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Maslov indices are an essential ingredient in the semiclassical approaches to quantum mechanics, as they
are also related to the conjugate points of the corresponding trajectory, which reflects the dynamics in its
neighborhood. In this paper, we show how these important topological parameters can be computed using the
geometrodynamic approach to dynamics. Illustrations in two- and three-dimensional systems are presented and
discussed.

DOI: 10.1103/PhysRevE.106.064213

I. INTRODUCTION

The first attempt to introduce energy quantization in phys-
ical systems in order to explain atomic spectra was carried
out by Bohr [1] in the Kepler model for the hydrogen atom.
He (semiclassically) quantized the one-dimensional action,
which is related to the energy, with Planck’s constant as∫

p dq = 2π h̄n wih n = 1, 2, . . .. Despite the simplicity of
this approach, it was successful for a number of reasons, the
main one being that the model was separable. The theory was
extended by Sommerfeld [2] and Epstein [3], and it has been
known ever since as the Bohr-Sommerfeld (BS) quantization
rule. Later work by Einstein [4] and Ehrenfest [5] emphasized
the relevance of adiabatic invariants for this task, and it was
the former that in 1917 clarified the issue [6], stating that,
for integrable systems, it is the total action S(E ) = ∫

pidqi

(Einstein summation rule on repeated indices is used here and
throughout the paper) the proper magnitude to quantize and
moreover that this should be done along the N (dimensionality
of the system) topological independent circuits Ck defining the
associated dynamical torus [7] of energy E ,

S(E ) =
∮
Ck

pidqi = 2π h̄
(

nk + μk

4

)
,

k = 1, 2, . . . , N, nk = 0, 1, 2, . . . . (1)

The original Einstein’s formulation lacked the topological
term μk , which was later introduced by Maslov [8], Bril-
louin [9], and Keller [10]. It is important to note that μk

are topological invariants, and their values do not depend
on the coordinates or parametrizations. Equation (1), which.
puts Bohr theory on firm ground, is known as the Einstein-
Brillouin-Keller (EBK) quantization rule. Furthermore, both
the action and Maslov indices appear not only in this
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expression but also in the associated (semiclassical) wave
functions [11].

These results are related to the eikonal equation:
(d/ds)[n(dq/ds)] = ∇n [12] of geometric optics [13] in the
limit h̄ → 0 when defining the refractive index as n(q) =
{2[E − V (q)]}1/2, where s is the corresponding arc-length.
Both in this approximation and in the Hamilton-Jacobi the
generating function equals the classical action divided by h̄.
This relates Fermat and Mapertuis principles.

Maslov indices are also related to catastrophe theory
[14,15], a branch of bifurcation theory, which is also a par-
ticular special case of more general singularity theory in
geometry, especially in connection with caustics, and the ac-
cumulation of rays along them that takes place in optics [13].

The BS condition (including the proper action, mechanical
and topological) can be applied to periodic orbits to calculate,
for example, scarred functions [16–18], which are highly lo-
calized quantum wave functions playing a fundamental role in
quantum chaos theory [19].

It is also interesting to remark here that Einstein knew very
well Poincaré’s work on the three-body problem, and then
he remarked in the last four lines of his 1917 paper [6] that
the existence of invariant tori was not always the case in the
dynamic of generic Hamiltonian system, this precluding the
use of Eq. (1) and making his theory far from complete. Ac-
tually, it was not until the 1970s that Gutzwiller published his
celebrated trace formula [20], able to semiclassically quantize
all kind of systems, regardless if the dynamics was regular or
chaotic. In his derivation, the author started from a semiclas-
sical approximation to the quantum propagator for long times
in order to include the extra phases at the conjugate points,
obtained by stationary phase approximation of the Feynman
path integrals, followed by Laplace transformation to obtain
the corresponding Green function and finally took the trace
[20]. Gutzwiller’s trace formula is expressed solely in terms
of all periodic orbits of the system. Again, here actions and
Maslov indices play a crucial role in the theory.

It should be remarked that although semiclassical theories
[16] seem to have been made obsolete by quantum mechanics,

2470-0045/2022/106(6)/064213(12) 064213-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4490-1989
https://orcid.org/0000-0003-0926-9375
https://orcid.org/0000-0003-3094-8911
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.064213&domain=pdf&date_stamp=2022-12-28
https://doi.org/10.1103/PhysRevE.106.064213


A. VERGEL, J. MONTES, AND F. BORONDO PHYSICAL REVIEW E 106, 064213 (2022)

this is not the case, since they still play a fundamental role in
the understanding of many processes in atomic and molecular
physics, this including quantum chaos [19], which is impor-
tant for entanglement, decoherence, and quantum computing
[21].

Very general methods to compute Maslov indices have
been described in the literature [22–24]. They typically re-
quire us to calculate the number of full semiturns performed
in phase space by the invariant manifolds associated to the
orbit along one period. These manifolds can be studied by
following the evolution of the monodromy matrix eigenvec-
tors associated to the motion [17,18], and this can be done
choosing different coordinate systems [22].

In this paper, we present an original way to compute
Maslov indices for a given orbit based on the geometrody-
namic formalism, which is a way to describe dynamics in
purely geometrical terms. As such, it is tightly connected
to the theory of relativity, although in this work we will
restrict ourselves to classical mechanics. For this purpose a
tensor metric is defined in a Riemannian manifold, whose
structure determines the way to measure lengths, angles, and
areas in the tangent space [25,26]. This tensor is a dynamical
magnitude that evolves, for example, with time or, as in this
work, with energy, contrary to what happens in Newton’s
theory, which is defined with a Euclidean tensor metric where
geometry is static.

In two related studies [27,28], a general formula for com-
puting the Maslov index for geodesics in locally symmetric
semi-Riemannian manifold is studied. In some special cases
for invariant metrics on a Lie group this calculation can be
performed by counting the number of conjugate points (with
their multiplicity) along a distinguished geodesic. In this line,
our work considers the case of a general Riemannian mani-
fold.

The geometrodynamic formalism has successfully been
used in the literature to study nonlinear Hamiltonian sys-
tems using different metrics, such as those of Eisenhart [29],
Finsler [30–33], Jacobi [34], and others [35,36]. In this way
the stability, transitions to chaos, Lyapunov exponent, and
other topological dynamical aspects have been studied in sys-
tems ranging from low dimension to the thermodynamic limit
[37–43]. In particular, studies about the transition from clas-
sical order to chaos [44,45], and others comparing classical
and quantum phase structures, or the quantum manifestations
of chaos in the vibrational dynamics of molecular systems,
have been published in our group [46–51]. Moreover, different
chaos indicators have been successfully defined using this
method by us [52,53] and others [54].

The geometrodynamical formalism will be applied in this
work to study the focusing of neighboring trajectories with
respect to a reference (usually unstable) orbit using the
Jacobi-Levi-Civita (JLC) equation as a way to compute the
corresponding Maslov indices, and different examples in two-
and three-dimensional systems will be presented as illustra-
tions.

The organization of the paper is as follows. First, we
present in Sec. II the theoretical aspects of our work, or-
ganized in three subsections: In the first one (Sec. II A) we
describe the geometrodynamic frame and the correspond-
ing Jacobi equation for geodesic flux to make our paper

self-contained. Next, we present in Sec. II B the Jacobi-Levi-
Civita equation in two and three dimensions and discuss in
Sec. II C how it can be applied to the localization of the con-
jugate points and calculation of Maslov indices of a periodic
orbit. Finally, we present as an illustration some results in
Sec. III for two- and three-dimensional examples with regular
and chaotic dynamics.

II. THEORY

A. Maupertuis principle and the Jacobi metric

In this subsection, we recast the dynamical system theory
into a geometric formalism in which forces are made to can-
cel, and therefore motions are free, although constrained into
a Riemannian manifold called mechanical manifold (MM).

Classical mechanics can be formally derived from the
Maupertuis principle if a Lagrangian function is previously
defined in terms of generalized coordinates q and their veloc-
ities q̇i = dqi/dt as

L(q, q̇, t ) = T

(
qi,

dqi

dt

)
− V (q) = 1

2
ai j (q)

dqi

dt

dq j

dt
− V (q),

(2)
where T and V are the kinetic and potential functions, re-
spectively, and ai j is the mass matrix. Associating a covariant
vector of conjugate momenta p with the Lagrangian L,

pi ←→ ail
dql

dt
= ∂L(q, q̇, t )

∂ q̇i
, (3)

Maupertuis principle establishes that natural motions take
place only along those trajectories, γ , making stationary the
action integral,

A =
∫

γ (t )
pi dqi =

∫
γ (t )

∂L

∂ q̇i
q̇i dt =

∫
γ (t )

2T dt, (4)

where T is assumed to depend quadratically on p. For con-
servative systems E = T + V , this principle is expressed as

δA = δ

∫
γ (t )

√
2[E − V (q)] ai j (q) q̇iq̇ j dt = 0. (5)

Now, defining (M, gJ ) as the MM with q =
(q1, q2, . . . , qN ) ∈ M and E = constant energy, with the
metric gJ , called the Jacobi metric, expressed in coordinates
as

gJ = gi j (q) = 2[E − V (q)] ai j (q), (6)

the trajectories fulfilling the previous principle are the
geodesic lines for this metric, i.e.,

δA = δ

∫
γ (s)

ds = 0, (7)

where s is the arc-length given by

ds = 2[E − V (q)] dt . (8)

In this setup, natural motions are interpreted as geodesic
lines in MM, and the dynamical magnitudes can be associated
with geometric ones. In Table I, we present the equivalence
among some relevant such dynamical and geometrodynamic
magnitudes in classical mechanics.
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TABLE I. Equivalence among some relevant magnitudes in dy-
namics and geometrodynamics in classical mechanics.

Dynamics Geometrodynamics

Time, t Arc length, s
Potential, V Metric, gi j

Force, −∂V Christoffel symbols, −�i
jk

Trajectories Geodesics
Conserved quantities Symmetries
Stability Curvature

Furthermore, the geodesic lines fulfill the relation ∇γ̇ γ̇ =
0 (where ∇ is the Riemannian connection for gi j), which in
terms of local coordinates is written as

∇γ̇ γ̇ = d2qi

ds2
+ �i

jk

dq j

ds

dqk

ds
= 0, (9)

where �i
jk are the so-called Christoffel symbols for the metric

gi j and s the arc-length parameter. Changing to parameter t ,
i.e., q̇i = dqi/dt , Eq. (9) transforms into

q̈i + �̃i
jk q̇ j q̇k = −∂lVail , (10)

the Euler-Lagrange equations, where �̃i
jk are the so-called

Christoffel symbols for the metric ai j (q), and then trajectories
under the potential V (q) in the coordinates space with metric
ai j (q) are transformed into geodesic lines in MM.

Let us remark that the integral in the left-hand side of the
EBK quantization rule (1) equals the expression for the action
A in the Maupertuis principle (4). This indicates that action is
relevant in both classical and quantum theory [55]. Moreover,
the quantization for the total action S along a periodic orbit is
equivalent to quantize its length with the Jacobi metric (6).

B. Jacobi-Levi-Civita equation

Let us now consider the laws governing the dispersion
of geodesic lines which are close to a reference one. This
spreading is directly related with the curvature of the MM, and
it has been used by us in the past to define new descriptors for
chaotic behavior in Hamiltonian systems [52,53].

The sectional curvature R(P, σ ) at point P ∈ M, where
σ ⊂ TPM is the tangent plane to the Riemannian mani-
fold M at this point, determines the geodesic dispersion at
P, initially tangent to M. In the two-dimensional case, R
corresponds to the Gaussian curvature. We introduce now
the Riemann-Christoffel curvature tensor R(X, Y) : TPM −→
TPM, defined as

R(X, Y)Z = ∇Y∇XZ − ∇X∇YZ + ∇[X,Y]Z, (11)

with X, Y, Z ∈ TPM, and ∇ the Riemannian connection for
gi j . This curvature tensor can be written in a local chart with
a canonical basis {ei} (see schematic diagram in Fig. 1), as

R(ek, el )em = Ri
klmei, with

Ri
klm = ∂�i

km

∂xl
− ∂�i

kl

∂xm
+ �i

ls�
s
km − �i

ms�
s
kl , (12)

where �i
km is the Christoffel symbols for the metric gi j . The

evolution of the dispersion of the geodesic flow, J(s), along

FIG. 1. Canonical basis {e1, e2} (black) in polar coordinates and
parallelly transported comoving basis {e(1), e(2)} (red) at two different
points along a geodesic (blue). See the text for details.

a reference geodesic line γ (s) in M, γ : s ∈ [0, a] → M (see
schematic diagram in Fig. 2), is governed by the JLC equa-
tion (also known as the Jacobi equation),

D2J
ds2

+ R[γ̇ (s), J(s)] γ̇ (s) = 0, (13)

where D/ds is the covariant derivative relative to the Rieman-
nian manifold MM, γ̇ (s) = dq/ds, and ds is the arc-length
differential. In local coordinates this expression reads

D2Ji

ds2
= −Ri

jkl γ̇
j γ̇ l Jk = −Si

jJ
j, (14)

where Si
j is the stability tensor.

Finally, expression (14) can be conveniently written in
terms of a comoving frame {ei

(α)}, which is assumed or-

thonormal, i.e., gi j (q) ei
(a)e

j
(b) = δab, moving parallel along

the reference geodesic line γ (s) (as shown schematically for
the two-dimensional case in Fig. 1). This comoving basis can
be expressed in terms of the canonical basis derived from the
local chart as

e(i) = e j
(i)e j, i = 1, 2, . . . , N, (15)

FIG. 2. Evolution of J along the reference geodesic, projected
over the parallely transported comoving basis {e(1), e(1)}. See the text
for details.
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where De(i)/ds = 0 (parallelly transported) is given in local
coordinates by

[
deα

(i)

dt
+ eμ

(i)�
α
μβ

dqβ

dt

]
eα = 0. (16)

Let us remark that the local evolution of the eα
(i) compo-

nents of the new comoving basis can be approximated by
Taylor expansion as

eα
(i)|t = eα

(i)|t0 − eμ
(i)�

α
μβ

dqβ

dt

∣∣∣∣
t0

(t − t0) + O(t − t0)2, (17)

taking the vector tangent to the reference geodesic line
e(1)(s) = γ̇ (s) as the first one in the comoving basis.

Let us next derive specific expressions for the two- and
three-dimensional cases.

1. The JLC equation for the two-dimensional case

For the two-dimensional case, N = 2, the new comoving
basis in terms of the canonical one reads

e(1)(s) = γ̇ 1(s) e1(s) + γ̇ 2(s) e2(s),

e(2)(s) =
√

a22/a11γ̇
2 e1(s) −

√
a11/a22γ̇

1 e2(s). (18)

In this comoving frame {e(1), e(2)}, J(s) is expressed as
J(s) = Ji(s)e(i)(s), i = 1, 2, as shown in Fig. 2, and therefore
the JLC equation (13) with v = γ̇ reads⎛
⎜⎜⎝

d2J1

ds2

d2J2

ds2

⎞
⎟⎟⎠+

[〈R(v, e(1) )v, e(1)〉 〈R(v, e(2) )v, e(1)〉
〈R(v, e(1) )v, e(2)〉 〈R(v, e(2) )v, e(2)〉

](
J1

J2

)
= 0,

(19)
where 〈, 〉 is the scalar product and 〈ei, e j〉 = gi j the metric
coefficients. If v = e(1) = γ̇ and considering the symmetries
of the curvature tensor, i.e., 〈R(ei, e j )ek, el〉 = Ri jkl = Rkli j =
−Rjikl = −Ri jlk , then Eq. (19) can be diagonalized, obtaining

⎛
⎜⎜⎝

d2J1

ds2

d2J2

ds2

⎞
⎟⎟⎠+

[
0 0
0 〈R(e(1), e(2) )e(1), e(2)〉

](
J1

J2

)
= 0, (20)

where the comoving basis representing the stability tensor
eigenvectors differ from the N-dimensional general case.
Now, by considering the relation

|e(1) ∧ e(2)| = √|e(2)||e(2)| − 〈e(1), e(2)〉 = 1, (21)

where ∧ represents the dot product, we have

〈R(e(1), e(2) )e(1), e(2)〉 = 〈R(e(1), e(2) )e(1), e(2)〉
|e(1) ∧ e(2)|2

= K (e(1), e(2) ) ≡ K (σ ), (22)

where K (σ ) is the sectional curvature corresponding to the
plane σ generated by e(1) and e(2) at γ (s), and then Eq. (22)

can be expressed as

K (σ ) = K (e(1), e(2) ) = Rl jhkel
(1)e

h
(1)e

j
(2)e

k
(2)

(glhg jk − glkg jh)el
(1)e

h
(1)e

j
(2)e

k
(2)

= 1

|gi j |R1212 = R̂

2
, (23)

where K (σ ) is the scalar (Gaussian) curvature. Now Eq. (19)
can be written as

d2J1

ds2
= 0,

d2J2

ds2
= −R1212

|gi j | J2 = − R̂(s)

2
J2. (24)

The evolution of J1 is linear, and stability is ruled by the
scalar J2 (referred as J) along the reference geodesic, whose
evolution with t is given by

d2J

dt2
− 1

W

dW

dt

dJ

dt
+ 2W 2R̂J = 0, (25)

with 2W = 2[E − V (q)] = 2T and where the scalar curvature
R̂/2 determines the local stability around the reference trajec-
tory,

R̂ = 2R̃ + (N − 1)

8W 3
{4W ∇2V + (6 − N )|∇V |2}, (26)

with R̃ the scalar curvature for the metric ai j (q), |∇V |2 =
ai j∂iV ∂ jV , and ∇2 the Laplacian-Beltrami operator

∇2V = ai j∇i∇ jV = ai j

(
∂2V

∂xi∂x j
− �̃k

ji

∂V

∂xk

)
, (27)

where �̃k
ji is the Christoffel symbols for ai j (q).

2. The JLC equation for the three-dimensional case

Similarly for the case with N = 3 and the comoving basis
set, {e(1), e(2), e(3)}, the Riemann-Christoffel curvature tensor
(12) components now read

〈R(e(1), e(m) )e(1), e(n)〉 = Rl jhkel
(1)e

j
(m)e

h
(1)e

k
(n)

= R1212
{[

e1
(1)e

2
(m) − e2

(1)e
1
(m)

][
e1

(1)e
2
(n) − e2

(1)e
1
(n)

]}
+ R1213

{[
e1

(1)e
2
(m) − e2

(1)e
1
(m)

][
e1

(1)e
3
(n) − e3

(1)e
1
(n)

]}
+ R1213

{[
e1

(1)e
2
(n) − e2

(1)e
1
(n)

][
e1

(1)e
3
(m) − e3

(1)e
1
(m)

]}
+ R1223

{[
e1

(1)e
2
(m) − e2

(1)e
1
(m)

][
e2

(1)e
3
(n) − e3

(1)e
2
(n)

]}
+ R1223

{[
e1

(1)e
2
(n) − e2

(1)e
1
(n)

][
e2

(1)e
3
(m) − e3

(1)e
2
(m)

]}
+ R1313

{[
e1

(1)e
2
(m) − e2

(1)e
1
(m)

][
e2

(1)e
3
(n) − e3

(1)e
2
(n)

]}
+ R1323

{[
e1

(1)e
3
(m) − e3

(1)e
1
(m)

][
e1

(1)e
3
(n) − e3

(1)e
2
(n)

]}
+ R1323

{[
e1

(1)e
3
(n) − e3

(1)e
1
(n)

][
e2

(1)e
3
(m) − e3

(1)e
2
(m)

]}
+ R2323

{[
e2

(1)e
3
(m) − e3

(1)e
2
(m)

][
e2

(1)e
3
(n) − e3

(1)e
2
(n)

]}
, (28)

and taking γ̇ (s) = v = e(1) the JLC equation (13) is

d2J
ds2

+ S J = 0 (29)
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with the stability matrix S

S =
⎡
⎣0 0 0

0 〈R(e(1), e(2) )e(1), e(2)〉 〈R(e(1), e(3) )e(1), e(2)〉
0 〈R(e(1), e(2) )e(1), e(3)〉 〈R(e(1), e(3) )e(1), e(3)〉

⎤
⎦.

(30)
With the sectional curvatures 〈R(e(1), e(2) )e(1), e(2)〉 and
〈R(e(1), e(3) )e(1), e(3)〉 in the diagonal.

C. Conjugate points and Maslov indices

In this subsection, we consider the points where singular-
ities in the variational principle (7) occur along a reference
geodesic, which are known as conjugate or focal points. One
interesting consequence of these singularities is that conju-
gate points tell when geodesics fail to be length minimizing.
Actually, all geodesics are locally, but not globally, length
minimizing.

Indeed, when the dynamics of the system is integrable, so
that motions take place in phase space on the surface of invari-
ant tori [7], the corresponding set of points in configuration
space, known as the caustics of the system [56], constitutes
a sort of limiting set for the trajectories [57]. In the optical
or eikonal version, i.e., when light rays are considered, these
neighborhoods present interesting accumulations [56] of rays,
showing a variety of different characteristics, which are ac-
counted for by catastrophe theory [14,15]. On the other hand,
when the dynamics is ergodic, all periodic orbits are unsta-
ble and isolated, but nevertheless they constitute an skeleton
for the classical chaos, through the associated homoclinic
and heteroclinic tangles, as shown by Poincaré [7] and also
by Gutzwiller [20] in quantum mechanics. Moreover, these
indices are related to the probability density accumulations
emerging in the projection over the coordinate space correlat-
ing with turning points and caustics located at the conjugate
points [16].

Taking into account our purpose in this section, we start
with the following definitions:

(1) Let γ : [0, a] �−→ M be a geodesic line, the point Q =
γ (t1) with t1 ∈ (0, a] is conjugate to another point P = γ (0)
if there exists a vector field J along γ fulfilling the JLC
equation (13) (Jacobi field) such that J(0) = 0 = J(t1).

(2) The maximum number of such Jacobi fields linearly
independent is called the multiplicity of the conjugate point
γ (t1). Taking into account that J = γ̇ is a Jacobi field along γ

that never vanishes, so the multiplicity never exceeds N − 1.
In order to find the conjugate points along a reference

geodesic line, we need to follow the evolution of the modulus
‖J‖, with

‖J‖2 = 〈J, J〉 = gi jJ
iJ j, (31)

integrating the JLC equation (13) together with the corre-
sponding Hamilton equations, to find out the points where it
cancels.

In this case, instead of using the previously defined
parallely transported comoving frame {e(1), e(2)}, a better
alternative is to use the comoving frame {eT , eJ}, where

eT is the vector tangent to the geodesic line and eJ the vector
pointing in the direction of J, i.e., J = ‖J‖ eJ . Obviously,
DeT /ds = 0 but DeJ/ds does not necessarily cancel, since its
evolution depends on the dynamics, and in general it is not
parallelly transported. In any case, when ‖eJ‖ = ‖eT ‖ = 1,
the evolution for ‖J‖ is given by

d2

ds2
‖J‖ =

[
−〈R(eT , eJ )eT , eJ〉 +

∥∥∥ D

ds
eJ

∥∥∥2
]
‖J‖, (32)

where 〈R(eT , eJ )eT , eJ〉 = 〈R(eT , J/‖J‖)eT , J/‖J‖〉 =
K (eT , eJ ) = K (s) is the sectional curvature at the plane
generated by eT and eJ . Moreover, in local coordinates

K (s) =
〈
R

(
eT ,

J
‖J‖

)
eT ,

J
‖J‖

〉

= Ri jkl
Ji

‖J‖
dq j

ds

Jk

‖J‖
dql

ds
(33)

and

d2‖J‖
ds2

=
(

−Ri jkl
Ji

‖J‖
dq j

ds

Jk

‖J‖
dql

ds
+
∥∥∥∥ D

ds
eJ

∥∥∥∥
2
)

‖J‖. (34)

The above referenced integration is repeated for the N − 1
linearly independent vectors (recall definition 2) initially at
the point γ (0), except for the Jacobi field J = γ̇ .

Considering these vectors as initial conditions for the sep-
aration vector J(t ) to integrate the Jacobi equation Eq. (13) or
Eq. (34), so that each Jacobi field found with J(0) = J(t1) = 0
increases one unit the multiplicity of the conjugate point γ (t1).
Notice that there are traversal and longitudinal contributions
to the Maslov index determined by the conjugate points and
the turning points, respectively.

Calling m
 the multiplicity for the conjugate point 
 fulfill-
ing 0 � m
 � N − 1, we can calculate de Maslov index μγ

for the periodic orbit γ (t ) with the expression

μγ =
∑




m
 + P, (35)

where P is the total turning points along the orbit during one
period. The extra contribution P in (35) needs to be added
because of the singularity in the Jacobi equation (13) when the
trajectory velocity nullifies, i.e., γ̇ = 0, something that occurs
at the turning points and the orbit turns back on itself [see, for
example, Figs. 9(a), 9(b), 9(d), and 9(f) below].

III. NUMERICAL RESULTS

A. Two-dimensional quartic oscillator

Let us consider next the use of the geometrodynamic
method in the quantization of the two-dimensional coupled
quartic oscillator of unit mass

H (px, py, x, y) = 1

2

(
p2

x + p2
y

)+ (1 − α)

12
(x4 + y4) + 1

2
x2y2.

(36)
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FIG. 3. Composite Poincaré surface of section corresponding
to the sectioning surface (x = 0, px > 0) at E = 1 showing the
phase-space structure for the two-dimensional quartic oscillator (36)
with α = 0. As can be seen, it consists of invariant tori centered
around the two fixed points located at (x = 0, px = ±1) (marked in
green) which correspond to the diagonal periodic orbits y = ±x [see
Fig. 4(a)], plus an infinite number of other fixed points on the py = 0
line, nine of which have been marked in green and correspond to the
elliptically shaped periodic orbits shown in Figs. 4(b)–4(e).

We take α � 1, since otherwise the motion is unbounded, as
easily ascertain expressing the potential in polar coordinates:
V (r, θ ) = r4[1 − α + 2(2 + α) cos2 θ sin2 θ ]/12. The quartic
oscillator (36) is known to be highly chaotic for most val-
ues of the parameter α and integrable only for α = −2
(central potential) and α = 0 [58] (as graphically shown in
Fig. 3). Moreover, the quartic potential has a high symmetry
corresponding to the point group C4v , and very interesting
properties derived from fact that they are a homogeneous
polynomial in coordinates and momenta. Indeed, for this
reason it exhibits mechanical similarity, i.e., trajectories at
different values of the energy are related by

x′(t ′) = η x(t ), p′
x(t ′) = η2 px(t )

y′(t ′) = η y(t ), p′
y(t ′) = η2 py(t ), (37)

where time an action are scaled as

t ′ = η−1t, with η =
(

E ′

E

)1/4

, (38)

S′(t ′) = η3S(t ). (39)

and then the phase-space structure is invariant with energy.
Accordingly, we perform in this section all calculations at
E = 1 without loss of generality. Also, as mentioned before
the quantization for the total action S along a given orbit is
equivalent to quantize its length with the Jacobi metric (6), so
for different energies the lengths for orbits follow the same
relation (39).

With respect to the Jacobi equation (24) with ai j = δi j the
corresponding curvature, calculated as indicated in (26), is

FIG. 4. Trajectories associated to the fixed points marked in
green in Fig. 3 corresponding to the α = 0 regular case of the coupled
quartic oscillator (36). The location of the existing conjugate points
are marked with black dots. The isopotential V = 1 curve has been
added in blue.

given by [59]

R̂ = 1

2W 3

{[
xy2 + x3

(
1 − α

3

)]2

+
[

yx2 + y3

(
1 − α

3

)]2

+ W (2 − α)(x2 + y2)

}
. (40)

1. Integrable case

First, we consider the integrable case corresponding to
α = 0. In Fig. 3 we present a phase-space view consisting
of the (y, py) composite Poincaré surface of section (PSOS),
taking (x = 0, px > 0) as the sectioning surface. As can be
seen, it consists of invariant tori, i.e., quasiperiodic trajecto-
ries, around the two elliptic fixed points at (y = 0, py = ±1)
which correspond to the diagonal periodic orbits y = ±x rep-
resented in Fig. 4(a). The central horizontal line at py = 0
is filled with the fixed points of an infinite family of ellipti-
cally shaped periodic orbits, five of which are represented in
Figs. 4(a)–4(e); they can be traveled either clock (px > 0) or
anticlockwise (px < 0). The corresponding nine (taking into

064213-6



GEOMETRODYNAMIC APPROACH TO CONJUGATE POINTS … PHYSICAL REVIEW E 106, 064213 (2022)

FIG. 5. Evolution of J2 (red) along one of the elliptically shaped
periodic orbit (green) on the py = 0 line In Fig. 4 showing four conju-
gate points (black) at the locations where J2 nullyfies. The comoving
frame {e(1), e(2)} at three selected points along the trajectory is also
shown.

account the px ↔ −px) fixed points have also been marked
in green in Fig. 3. In this case, the length considering the
Jacobi metric for all periodic orbits is constant and is equal to
9.2021, as it is also equal to the value of the action S along one
period. Superimposed to the orbits we have plotted in black in
Fig. 4 the location of the four [two in the case of orbits in
Figs. 4(a), 4(b), and 4(f)] corresponding conjugate points that
appear when these orbits are traveled clockwise, indicating
that μ = 4, 2 in this case.

To analyze in more detail the results concerning the con-
jugate points, we present in Fig. 5 in red the evolution of the
separation vector component J2 along one of the elliptically
shaped periodic orbit on the py = 0 line In Fig. 4, plotting also
superimposed the comoving frame {e(1), e(2)} at three selected
points of the trajectory. As can be seen, the conjugate points
are located at the points of the orbit where the modulus of
the vector separation [see Eq. (34)] nullifies. More quantita-
tive details are given in Fig. 6, where a comparison of the
values of three relevant physical magnitudes (in logarithmic
scale), namely the separation vector (red), the scalar curvature
(green), and the kinetic energy (blue), along the orbit as a
function of its x coordinate is presented. In it, it is observed
that the curvature and the kinetic energy behave inversely, as
expected from Eq. (40).

Finally, notice in Fig. 4 how the location of the conju-
gate points move along the orbits in a continuous fashion
as the horizontal (or vertical) periodic orbit is approached.
Actually, the associated locus equation in phase space can be
analytically calculated, as it is equal to

1

2
p2

x + 1

12
x4 = 1, (41)

which is homeomorphic to S1. Accordingly, its projection on
the coordinates space is one dimensional with two turning
points, implying that the Maslov index is μ = P = 2. This
change in the value for the Maslov index results from the
change of topology for the orbit in the invariant torus. The

FIG. 6. Evolution of J2 (red), scalar curvature (green), and ki-
netic energy (blue) in a decimal logarithmic scale for the trajectory
in Fig. 5 as a function of its x coordinate.

same happens for the independent (nonhomotopic) vertical
orbit

Let us next consider the case of the quasiperiodic trajec-
tories in order to study the caustics of this problem. For this
purpose, we present in Fig. 7(a) a representative quasiperiodic
trajectory with initial conditions close to the diagonal orbit,
i.e., (x, px, y, py )0 = (0, 0, 1.22, 0.7). The associated PSOS
is presented in Fig. 7(b). As can be seen in the first panel,
the corresponding conjugate points (superimposed in black)
form a continuous line in the coordinate space that will give

FIG. 7. Caustics and conjugate points for regular quasiperiodic
trajectories. (a) Generic quasiperiodic trajectory near the diagonal
periodic orbit y = x, and (b) associated Poincaré surface of sec-
tion for the regular coupled quartic oscillator (36) with α = 0; the
upper-right and lower-left caustic clearly emerge from the computed
conjugate points. (c) A similar trajectory with almost equal action in
both modes showing the full square caustics; some conjugate points
inside the Hill’s region are visible. (d) Same as (c) computed with
10 000 trajectories initially launches along the vertical trajectory with
px > 0.
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FIG. 8. Same as Fig. 3 for α = 0.97 showing the chaotic nature
of the corresponding dynamics.

rise to the full caustics if the elapsed time were sufficiently
long. In Fig. 7(c) we show such longer picture for a tra-
jectory having similar actions in the x and y motions. In
this case the initial condition is close to the horizontal orbit,
i.e., (0,0,1.4133,0.05). In it, we can see that the caustics are
better defined, reaching the four sides of the square border
accessible to the orbit. Actually, for this long dynamics we
also see a cloud of points inside the Hill’s region, since these

FIG. 9. Selected unstable periodic orbits (green) for E = 1 and
their Hill’s region border [V (q) = E ] (blue) with their conjugate
points (black) for quartic oscillator with α = 0.97.

TABLE II. Period, action, sum of multiplicities of the conjugate
points, number of turning points, and Maslov index for the unstable
periodic orbits of Fig. 9. See text for details.

PO T S
∑


 m
 P μ

a 6.2216 8.2937 0 2 2
b 10.6899 14.2519 4 2 6
c 7.8432 10.4568 4 0 4
d 14.3738 19.1629 8 2 10
e 7.8432 25.0018 12 0 12
f 16.583 22.1111 14 2 16

mathematical objects usually exhibit a complex geometry. To
give an idea of the caustics complexity for this system and the
hidden structures that it contains, we also present in Fig. 7(d)
the results obtained from 10 000 randomly chosen trajectories
with different initial conditions along the vertical y axis and
perpendicular to it, i.e., traveling clockwise. The complexity
of the curve formed by the conjugate points is very high, and
certainly outside the scope of the present work, so we defer its
study to a future publication.

However, the important point concerning caustics in rela-
tion with this paper is quantization. In this respect, caustics are
important, because they can be used to define the torus circuits
needed to compute the action appearing in Eq. (1). For this
purpose, we could employ, for example, the method described
in Ref. [60], and use a quasiperiodic trajectory that almost
return to the initial point in phase space after Nx periods in
the x coordinate and Ny in y, thus obtaining

S(Enx,ny ) = 2π (Nxnx + Nyny) + π (Nx + Ny), (42)

where nx and ny are the corresponding quantum numbers and
taking into account that, in this case, μx = μy = 1/2.

2. Chaotic case

Let us consider now the chaotic case corresponding to α =
0.97. As can be seen in the corresponding PSOS, shown in
Fig. 8, the dynamics is highly chaotic [61] and most periodic

FIG. 10. Same as Fig. 5 for the unstable periodic orbit in Fig. 9(c).
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FIG. 11. Same as Fig. 6 for the unstable periodic orbit in
Fig. 10(c).

orbits are unstable and isolated [58]. Accordingly, we have se-
lected six of them among the most representative [17], which
are shown in Fig. 9. The corresponding conjugate points have
been represented superimposed, and their principal dynamical
characteristics in connection to quantization, for example to
calculate scarred functions [17], have been summarized in
Table II. As can be seen the number of conjugate points varies
from just two at the turning points for the diagonal orbit, to 16
for the apparently simple horizontal one.

To study in more detail the location of the conjugate points
we present in Fig. 9 six unstable periodic orbits with their
conjugate points. Specially interesting are the self-retracing
ones in Figs. 9(a), 9(b), 9(d), and 9(f), causing two turning
points to appear at the Hill’s border with the contribution of
P = 2 in expression (35). In Figs. 10 and 12 the evolution
for the separation vector component J2 along two of them
is presented, where the comoving frame {e(1), e(2)} at differ-
ent points along the trajectory has also been included. Also,
in Figs. 11 and 13, we compare three relevant magnitudes,
namely the separation vector, the scalar curvature, and the
kinetic energy as a function of the x coordinate of the position

FIG. 12. Same as Fig. 5 for the unstable periodic orbit in Fig. 9(b).

FIG. 13. Same as Fig. 6 for the unstable periodic orbit in
Fig. 12(b).

along the orbit presented in Figs. 10 and 12 measured in a
logarithmic scale.

B. Hydrogen atom

To conclude this section, we discuss the application of
the geometrodynamic method to the hydrogen atom, a three-
dimensional problem that as discussed in the Introduction
played an important role in the development of the quantum
theory [1]. The corresponding dynamics is separable with a
central Coulomb potential,

V (r) = −e2

r
. (43)

In the phase space the Hamiltonian in spherical coordinates
(r, φ, θ ) reads

H (r, φ, θ, pr, pφ, pθ )

= 1

2me

(
p2

r + 1

r2
p2

φ + 1

r2 sin2 φ
p2

θ

)
− e2

r
. (44)

The Jacobi metric expression (6) for the MM is then

gi j (r, φ, θ ) = 2me

(
E + e2

r

)⎛⎝1 0 0
0 r2 0
0 0 r2 sin2 φ

⎞
⎠. (45)

The non-null Christoffel symbols are

�r
rr = − e2

2r(Er + e2)
,

�r
φφ = − r(2Er + e2)

2(Er + e2)
= �r

θθ

sin2 φ
,

�
φ

rφ = Er + (e2/2)

r(Er + e2)
= �

φ

φr = �θ
rθ = �θ

θr,

�
φ

θθ = − 1
2 sin (2φ),

�θ
φθ = 1

tan φ
= �θ

θφ, (46)
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and the geodesic lines fulfill

d2r

ds2
− e2

2r(Er + e2)

(
dr

ds

)2

− r(2Er + e2)

2(Er + e2)

[(
dφ

ds

)2

+ sin2 φ

(
dθ

ds

)2
]

= 0,

d2φ

ds2
+ 2

Er + e2

2

r(Er + e2)

dr

ds

dφ

ds
− 1

2
sin (2φ)

(
dθ

ds

)2

= 0,

d2θ

ds2
+ 2

Er + e2

2

r(Er + e2)

dr

ds

dθ

ds
+ 2

tan φ

dφ

ds

dθ

ds
= 0. (47)

As deduced from the geodesic equations (47) any geodesic
line corresponding to the circular orbit γ fulfills the con-
dition E = V/2 = −e2/(2r) (virial theorem) with E < 0, or
r = −e2/(2E ), that in polar coordinates read

r(t ) = r,

φ(t ) = t, 0 � t � 2π, (48)

θ (t ) = θ0, θ0 ∈ (0, 2π ],

We consider the comoving basis {e(1), e(2), e(3)}

e(1) = λ1eφ = 1√
e2mer

eφ

e(2) = λ2er = r√
e2mer

er

e(3) = λ3

sin φ
eθ = 1

sin φ
√

e2mer
eθ , (49)

and the sectional curvatures appearing in the stability matrix
(30) for the JLC equation (29),

K (e(1), e(2) ) = R1212

g22g11 − g2
12

= 1

e2mer

K (e(1), e(3) ) = R2323

g22g33 − g2
23

= 1

e2mer
. (50)

Therefore the form for the JLC equations (29) as a function
of the parameter t is

d2J1

dt2
= 0

d2J2

dt2
= − e2

mer3
J2

d2J3

dt2
= − e2

mer3
J3, (51)

with both sectional curvatures equal to K = e2/(mer3), that
for the circular orbit r = −e2/(2E ) reads K = −8E3/e4. Ac-
cordingly, the Jacobi fields are

Ji(t ) = sin(
√

Kt )√
K

w(t ), i = 1, 2, (52)

where w(t ) is the parallel field along the trajectory,
with Ji(0) = Ji(π

√
mer3/e) = 0, so that the antipodal point

γ (π
√

mer3/e) is a conjugate point for γ (0). The circular
orbits considered by Bohr for the hydrogen atom have no turn-
ing points, and there exist two different linearly independent

Jacobi fields, therefore the multiplicity is 2, and Eq. (35) for
Maslov index for these circular orbit asserts that

μ(E ) =
∑




m
 + P = 2 + 2 + 0 = 4. (53)

Considering the EBK quantization condition for the circular
trajectories γ (t ) = (−e2/(2E ), t, θ0) with t ∈ (0, 2π ], then
γ̇ (t ) = (0, 1, 0), we can calculate the length L with the Jacobi
metric (45)

‖γ̇ ‖2 = −2meE (0 1 0)

⎛
⎜⎜⎜⎜⎝

1 0 0

0
e4

4E2
0

0 0
e4

4E2
sin2 t

⎞
⎟⎟⎟⎟⎠
⎛
⎝0

1
0

⎞
⎠

(54)
and then

‖γ̇ ‖ =
√

−e4me

2E
, (55)

L =
∮

‖γ̇ (t )‖dt =
∮ √

−e4me

2E
dt = 2π

√
−e4me

2E
.

(56)

As the action S along the orbit during a period coincides with
its length in the MM, i.e., measured with Jacobi metric, the
quantization condition (1) with μ = 4 gives

√
−e4me

2E
2π = 2π h̄(n + 1), n = 0, 1, 2, . . . , (57)

and the quantized energies are

En = −e4me

2(n + 1)2h̄2 , n = 0, 1, 2, . . . , (58)

where the ground-state energy

E0 = −e4me

2h̄2 (59)
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and the orbit radius is

rn = (n + 1)2h̄2

e2me
= (n + 1)2a0, (60)

where r0 = a0 = h̄2

e2me
the Bohr radius.

IV. CONCLUSIONS AND DISCUSSION

In this work we have presented an original geometrical
method to compute the location of conjugate points of clas-
sical trajectories and calculate Maslov indices for periodic
orbits in conservative dynamical systems with quadratic (in
momenta) kinetic functions. We have showed that the method,
based on the classical Jacobi equation in the geometrody-
namic formalism, is coordinate independent and can easy
transferred among different systems and, moreover, general-
ized to any dimensionality. As an illustration, we have applied
the method for the two-dimensional coupled quartic oscillator
system, in both the integrable and chaotic regimes, and also

to the three-dimensional circular hydrogen atom, showing the
method gives correct results in all cases.

We emphasize the important role of the geometrodynamic
formalism as an invariant and fruitful way to investigate dy-
namical system. Actually, the present paper represents, in
some sense, a continuation of our previous work, in which we
defined new descriptors for the chaotic behavior in molecular
reactive systems using the same method.
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