0(vi ), where s0

i (v j ) = 1 and Hα (vi ) = 0. Con-
versely, the entropy H1

α (vi) = ln |S0(vi )| when s0
i (v j ) follows

a uniform distribution. The diversity index D1
α (vi ) is

D1
α (vi ) = exp(H1

α (vi )) =
⎡
⎣ ∑

v j∈S0(vi )

(
s0

i (v j )
)α

⎤
⎦

1/(1−α)

, (12)

which is also known as the Hill numbers [55]. It is unsur-
prising that s0

i (v j ) is not uniformly distributed, and H1
α (vi ) ∈

[0, ln |S0(vi )|]. In ecology, the diversity index quantifies the
abundance of species in a community. The diversity index
approaches the total number of species when the species are
equally abundant and approaches one if there is a dominant
species. In Eq. (12), the order α influences the sensitivity of
the diversity index. Increasing α strengthens the weights of the
most abundant species. That is, higher α allows us to select
the more abundant species, while lower α will detect more
species. Therefore, we can use α to control the number of
neighbors of node vi.

We pick �D1
α (vi)	 nodes that have highest similarities from

S0(vi ) as the effective number of neighbors of node vi. Then,
the selected neighbors compose a new neighbor set S1(vi ).
The nodes in S1(vi ) are more strongly connected to vi than the
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nodes in S0(vi ). The network constructed from S1(vi ),∀i � N
is denser than that constructed from S0(vi ),∀i � N . We can
repeatedly run Eqs. (10), (11), and (12) to obtain a network
with desired edge density. Assume �Dk

α (vi )	 is the diversity
index of kth iteration. Then, we have

Sk (vi ) = {
v j ∈ Sk−1(vi ) :

∣∣{vz ∈ Sk−1(vi ) : s(vi, v j )

< s(vi, vz )
}∣∣ <

⌊
Dk

α (vi )
⌉}

, (13)

where k � 1. In each iteration, �Dk
α (vi )	 nodes with highest

similarity values are selected as the neighbors of vi. Intu-
itively, the REM can filter out weak links for vi, and the
remaining nodes Sk (vi ) are the most meaningful neighbors
of vi.

In real networks, leaf nodes are those connected to a small
number of others, while hubs have many neighbors. Consid-
ering the property of entropy [56,59], the size of the resulting
neighbor set Sk (vi ) is relatively small if the similarity value
distribution of S0(vi ) is right-skewed. On the contrary, the size
of Sk (vi ) is much larger if the similarity value distribution of
S0(vi ) is left-skewed [50,57]. That is, the role of node vi in the
resulting network is related to the similarity value distribution.

III. RESULTS

The method we have presented falls in the category of
unsupervised learning. In this section, we use both synthetic
and real data to evaluate the performance of the proposed
approach in recovering global and local structures in terms
of feature learning and network reconstruction.

A. Feature learning

1. Synthetic data

In this part, we used two case studies with N1 = 5000 and
N2 = 5500 nodes to evaluate the performance of the proposed
approach in recovering a global structure. The nodes in the
two case studies are measured in six conditions (M1, M2,
· · · , M6) and distributed in five communities (G1, G2, · · · ,
G5). The first case study has five communities of equal size,
i.e., each group has 1,000 nodes. The five communities in
the second case study have, respectively, G1 = 1000, G2 =
1500, G3 = 500, G4 = 750, and G5 = 1750 nodes (the sizes
of the communities are chosen randomly). Note that the sixth
condition is a perturbation. In each condition, nodes in the
same community are assigned random values from one of the
intervals: A = [1, 100], B = [101, 200], C = [201, 300], D =
[301, 400], E = [401, 500], and R = [1, 500]. In this work,
we created four datasets for each case study per the tables in
Appendix B. In Table VI (Data.1), G1 and G2 are adjacent
but not overlapped. In Tables VII (Data.2), VIII (Data.3),
and IX (Data.4), nodes from G1 and G2 are assigned with
values from two, three, and four same intervals, respectively,
as shown in bold fonts. The relative distance between G1 and
G2 is expected to decrease with respect to the increase of the
number of overlapped intervals.

2. Experimental results

Based on the approach introduced in Sec. II, we generated
context sets with a tolerance of δω

i = 0.1vi(ω) (βω = 0.1).

(a) (b)

(c) (d)

FIG. 1. The node vectors trained from the first case study are
visualized via PCA. The five communities have an equal number of
nodes. Panels (a–d) are, respectively, the training results of Data.1
to Data.4.

In the experiments, we generated K = 10 random node se-
quences of length l = 80 starting from each node in each of
the six conditions. Consequently, the corpus T1 and T2 consist
of 300 000 and 330 000 node sequences, respectively. In the
neural network, we set the node vector dimension to d = 128.

To evaluate the training results qualitatively, we mapped
the trained node vectors to a 2D plane via the principle com-
ponent analysis (PCA) [60,61]. In Figs. 1(a) and 2(a), the
nodes from the same communities are mapped to the same
areas, meaning that the proposed method can recover the
global structure of the dataset. Note that nodes in G1 and G2

are assigned to values from two, three, and four overlapped
subintervals from Data.2 to Data.4 (see the details in Ap-
pendix B). That is, the distance between G1 and G2 is assumed
to be decreasing for Data.2, Data.3, and Data.4. In Figs. 1(b)
and 2(b), we observed the relative distance between G1 and G2

was closer than that in Figs. 1(a) and 2(a). Similarly, the rela-

(a) (b)

(c) (d)

FIG. 2. The node vectors trained from the second case study are
visualized via the PCA. The five communities have 1000, 1500, 500,
750, and 1250 nodes. Panels (a–d) are, respectively, the training
results of Data.1 to Data.4.
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TABLE I. The relative distance between G1 and G2 and classifi-
cation accuracy.

First case study Second case study

Data Distance Accuracy(%) Distance Accuracy(%)

1 2.18 99.98 2.14 100
2 1.82 99.96 1.86 99.98
3 1.52 99.96 1.49 99.90
4 1.18 79.84 1.16 77.92

tive distance between G1 and G2 was even closer in Figs. 1(c)
and 2(c), and the two communities were almost merged in
Figs. 1(d) and 2(d). The results for the two case studies (eight
datasets in total) demonstrated that the node vectors can reflect
the relative distances of the node communities, which are
affected by the number of overlapped subintervals.

To quantitatively show the results, we computed the dis-
tance between G1 and G2. To this end, we calculated the
cosine distance (1-cosine similarity) between node pairs. The
distance between G1 and G2 was computed as the summation
of all possible node pairs between the two communities. For
example, the cosine distance between G1 and G2 is

Dis(G1, G2) =
∑

vi∈G1,v j∈G2

1 − s(vi, v j ). (14)

Then, we calculate the relative distance between G1 and G2 as

RelaDis(G1, G2) = Dis(G1, G2) ∗ Dis(G1, G2)

Dis(G1, G1) ∗ Dis(G2, G2)
. (15)

Additionally, we perform the simple K-means clustering
method [62] to classify the trained node vectors into five
communities. The classification results are compared to the
ground-truth communities.

The relative distances between G1 and G2 and classification
results are shown in Table I. We observe that the cosine dis-
tance between G1 and G2 is decreasing for Data.1 to Data.4,
in accord with the visualizations in Figs. 1 and 2. Specifically,
the distance is close to one for Data.4, which suggests that
the two communities almost merged. The classification results
also agree with the visualization. The classification accuracy
is above 99% for Data.1, Data.2, and Data.3, and the clas-
sification accuracy has dropped significantly in Data.4 since
the two communities are almost overlapped, and the nodes
from the two communities are falsely classified. From a global
view, the node vectors can recover the mesoscopic structure of
the nodes. In the following experiments, we will only use the
first case study to conduct further analysis.

To study the influence of missing values, we generate in-
complete datasets by randomly removing 10% and 20% of
values from each condition. We use the same parameters to
train the neural network, and the results are shown in Table II.
It can be observed that the relative distances between G1 and
G2 and the classification accuracies are not significantly af-
fected by the missing values. In Fig. 3, the visualization shows
that the global structure of the nodes can still be recovered
even when 20% data have been removed randomly. Therefore,
the results suggest the proposed method is robust to missing
values.

TABLE II. The influence of missing values on the distance be-
tween G1 and G2 and classification accuracy.

10% missing values 20% missing values

Data Distance Accuracy(%) Distance Accuracy(%)

1 2.19 100 2.16 99.92
2 1.77 99.92 1.76 99.72
3 1.49 99.64 1.47 98.76
4 1.15 79.68 1.14 79.96

The training results are robust to the choice of training
parameters. In the generation of node sequences, we assigned
different values to βω to control the size of the context set
δi
ω. The node sequences are trained using the neural network

model with ρ = 1. Similarly, we computed the relative dis-
tances between G1 and G2 and the classification accuracy.
Table III shows that the relative distances are at the same
levels for the same datasets, and the classification accuracies
are not significantly affected by βω, meaning that the global
structure is still maintained. Thus, the choice of βω has limited
influence on the embedded node vectors.

To compare the proposed approach with the widely used
correlation approach [36,39], we generated four networks
from the synthetic data and trained the networks with semi-
supervised learning algorithms to obtain node vectors. First,
the values of each condition are normalized with the z score,

vi(ω) = vi(ω) − μω

σω

, (16)

where μω is the mean of all the values in the ωth condition,
σω is the standard deviation, and vi(ω) is the normalized
expression value.

The Pearson correlation coefficient (PCC) of any two
nodes is

r(vx,vy ) =
∑M

i=1(vx(ω) − vx )(vy(ω) − vy)√∑M
i=1(vx(ω) − vx )2

√∑M
i=1(vy(ω) − vy)2

, (17)

(a) (b)

(c) (d)

FIG. 3. Visualization of node vectors trained from the first ex-
ample with 20% missing values. Panels (a–d) are, respectively, the
training results of Data.1 to Data.4.
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TABLE III. The relative distance between G1 and G2 and classi-
fication accuracy w.r.t. the variation of βω.

Distance Accuracy(%)

Data 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

1 2.08 2.18 2.22 2.16 100 99.98 99.86 99.86
2 1.78 1.82 1.82 1.76 99.98 99.96 99.86 99.88
3 1.49 1.52 1.48 1.47 99.92 99.96 99.06 99.84
4 1.15 1.18 1.16 1.14 80.72 79.84 80.86 81.34

where r(vx,vy ) is the PCC between node vx and vy, and vx

is the mean of node vx across the M conditions. The PCC
measures how much the two genes are related [36,38]. In this
experiment, we did not consider the missing value problem,
which could substantially influence the correlation coeffi-
cients according to the results in Ref. [39]. The edges are
selected by thresholding correlation coefficients, such that
PCC � 0.95 [38,63]. All four networks have edge densities
above 5%, as shown in Table IV.

To study the properties of nodes, different methodolo-
gies are used to determine node vectors from network
structure [44–46,64]. Here, we used the node2vec method
introduced in Ref. [44] to obtain node vectors from the con-
structed networks since the approach has shown outstanding
performance in reconstructing networks. Similarly, we com-
puted the relative distances between G1 and G2 from the
trained node vectors, and the results are shown in Table IV.
We observed that the relative distances between the two com-
munities for the first three networks are much higher than in
our method (Table I). In the synthetic datasets, G1 and G2 are
assumed to partially overlap. However, this characteristic is
not recovered from trained node vectors per the visualization
of Fig. 4. In the PCC method, errors could be introduced in
data normalization, network construction, and feature learn-
ing, which consequently influence the accuracy of trained
node vectors. As a comparison, our proposed approach trains
the node vectors directly from the raw data.

More experimental results on the choice of ρ can be found
in Appendix C.

3. Real data

We used two real Anopheles gambiae gene expression
datasets [20,41] to show that the learned node vectors can
capture the local structure of the nodes. The first dataset
consists of 10,433 Anopheles gambiae genes measured in time
series after desiccation stress (five conditions) [65]. The five
measurements (conditions) of each gene are almost at the

TABLE IV. The relative distance between G1 and G2 and the
classification accuracy of the PCC networks.

Data Edge density Distance Accuracy(%)

1 6.30% 6.13 100
2 5.81% 3.64 81.30
3 5.21% 2.66 80.82
4 5.73% 1.17 64.26

(a) (b)

(c) (d)

FIG. 4. The visualization of node vectors trained from the Pear-
son correlation network. Panels (a–d) are, respectively, Data.1 to
Data.4.

same level, and the distributions of the coefficient of variation
(CV) and means of the 10 433 genes are shown in Figs. 5(a)
and 5(c). The second dataset measures the gene expression
values after mating [66], consisting of four measurements
(also in time series). The distributions of the CV and means
are shown in Figs. 5(b) and 5(d).

In Figs. 5(a) and 5(b), we observe that the CVs of most
genes are at a low level. Therefore, we can set the tolerance
δω

i as the average CV of all the nodes, such that

CV = 1

N

∑
i

σi

mi
, (18)

where mi is the mean value of gene vi, σi is the standard
deviation, and σi

mi
is the CV of gene vi. The CVs of the two

data sets are, respectively, 0.086 and 0.12. Therefore, we set
βω = CV.

(a) (b)

(c) (d)

FIG. 5. The properties of the two real datasets. Panels (a) (first
dataset) and (b) (second dataset) are the distributions of the CV of the
expression values. Panels (c) (first dataset) and (d) (second dataset)
are the distributions of means of the expression values.
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(a) (b)

(c) (d)

FIG. 6. Visualization of the gene vectors via t-SNE, the genes are
colored by the expression values. Panels (a) (first dataset) and (b) are
the visualizations of node vectors trained from raw data. Panels
(c) (first dataset) and (d) (second dataset) are the visualizations of
node vectors trained from the incomplete datasets with 20% values
randomly removed from each condition.

4. Experimental results

The trained node vectors are visualized via the t-distributed
stochastic neighbor embedding (t-SNE) method [67] in Fig. 6.
The t-SNE constructs probability distribution over pairs of
vectors and does not retain the distances of node pairs, but
their probabilities. Therefore, the t-SNE approach has better
performance in preserving local structure. In Fig. 6, we can
observe that the genes with similar expression values are
mapped closer, even when 20% of values have been removed
from each condition.

As a comparison, we construct a PCC network for the
first real data. The raw expression values are rescaled with
log2 [20,38] and normalized per Eq. (16) [the distribution of
the raw data is heterogeneous as shown in Fig. 5(c)]. Then,
a PCC network is constructed by thresholding the edges with
a threshold PCC � 0.95 (the network is not sparse). The re-
sulting network consists of 756 330 edges. Similarly, the node

FIG. 7. The visualization of node vectors trained from the PCC
network.

(a) (b)

FIG. 8. Experimental results when different thresholds are ap-
plied. (a) shows the percentages of isolated nodes w.r.t. the
thresholds. (b) shows the edge densities of networks when different
thresholds are used.

vectors are obtained by training the node2vec model. In Fig. 7,
we observed that nodes are distributed randomly in the 2D
plane, suggesting that nodes with close values are not mapped
to the same area. For example, the expression values of the
two genes AGAP004677 and AGAP012093 are, respectively,
[2764, 2869, 3276, 3690, 3671] and [129, 149, 184, 221, 265],
and it is apparent that the expression values of the two genes
are at different levels. However, the PCC between the two
genes is 0.983, suggesting the two nodes are highly related.
The reason is that the PCC method does not depend on the
scale of expression values but detects the linear dependence
of two genes. In contrast, our approach assumes that similar
nodes have more shared elements in their context sets.

B. Results of network extraction

Thresholding similarity value is the most straightforward
and widely used approach in network construction. However,
some nodes could be isolated from the network since these
nodes may have relatively low similarities to all other nodes.
In Fig. 8, we applied different thresholds to the cosine sim-
ilarities computed from the node vectors trained with the
synthetic data [Fig. 1(a)] and the real data [Fig. 5(a)]. We ob-
served that the percentage of isolated nodes increases rapidly
when the thresholds are greater than 0.8 (synthetic data) and
0.95 (real data), respectively. In this paper, we define such
threshold as the critical value. If we use a threshold smaller
than the critical value, then most nodes are connected to at
least one other node. On the contrary, if the threshold is larger
than the critical value, then we possibly obtain a network with
a large percentage of singleton nodes.

We can force isolated nodes to connect with highly similar
nodes in real applications. However, the neighbors selected
through a single threshold are not affected by the distribution
of similarity values. It is not rare that hubs are connected to

(a) (b)

FIG. 9. Edge density analysis of the REM. (a) Synthetic data.
(b) Real data.
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(a) (b)

(c) (d)

FIG. 10. The degree distributions of networks generated from the
GTE and REM. Panels (a) and (b) are the degree distributions of
the networks constructed from synthetic data. Panels (c) and (d) are
the degree distributions of the networks constructed from real data.
Panels (a) and (c) show the results of densely connected networks,
while panels (b) and (d) are the results of sparsely connected
networks.

many other nodes but with relatively low similarity values,
while leaf nodes may connect to a small number of nodes with
high similarities. That is, the distribution of similarity values
is not considered in the selection of edges.

The proposed REM will maintain every node connected
to at least one other node since the “threshold” of each node
is determined via the distribution of similarity values per
Eq. (12). In the experiments, we applied the REM to the two
datasets used in Fig. 8, and the results are shown in Fig. 9.
We observed that edge density decreases drastically in the
first several iterations, and then the edge density decreases
gradually. The reason is that the weakly connected edges are
removed immediately from the network in the first several
cycles. In contrast, the remaining edges have relatively high
similarities, which are removed at a slower speed. In addition,
the parameter α allows us to control the removal speed and
edge density. Higher α removes weak links more efficiently,
which aligns with our analysis in Sec. II C. In real applica-
tions, we can fix α and update Eq. (10) to Eq. (10) iteratively
until we obtain a network with desired edge density.

Furthermore, we generated four GTE-based networks with
different thresholds for the datasets used in Fig. 8. The prop-
erties of the networks are shown in Table V. Specifically, The

FIG. 11. The comparison of node degrees between densely and
sparsely connected networks.

GTE networks are respectively generated with thresholds less
and equal to the critical thresholds. In addition, we gener-
ated four REM networks, which have similar edge densities
to their GTE counterparts. In Table V, we found that both
GTE and REM return networks with similar average degrees
when the edge densities are the same. However, the GTE
networks always have a higher average clustering coefficient,
suggesting that nodes in the GTE networks are more likely
to cluster together. In Fig. 10, we compared the degree dis-
tributions of the eight networks. We observed that the degree
distributions of the GTE and REM networks almost overlap
when the thresholds are less than the critical values [panels
(a) and (c)]. When the thresholds are at the critical values
[panels (b) and (d)], some nodes in the REM networks still
have high degrees, which are similar to the hubs in many real
networks. Besides, we observed that all four REM networks
have many low-degree nodes, which account for the lower
average clustering coefficients in Table V.

Finally, we compared how edge density affects the roles
of nodes. In Fig. 11, each point represents a node. The hori-
zontal coordinate represents the node’s degree in the densely
connected network, while the vertical coordinate represents
the node’s degree in the sparse network. We observed that
the node degree of the GTE networks is remarkably affected
by the threshold selection. The highest node degrees have
dropped from 345 to 73 for the synthetic data and from 704 to
370 for the real data. In the REM network, the highest node
degrees have dropped from 321 to 210 for the synthetic data
and 682 to 493 for the real data. In Fig. 11, the REM approach
is more likely to remove edges from low-degree nodes. Edges
from high-degree nodes are removed proportionally, which
means the nodes’ roles are maintained and not significantly
influenced by edge densities. However, the nodes’ degree in
the resulting GTE networks is strongly related to the choice

TABLE V. The properties of networks constructed with the GTE and REM.

< CTa (Syn.b) = CT (Syn.) < CT (Realc) = CT (Real)

Property GTE REM GTE REM GTE REM GTE REM

Threshold 0.7 — 0.8 — 0.92 — 0.95 —
Isolated nodes 0 0 287 0 372 0 849 0
Edge density 1.03% 0.972% 0.164% 0.160% 2.88% 2.81% 1.18% 1.18%
Ave. degree 51.5 48.6 8.2 8 300.8 293.2 123.2 123.4
Ave. clustering 0.46 0.41 0.38 0.32 0.66 0.55 0.59 0.37

aCT denotes Critical threshold.
bSyn. denotes the synthetic data used in Figs. 8 and 9.)
cReal denotes the real data used in Figs. 8 and 9.
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of edge density. In Fig. 11(b), we can see that the points of the
GTE networks are over-dispersed in the diagram.

More experimental results on real data are discussed in
Appendix D.

IV. CONCLUSION AND FUTURE WORKS

This paper presents a neural network-based approach for
learning node vectors from noisy node activity data. The
primary advantage of the proposed method is that data are
not required to follow any specific distribution since we gen-
erate context sets from raw data for each condition. The
proposed approach is not constrained by missing values that
ubiquitously exist in experimental results. Inspired by the
application of neural networks in natural language processing,
we generate a corpus of node sequences to simulate sentences
in documents. The corpus is trained by a neural network
model, which produces node vectors and allows comparing
and identifying nodes with synergistic roles. The experimental
results show that the proposed approach is robust to the choice
of parameters and missing values. In addition, we offer an
alternative method to select edges for the underlying network.
The REM method is based on the Rényi entropy and se-
lects edges according to the distribution of similarity values.
The proposed approach constructs networks without isolating
nodes and can recover the roles of nodes.

In this work, we designed two experiments to test the pro-
posed method. With both synthetic and real data, we showed
that the proposed method could unveil the global and local
structure of the nodal data even when 20% values are ran-
domly removed from the datasets. Furthermore, we tested the
proposed entropy-based network extraction method. We can
obtain a network with desired edge density without isolated
nodes by controlling the parameter α and the number of itera-
tions.

The experiments in this paper show promising results in
detecting global and local structures from noisy nodal data.
We expect the proposed data processing methodology to be
used in different areas, including biology and finance, espe-
cially where node activity data are measured with different
techniques and missing values are present.

The code used for this work is available via a GitHub
repository [68].

ACKNOWLEDGMENTS

This research is supported by the National Institutes of
Health under Grant No. R01AI140760. The contents of this
article are solely the responsibility of the authors and do not
necessarily represent the official views of the funding agency.

APPENDIX A: THE SKIP-GRAM MODEL

The goal of generating random node sequences is to feed
the corpus T to neural networks to train node vectors. In this
work, we adopt the simple three-layer skip-gram model as
shown in Fig. 12. This neural network framework has three
layers; input, hidden, and output layer [47–49,53,54]. In this
work, the goal is to find the d-dimensional vector for each of
the N nodes.

Input layer Hidden layer Output layer

FIG. 12. The three-layer neural network model. Each input node
is associated with an N-dimensional one-hot vector [47], which is
mapped to the node vector f (vi ) (the hidden layer) of dimension d
by matrix W1. The hidden layer is mapped to the output vector by
matrix W2. The elements of W1 and W2 are initialized with random
values, which are expected to be optimized by backpropagation [48].

In our assumption, nodes with similar values tend to appear
in a similar context. Given a neighborhood H consisting of 2c
nodes, we denote P(vx | H ) as the conditional probability of
node vx is neighboring to the 2c nodes in H . Based on Bayes’
theorem, we have

P(vx | H ) = P(H | vx )P(vx )

P(H )
, (A1)

where P(H ) and P(vx ) are, respectively, the probability of H
and vx, and P(H ) and P(vx ) can be regarded as constants.
Then, we have

P(vx | H ) ∝ P(H | vx ). (A2)

Now, we take one of the node sequences from the cor-
pus. Let li denote the ith node of the sequence, and H =
{li−c, . . . , li−1, li+1, . . . , li+c}. That is, we have an outcome H
given li. Since the goal is to determine f (li ), we replace vx

in Eq. (A2) with f (li ), and assume the 2c nodes are indepen-
dent [47]. We have

P( f (li ) | H ) ∝ P[H | f (li)] =
∏

−c� j�c, j �=0

P[li+ j | f (li )],

(A3)

where P[li+ j | f (li )] is the occurring probability of node
li+ j given the vector f (li). To determine f (li ), we have the
optimization problem after taking the log form of Eq. (A3):

E = − min
f

∑
−c� j�c, j �=0

log P[li+ j | f (li )]. (A4)

In the model, the node vector f (li) is projected to an
N-dimensional output vector ui as shown in Fig. 12. The N
dimensions of ui are associated to the N nodes in the cor-
pus. Then, we use the softmax function [48,49,69] to map
the entries of ui into probabilities, which all together give a
probability distribution. For example, the probability of the
rth entry of ui given f (li ) is

P[vr | f (li)] = exp
(
ur

i

)
∑

r′∈N exp
(
ur′

i

) , (A5)

where ur
i is rth entry of ui and P[vr | f (li )] is the probability

of node vr to be the context of li. According to Eq. (A5),
nodes in H have higher probabilities to be the context of
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TABLE VI. The synthetic dataset 1.

Conditions

Group M1 M2 M3 M4 M5 M6

G1 A B C D E R
G2 B C D E A R
G3 C D E A B R
G4 D E A B C R
G5 E A B C D R

node li. Combining Eqs. (A4) and (A5), we have the loss
function [70–72]

E = − min
f

∑
−c� j�c, j �=0

ui+ j + log

[∑
r′∈N

exp
(
ur′

i

)]
, (A6)

which is applied to every node in the sequence. Equation (A6)
is optimized by using the stochastic gradient descent ap-
proach [44,48,49], which backpropagates [69] errors to update
the elements of the matrices W1 and W2 in Fig. 2.

The method we have introduced falls in the category of
unsupervised learning, in which we learn node vectors from
nodal data. The node vectors can be used to extract networks
or detect nodes with similar properties.

APPENDIX B: SYNTHETIC DATASETS

The four synthetic datasets for the two case studies are
generated according to Tables VI, VII, VIII, and IX.

APPENDIX C: PARAMETER CHOICE

We study the influence of ρ on the relative distance be-
tween G1 and G2, and the results are shown in Tables X and
XI. We observe that the distance between the two commu-
nities slightly increases when we employ a low value of ρ

since a small ρ encourages adding nodes that also exist in
the context set of the previous node. As a result, far away
nodes will become closer, reflected in the reduced distance
between the two communities. However, the results are not
significantly influenced by ρ since the relative distances of
two communities are maintained at the same level for the same
data. Therefore, we recommend using ρ = 1 in most cases.

TABLE VII. The synthetic dataset 2.

Conditions

Group M1 M2 M3 M4 M5 M6

G1 A B C D E R
G2 A B D E D R
G3 B C E A C R
G4 C D A B B R
G5 D E B C A R

TABLE VIII. The synthetic dataset 3.

Conditions

Group M1 M2 M3 M4 M5 M6

G1 A B C D E R
G2 A B C E D R
G3 B C D A C R
G4 C D E B A R
G5 D E B C B R

APPENDIX D: STUDY THE REM APPROACH WITH AUC
METRICS ON REAL DATA

In this part, we use two real datasets with both net-
work structure and node activity data to study the proposed
approach. It is often hard to quantitatively determine the rela-
tionships between the network structure and node activity data
because they describe the properties of nodes from different
aspects. In the experiments, we learn node vectors from the
node activity data, compute similarity and construct networks.
The constructed network is compared to the network struc-
tures, and we use the AUC to evaluate our REM approach.

1. The cora dataset

The cora dataset [73] contains a sparse citation network
with 2708 nodes and 5278 edges (the edge density is 0.144%),
where nodes represent publications and edges represent the
citation relationships between the papers. Each node in the
network is described by a 0/1-valued word vector, indicat-
ing the absence/presence of the corresponding word from
a dictionary. The dictionary consists of 1433 unique words
presented at least ten times in one of the 2708 publications.

2. The pubmed dataset

The pubmed dataset [74] contains a sparse citation net-
work with 19717 nodes and 44324 edges (the edge density
is 0.0228%), where nodes represent publications and edges
represent the citation relationships between the papers. Each
node in the network is described by a TF/IDF weighted word
vector from a dictionary consisting of 500 words.

The two networks represent citation relationships be-
tween the publications (nodes), while the node activity
data are extracted from the content of each publication.
We implement the proposed approach on these two real

TABLE IX. The synthetic dataset 4.

Conditions

Group M1 M2 M3 M4 M5 M6

G1 A B C D E R
G2 A B C D D R
G3 B C D E C R
G4 C D E A B R
G5 D E B C A R
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TABLE X. The relative distance between G1 and G2 w.r.t. ρ.

Data 1/10 1/5 1/3 3 5 10

1 2.23 2.22 2.19 2.18 2.17 2.07
2 1.84 1.83 1.82 1.80 1.78 1.67
3 1.53 1.52 1.52 1.48 1.42 1.32
4 1.22 1.21 1.20 1.17 1.16 1.13

datasets to generate node vectors (128 dimensions). Then, we
calculate the similarity for every node pair, and the perfor-
mance of the approach is evaluated by comparing it to the
true citation networks. The AUCs of the two datasets are,
respectively, 0.81 and 0.73. Though the true relationship be-

TABLE XI. The prediction accuracy w.r.t. ρ.

Data 1/10 1/5 1/3 3 5 10

1 98.24 98.24 98.72 98.80 98.90 98.82
2 98.26 97.22 98.68 98.00 97.30 98.12
3 97.52 97.48 97.72 98.22 97.58 97.32
4 78.14 78.58 78.62 79.72 79.32 79.78

tween network structure and node activity data is unknown,
the results reveal that the node activity data are related to the
network structure. Therefore, one of the advantages of our
approach is that it allows us to compare two different types of
data.
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