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The dynamics across different scales in the stable atmospheric boundary layer has been investigated by means
of two metrics, based on instantaneous fractal dimensions and grounded in dynamical systems theory. The wind
velocity fluctuations obtained from data collected during the Cooperative Atmosphere-Surface Exchange Study–
1999 experiment were analyzed to provide a local (in terms of scales) and an instantaneous (in terms of time)
description of the fractal properties and predictability of the system. By analyzing the phase-space projections
of the continuous turbulent, intermittent, and radiative regimes, a progressive transformation, characterized
by the emergence of multiple low-dimensional clusters embedded in a high-dimensional shell and a two-lobe
mirror symmetrical structure of the inverse persistence, have been found. The phase space becomes increasingly
complex and anisotropic as the turbulent fluctuations become uncorrelated. The phase space is characterized
by a three-dimensional structure for the continuous turbulent samples in a range of scales compatible with
the inertial subrange, where the phase-space-filling turbulent fluctuations dominate the dynamics, and is low
dimensional in the other regimes. Moreover, lower-dimensional structures present a stronger persistence than
the higher-dimensional structures. Eventually, all samples recover a three-dimensional structure and higher
persistence level at large scales, far from the inertial subrange. The two metrics obtained in the analysis can
be considered as proxies for the decorrelation time and the local anisotropy in the turbulent flow.
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I. INTRODUCTION

The atmospheric boundary layer (ABL) connects the low-
est layer of the Earth’s atmosphere, the surface layer, to the
rest of the troposphere. Its dynamics is fundamental for the
transport and exchange of moisture, heat, and momentum with
the underlying surface [1–3]. Several studies have examined
turbulence in the ABL, showing that its structure can be
extremely. complex and characterized by multiscale fluctua-
tions [4,5], with turbulent eddies ranging from mesoscales,
L ∈ [102, 103] m, related to the instability of the mean flow
shear, and buoyancy effects [6–11], down to smaller scales,
L ∈ [10−2, 102] m, related to the energy-cascade process or
fine-scale turbulent bursts [6,10,12–14]. Since the ABL is
characterized by continuous thickness modulation over time,
all physical quantities related to the flow are subject to large-
amplitude fluctuations, due to strong vertical mixing [15,16].
The nocturnal ABL is characterized by terrain-following
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flows and stable thermal stratification, responsible for the
formation of a stable boundary layer (SBL) [1,17,18]. The
net radiative cooling of the ground surface induces a vertical
temperature gradient, associated with heat transfer from the
ABL to the terrain surface. This cools down the fluid, with the
consequent formation of a stable stratified inversion layer.

Understanding the nature of the statistical properties of
turbulence under realistic conditions is essential for techno-
logical and environmental applications, as well as for multiple
experiments [9,19–21]. Numerical simulations [22–25] have
been performed to investigate the characteristics of turbu-
lence in the SBL. However, disentangling the scale-dependent
features of the flow (i.e., “local” properties) remains a
challenging task. In particular, one of the fundamental require-
ments for developing a comprehensive theoretical framework
of the SBL dynamics is to identify a scale-dependent dy-
namical transition, namely a clear cutoff threshold in the
superposition of the fast and slow dynamics of the nonlinear
and nonstationary SBL turbulent flow.

Due to their complexity, the analysis of these systems
has been focused on features shared by a large class of
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phenomena, regardless of the details of their fine structure.
In fact, the ABL can be described as a chaotic dynamical sys-
tem displaying recurrent large-scale configurations [26–30].
Recently, such configurations have been investigated using
an approach described by two metrics related to the local
dimension and to the local persistence in the phase space (PS)
[31,32]. Here such concepts have been applied to the different
dynamical regimes of the nocturnal SBL, observed during
the Cooperative Atmosphere-Surface Exchange Study–1999
(CASES-99) experiment [9,33–37], with particular focus on
understanding the different turbulent behaviors observed in
the SBL. Following the classical Kolmogorov description of
turbulent fluctuations [38], the two dynamical metrics have
been used to characterize the scale-by-scale dynamics over
a wide range of scales, spanning from the inertial subrange,
where the dynamics are characterized by the so-called energy
cascade, up to larger scales, where the energy injection in
the cascade occurs. Our results show the existence of a low-
dimensional dynamics embedded in a high-dimensional shell.
As we will see, while the former is characterized by a three-
dimensional structure across the inertial subrange, the latter
presents higher-dimensional structures with an increased level
of persistence.

II. COOPERATIVE ATMOSPHERE-SURFACE
EXCHANGE STUDY–1999

All experimental samples used in this work were collected
during the period from 10/01/1999 to 10/31/1999 in Kansas,
USA (37.6◦N, 96.7◦E), on a homogeneous, flat area, making
it an ideal site for investigating the atmospheric SBL. Accord-
ing to the Wichita National Weather Service and Argonne
Boundary Layer Experiment, nights in October tend to be
characterized by clear skies and light near-surface flow, thus
contributing to SBL development [33]. The measurements
are collected by a cluster of probes consisting of a central
meteorological tower and six satellite stations located within
a 600-m diameter to resolve the turbulence and the mean flow.
The probes are three-dimensional (3D) sonic anemometers
and temperature sensors, located at seven different heights
above the surface for the central tower and at fixed height of
5 m for the satellite towers [33]. All measurements refer to
the stationary regime observed within 00:00:00 → 06:00:00
in local standard time (LST). In this study, we used high-
frequency observations (with sampling time �t = 0.05 s),
of the three wind velocity components Ui(t ) (where i

.=
{u(t ), v(t ), w(t )}) and of the temperature T (t ), collected by
the six satellite towers.

In order to characterize the turbulence within the SBL,
the nondimensional ratio ζ/L is used as an indicator of the
atmospheric stability [39,40], where L = −ρCpTu3

�/κgH is
the Monin-Obukhov length scale (ρ being the density of air
at temperature T , Cp the specific heat capacity at constant
pressure, u� the friction velocity, κ � 0.4 the Von Kármán
constant, and H the surface turbulent heat flux) and ζ is
the height above the ground or in terms of the Richardson
number Ri [40–42]. However, it should be noted that accu-
rately estimating the atmospheric stability is still considered
a challenging task [43–45]. Here the SBL behavior is de-
fined according to the dynamical stability indicator � [8,46],

based on a set of simplified model equations for the pressure
gradient and isothermal net radiation. In particular, � � 1
represents nonintermittent behavior, while � < 1 represents
the intermittent cases.

The CASES-99 samples used in this work can be classified
into three main groups and one transient category, accord-
ing to the � classification [47]: (i) radiative nights [low
energy transport through the atmosphere by the turbulence,
see Fig. 1 (top panels)]; (ii) continuous turbulent nights (large
conductive heat flux H due to strong radiative surface cooling,
Qnet, in combination with strong turbulent mixing u�, see
Fig. 1(middle panels); and (iii) intermittent nights [irregular
repetition of short turbulent bursts with different amplitude
generated by local shear effects, Fig. 1 (bottom panels)]. The
relevant values of friction velocity u�, conductive heat flux
from the Earth’s surface to the atmosphere H , net radiation
Qnet, and latent heat fluxes LvE , are listed in Table I. All
samples that present mixed properties of the three main groups
(e.g., collapse of turbulence with strong variations or modula-
tions in u� and H) are tagged as transient.

Figure 1 shows the velocity component U1(t ) and
the associated temperature T (t ) for three 1-h subsamples
(00:00:00 → 01:00:00 LST), 10/14/1999, 10/15/1999, and
10/18/1999, depicting the three distinct regimes of the SBL:
radiative, continuous turbulent, and intermittent, respectively.
The Taylor’s frozen hypothesis [1,48] is verified for all data
(Ti ≈ 20%).

As customary in turbulence studies, the nondimensional
power spectral density (PSD) SUi for a 2-h subset extracted
from sample 10/15/1999 in the continuous turbulent regime
(00:00:00 → 02:00:00 LST) is shown in Fig. 2, with the as-
sociated Von Kármán spectrum [49,50] superimposed (solid
line):

f SU1 ( f )

σ 2
U1

= 4 fL(
1 + 70.8 f 2

L

)5/6 , (1)

f SU2,3 ( f )

σ 2
U2,3

= 4 fL
(
1 + 755.2 f 2

L

)
(
1 + 283.2 f 2

L

)11/6 , (2)

where fL = f LUi〈Ui〉−1 represents the nondimensional fre-
quency; LUi is the turbulence integral length scale in the
longitudinal, lateral, and vertical directions; and σ 2

Ui
is the

variance of the ith velocity component. The small differences
in the range of fL are due to the slightly different 〈Ui〉 and
LUi , which are both sample dependent. In terms of similarity
theory [51], a spectral relation (experiments indicating an
energy cascade valid in the inertial subrange for fL > 0.2
[50,52], with no information on its upper limit) takes the form
f SUi ( f )σ−2

Ui
∼ f −2/3 [38,53,54], which is plotted for compar-

ison as a dashed line in all panels of Fig. 2.

III. SCALE-DEPENDENT PROPERTIES OF THE STABLE
BOUNDARY LAYER: INSTANTANEOUS AND LOCAL

DYNAMICS

A. Velocity fluctuations and large-scale decorrelation

Following the K41 phenomenology [38], multiscale anal-
ysis has been performed on the classical field increments at
scale 	, defined as δUi(	) = Ui(t + 	) − Ui(t ) [55–59]. For
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FIG. 1. Left column: Temporal evolution of a 1-h subset of the temperature T (t ) for the three different regimes observed for the SBL:
radiative (10/14/1999, upper panel), continuous turbulent (10/15/1999, center panel), and intermittent (10/18/1999, lower panel); all samples
are relative to 00:00:00 → 01:00:00 in local standard time. Right column: temporal evolution of a 1-h subset, for the same time window, of
the first velocity component U1(t ) observed for the same three SBL regimes. Both temperature and velocity components U1(t ) were recorded
at station 1.

fully developed, homogeneous, isotropic turbulence in an in-
finite medium, the K41 theory assumes that the energy (or
information) transfer is constant (in a statistical sense) over
a range of scales enclosed in the so-called inertial subrange
[38,60,61]. However, the scale-to-scale dynamics is actually
far from being uniform, since the breakdown of self-similarity
produces the well-known scale variation of the PDFs due to
small-scale intermittency [62–65]. As the scale 	 increases,
local correlations are lost, and the probability density function
of the velocity fluctuations becomes nearly Gaussian, accord-
ing to the central limit theorem [66].

TABLE I. Classification of CASES-99 data used in this study,
based on turbulent heat flux observations, taken from Ref. [47]:
friction velocity [u� (m s−1)], conductive heat flux from the Earth’s
surface to the atmosphere [surface turbulent heat flux H (W m−2)],
net radiation [Qnet (W m−2)], latent heat fluxes [LvE (W m−2)], and
the turbulence intensity as a percentage Ti% [1,48]. All samples refer
to the nighttime period between 00:00:00 and 06:00:00 LST.

Date Group u� H Qnet LvE Ti%

10/13/1999 Transient 0.199 −17.5 −62.5 −1.8 16
10/14/1999 Radiative 0.031 −1.4 −62.8 −0.3 27
10/15/1999 Turbulent 0.494 −45.6 −73.9 5.7 21
10/17/1999 Turbulent 0.594 −5.7 −31.2 12.5 25
10/18/1999 Intermittent 0.094 −4.1 −55.6 2.9 22
10/19/1999 Radiative 0.033 −1.1 −57.6 0.4 23
10/20/1999 Intermittent 0.070 −5.7 −61.9 0.1 22
10/21/1999 Transient 0.115 −14.3 −63.2 −0.2 26

The maximum scale in the analysis has been selected as
the scale at which the kurtosis reaches its Gaussian value,
K	(δUi ) ≡ μ

(4)
δUi

σ−4
Ui

= 3 [μ( j)
δUi

being the jth-order moment of
the fluctuation δUi]. The value of K	(δUi) plays an important
role in the classical description of homogeneous, isotropic
turbulence. Indeed, a larger K (δUi ) is related to local corre-
lations existing in limited spatial regions, due to structures
accumulating at smaller scales that produce non-Gaussian
statistics. K	(δUi)−1 represents a heuristic estimate of the
order of the fractional space filling factor. The left panel
of Fig. 3 shows the scaling of K	(δUi ) for the three veloc-
ity components of sample on 10/15/1999, in the range of
scales 	 ∈ [10, 5000] s, along with the associated Gaussian
limit value (horizontal dashed line). Fluctuations of the δU1,2

components become uncorrelated at 	1 = 3650 s and 	2 =
5500 s, respectively. The right panel of Fig. 3 shows the
large-scale (	K=3) PDFs P(δU1,2) for all samples, estimated
after the usual standardization δUi = [δUi − μ

(1)
δUi

]σUi
−1 (i.e.,

subtracting the mean value of the fluctuations and dividing by
the standard deviation), with superimposed the correspond-
ing zero-mean, unit-variance normal distribution (dashed line)
superimposed. Heavy-tailed distributions are observed at all
scales 	 for P(δU3). However, it should be pointed out that
a fully developed phenomenology does not exist for all the
dynamic regimes presented here. Therefore, the largest scale
of interest has been defined by using an average scale 〈	3〉.
As illustrated in the center panel of Fig. 3, fluctuations be-
come uncorrelated, with large-scale kurtosis K	(δUi ) ≈ 3 (i =
1, 2), in the (sample-dependent) range of scale 	3 ≡ 	K=3 ∈
[0.3, 2.2] h, with average scale 〈	3〉 ≈ 3400 s plotted as a
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FIG. 2. Left panel: Nondimensional power spectral density (PSD) of the velocity component δU1 as a function of the physical frequency
f , with the corresponding Von Kármán spectrum (full line) and the classical Kolmogorov scaling (dashed line) superimposed. Center panel:
nondimensional PSD of the velocity component δU2. Right panel: Comparison of the three nondimensional PSD for the three components
of the velocity (δU1,2,3) as a function of the nondimensional frequency fL . All PSD overlap, with small differences attributed to the slightly
different values of 〈Ui〉 and LUi .

dashed line in the center panel. The component δU3 never
reaches the Gaussian value K	(δU3) = 3, regardless of the
sample, probably due to the small-scale intermittency of the
stratified atmospheric flow [5,16,67–69]. For this reason, it
has been excluded from the calculation of the large-scale
average. In light of this, a range of scales 	 ∈ [2�t, 72000�t]
(0.1 → 3600 s) has been selected for the analysis, enclosing
both the inertial subrange and the larger scales affected by
mean flow instabilities, such as local shear or buoyancy.

B. Scale-dependent dimension and persistence
of the phase-space trajectories

The local properties of the different boundary layer
regimes are investigated in the dynamical systems framework
by applying two metrics obtained by sampling the recurrences
of a state of interest Û	 = {δU1(	), δU2(	), δU3(	)} in the
PS. For each scale 	, a pair of parameters [D	(t ) and θ	(t )]
can be obtained, enabling us to investigate the instantaneous

scale-dependent features of the velocity field fluctuations.
This method, first proposed in Alberti et al. [70], has recently
been applied to laboratory experiments on Von Kármán fluids
and represents an extension of a previous method based on
generalized fractal dimensions [71,72]. The first parameter
is the local dimension D	(t ), describing the geometry of the
system’s trajectory in a region of the PS around Û	, and
it represents a measure of the active number of degrees of
freedom. According to its definition, the dimension D is a
standard measure of the geometrical complexity of the PS.
For D = 3, the PS is uniformly covered by the fluctuations;
for D = 2 the turbulent fluctuations are constrained on a
two-dimensional plane and along a one-dimensional line for
D = 1. In the latter cases, anisotropy exists in the system, for
example when turbulent fluctuations are stronger in certain
directions. For all noninteger values of D, the PS geometry of
the turbulent fluctuations is predominantly fractal. The con-
cept of dimension can be extended to a multiscale description.
A scale-dependent measure of the geometrical properties of

FIG. 3. Left panel: Scale-dependent kurtosis (K	) for the continuous turbulent sample on 10/15/1999. The components δU1,2 become
uncorrelated at 	1 = 3650 s and 	2 = 5500 s, respectively. For the component δU3, the kurtosis never reaches the Gaussian value K	 = 3,
due to the inherent small-scale intermittency. Center panel: Scale 	 at which fluctuations δU1,2 become uncorrelated (K	 ≈ 3). Data from the
day 10/17/1999 were omitted since K	 > 3 ∀	). The horizontal dashed line represents the average, 〈	〉 = 3400 s. Right panel: Probability
distribution functions P(δU1,2) at scale 	K=3 for each sample (except for the sample of 10/17/1999). Full symbols indicate δU1 and empty
symbols δU2. A standard zero-mean and unit-variance Normal distribution is superimposed (dashed line).
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turbulent fluctuations, D	(t ), can also be introduced, with 	

indicating a spatial scale. In this case, the topological proper-
ties of fluctuations can change scale by scale. If the dimension
does not depend of the scale, D	(t ) = const ∀	, then the PS
has scale-invariant topology. In that case, the turbulent fluctu-
ations are constrained to explore a specific fraction of the PS at
all scales. The second parameter used for the description of the
SBL is the inverse persistence θ	(t ). This parameter is related
to the system’s typical residence time in the neighborhoods
of Û	, which is a measure of how long the system persists
in states that closely resemble Û	, therefore measuring the
clustering of the PS [31,73–75]. The parameter θ	(t ) gives a
scale-dependent measure of the characteristic timescale of the
turbulent “decorrelation.” For θ	 → 0, the system persistence
is infinite at scale 	, indicating that its dynamical state does
not change with time. In terms of turbulent fluctuations, the
structures at a given scale are destabilized by the nonlinear
straining or by other decorrelation effects arising during the
turbulent cascade. When θ	(t ) increases, the state Û	 is rapidly
destabilized and varies continuously over time. The turbulent
structures are then characterized by fast eddy decorrelation
timescales and lower levels of persistence. Based on the anal-
ysis of several different dynamical systems, four limiting pairs
of parameters D	(t ), θ	(t ) can be identified as follows. (i) For
D → 0 (lower values of D) and θ = 0, the system lies in the
vicinity of a stable fixed point and is therefore in a highly
predictable state. Examples include a flow composed of struc-
tures with slow decorrelation time or turbulence suppression
due to a large-scale mean flow. (ii) For D → 0 and θ = 1, the
system lies near a saddle node where two fixed points move
toward each other, collide, and mutually annihilate, as for
example in systems with shorter decorrelation time where the
large-scale mean flow tends to abruptly reconfigure over time.
(iii) For D → ∞ (higher values of D) and θ → 0, the system
is on the edge of the attractor or in a disordered state char-
acterized by multiple minima of the potential. An example is
given by flows characterized by a large-scale forcing acting as
an energy source for faster time-evolving turbulent structures.
(iv) D → ∞ and θ = 1 represent an exotic state of the system
that is hardly observed. For each scale, the instantaneous
metrics are obtained by sampling the whole PS and searching
for recurrences of its various possible configurations (either
similar or different configurations). Let ξ be a given state of
the PS, and let g(ξ ) = − log[dist(Û	, ξ )] be the logarithmic
return. By selecting an upper threshold s as the qth quantile of
g(ξ ), the Freitas-Freitas-Todd theorem modified by Lucarini
et al. [31] states that the cumulative distribution of exceedence
converges to a generalized Pareto-like distribution (GPD):

P (ξ − s) ∼ exp

[
−θ

g(ξ ) − s

σ

]
, (3)

where D = σ−1 is the instantaneous dimension and 0 � θ �
1 is the inverse persistence [76]. The GPD arises as the
asymptotic distribution of recurrences because of the relation-
ship already discovered by Poincaré: In chaotic systems, the
probability of getting close to a small set centered around a
point ξ of the underlying attractor decreases exponentially
with the size of the set. The Poincaré recurrence theorem also
motivates the choice of g(ξ ) because (i) the negative sign turns

the minima into maxima, for which the GPD was originally
devised, and (ii) using a logarithmic weight for the recurrences
rewards values close to the chosen point, ξ . The combined
effect of (i) and (ii) ensures convergence to the exponential
term of the GPD, where the dimension is simply given by
the inverse of the scale parameter σ , and thus is directly
proportional to the spread of the trajectories within the ball
around ξ .

The contours of both D	(t ) and θ	(t ) in the time-	 plane are
shown in Fig. 4 for three different regimes. In particular, the
top row of Fig. 4 depicts the evolution of D	(t ) and θ	(t ) for
a continuously turbulent sample (10/15/1999). At all scales,
the number of degrees of freedom is approximately D	(t ) �
3, reaching larger values only at some specific times and/or
scales. This indicates the existence of an external forcing,
highlighted by the magenta vertical stripes (see Fig. 4, top
row, left panel). The same behavior is observed for the sample
recorded on 10/17/1999 (not shown). The uniformity of D	

over the entire range of scales 	 can be also clearly seen by
looking at the PDF P(D	), shown in Fig. 5, top row, left panel,
where the scale 	 is color coded. Indeed, all distributions
collapse on the same right-tailed PDF with a characteristic
peak at D	 � 3, showing that the PDFs are independent of
the scale.

The inverse persistence θ	(t ) presents a rapid variation
with 	, with steady evolution over time (Fig. 4, top row,
right panel). Two distinct sectors can be identified, with a
cutoff at 	 ≈ 1 s: one containing the small scales of the
inertial subrange, 2�t � 	 � 1 s, and the other composed
of large-scale fluctuations or energy injection sources in the
range of scales 1 < 	 � 〈	3〉 s. The first sector is charac-
terized by a rapid decrease from θ	 � 0.94 at 	 = 2�t to
θ	 = 0.69 at θ	 = 〈	3〉, indicating unstable behavior of this
portion of the scale-dependent PS. In other words, the PS
starts to develop unstable orbits with the formation of strange
attractors [77,78]. The second range of scales presents an al-
most homogeneous distribution of θ	, up to 	 � 200 s, where
a slight decrease is observed in the average θ	. Such behavior
is also seen in the evolution of the scale-dependent PDF P(θ	)
(Fig. 5, bottom row, left panel). Starting from a narrow PDF
peaking at θ	 = 0.94 at the smallest scale, the increment of the
scale results in the broadening of the PDF, with a peak shifted
to smaller θ	. Finally, for scales in the range 90 < 	 � 〈	3〉 s,
all PDFs collapse on the same distribution, with a peak at
θ	 = 0.64. Despite the difference in the turbulent heat flux
H and in latent heat flux LvE , the same behavior is also
observed for the second turbulent sample, on 10/17/1999.
In fact, both samples exhibit comparable friction velocity
u� (strong turbulent mixing), which characterizes the surface
shear, constraining the PS dynamics for both metrics.

A completely different situation is observed for the inter-
mittent sample on 10/18/1999 and for the radiative sample
on 10/14/1999 (see Fig. 4, left panels, center and bottom
row, respectively). In both cases, the time-	 plane of the
local dimension D	 is fragmented in to multiple temporal
regions, each characterized by strong variability. Contrary
to the continuous turbulent case, here the local dimension
presents a complex temporal evolution, strictly connected to
the scale under analysis. In particular, the local dimension
is continuously “stretched and expanded” with an excursion
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FIG. 4. Local dimension D	(t ) (left column) and dynamical stability index θ	(t ) (right column), obtained from the PS state Û	, projected
on the plane (Time − 	), for the continuous turbulent sample on 10/15/1999 (top row), the intermittent sample on 18/10/1999 (center row),
and the radiative sample on 10/14/1999 (bottom row). All values D	(t ) > 4 have been set to 4 in order to enhance the readability of the maps.
All maps refer to station 1.

enclosed in the range 0.1 � D	 � 10, indicating a continuous
“local” reorganization of the turbulent fluctuations. As shown
in Fig. 5, top row, center and right panels, the main difference
among the continuous turbulent and radiative/intermittent
samples is the reduction of the PS dimensionality, which
highlights a transition from a three-dimensional structure to
lower-dimensional ones. Both PDFs are described by similar
heavy right tails at large scales but have different shapes at
smaller scales. In particular, the intermittent sample presents a
stronger reduction of the dimensionality up to D	 ≈ 0.10 with
respect to the radiative samples, which are characterized by a
lower bound for the dimensionality, of the order of D	 ≈ 0.60.
In this situation, the exchanges of sensible and latent heat
between the surface and the atmosphere is stronger than the
turbulent mixing u�, and the flow is composed of discrete
parcels carrying different values of temperature, momentum,
and moisture, which can affect the local properties and the
dimensionality of the process.

For the inverse persistence θ	, the time-	 plane for both
the intermittent and the radiative samples can be divided into
three groups of scales, separated by two distinct cutoffs (Fig. 4
center and bottom rows, right panels). The first group consists
of all scales 2�t � 	 � 1 s, whose boundaries are sharp and
clearly observable in the intermittent case (Fig. 4 center row,
right panel) and smoother in the radiative case. The second
group is composed of all scales 1 < 	 � 55 s. Finally, the
third group is composed of scales 55 < 	 � 〈	3〉 s. All scales
in the first and second groups are strongly unstable. The PDFs
evolve when passing from θ	 ≈ 0.92 to θ	 ≈ 0.70 for the fist
group and from θ	 ≈ 0.95 to θ	 ≈ 0.8 for the second group.
A secondary peak [less visible in the PDFs P(D	)], located at
θ	 ≈ 0.30 for the intermittent case and θ	 ≈ 0.35 for the ra-
diative case, is observed. This indicates a bistable distribution

of the fluctuations, so that the PS possesses multiple repelling
or attracting points.

Finally, the secondary transition to a more stable dynam-
ics is observed at larger scales, representing the third group.
By analyzing the timescale maps, the inverse persistence pa-
rameter shows clusters of different size in both time and
scale (Fig. 4, center and bottom rows, right panels). The
distributions P(θ	) tend to collapse on a wider distribution,
which encompasses a larger range of variation, 0.1 � θ	 �
0.6 (see Fig. 5, bottom row, center and right panels), with the
core of the distribution peaked at θ	 ≈ 0.35 for the intermit-
tent case and θ	 ≈ 0.50 for the radiative case. In particular,
the intermittent cases shows a wider PDF than the radia-
tive cases. The latter are characterized by a strong decrease
of the left tail of the PDFs, followed by a scale-dependent
secondary peak in the range 0.15 � θ	 � 0.20, probably
due to the different properties among of the various flow
parcels.

Figures 6–9 show PS projections of D	 and θ	, at three
different scales, for the intermittent sample on 10/18/1999
and for the continuous turbulent sample on 10/15/1999, re-
spectively. All maps were constructed from the intersection
of all points composing the state vector Û	 normal to the
plane {0, 0, 1} (left column), {0, 1, 0} (center column), and
{1, 0, 0} (right column), respectively, taken at δUi = 0. In all
cases, a key parameter to discriminates the behavior of D	(t )
and θ	(t ) is the amplitude of the fluctuations. In fact, at all
scales, structures with lower dimensionality and persistence
are characterized by lower energy levels. As the scale in-
creases, more higher-dimensional and stable regions appear
on the edges of the map. For the intermittent sample, at scale
	 = 0.4 the inverse persistence [Figs. 6 (top row)] presents
an almost isotropic cylindrical structure, extending along the
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FIG. 5. Probability distribution functions of the local dimensionality D	 (top row) and inverse persistence parameter θ	 (bottom row) for
three distinct regimes: continuous turbulent 10/17/1999, intermittent 10/18/1999, and radiative 10/19/1999, respectively. Each PDF is color
coded according to the scale 	 under analysis.

δU3 component. Such a structure is composed of an unstable
internal region θ	 ≈ 0.6 (plane defined by the components
δU1,2) contained in a stable region θ	 � 0.45 (planes δU1,3

and δU2,3), consistent with the results obtained for the kurto-
sis. As the scale increases, the stable region tends to extend
in the peripheral regions of the plane, and the unstable region
tends to concentrate in a structure composed of two distinct
lobes, symmetric with respect to a plane perpendicular to the
phase pace (specular structure). The intersection cuts the plane
δU1,2 with an angle φ ≈ 50◦ [Fig, 6 (second row, left panel)].
The symmetric structure is particularly evident for the plane
Û	 ≡ {δU1, 0, δU3}, and 	 = 600 s [Fig. 6 (center column, sec-
ond and third rows)], with a quasisymmetrical reflection along
the center line δU2 = 0. Such a “butterfly” structure, observed
in the unstable region of the plane, somewhat resembles the
two-lobed strange attractor observed in the low-dimensional
Galerkin truncation of the Navier-Stokes equations, whose
appareance is a consequence of the instability of all the orbits
present in the system [78,79]. The same behavior is observed
for Û	 ≡ {0, δU2, δU3} with the plane along the line δU1 = 0,
and also for larger scales (e.g., 	 = 3600 s, Fig. 6, center and
right panels, bottom row).

Similar structures have been observed for the radiative
sample. Both regimes also present the characteristic double-
peaked PDFs.

The continuous turbulent sample presents a simpler and
rather homogeneous structure of the PS. In fact, at small
scales the phase plane presents a spherical structure with an
unstable core in the central region [small-amplitude fluctua-
tions, Fig. 8 (top row)]. The map becomes anisotropic and is
surrounded by an external shell of stable fluctuations whose
thickness increases as the scale exceeds the inertial subrange
[large-amplitude fluctuations, Fig. 8 (center row)]. Above the
threshold 	 ≈ 2 s, the thickness of the external stable shell
remains almost constant, while the shape of the map becomes
stretched and elongated by shrinking along the dimension δU3

up to scales comparable with 〈	3〉. An example is shown in
the bottom row of Fig. 8, for the scale 	 � 3600 s, where the
map presents an oblate spheroidal structure.

Concerning the dimensionality of the system, a rich and
complex structure is observed in the projection of D	 for
the intermittent samples (Fig. 7), where the PS presents a
strong dependence on the scale 	. In the left column of
Fig. 7 is reported the evolution of the PS Û	 = {δU1, δU2, 0}
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FIG. 6. Poincaré maps for the intermittent sample 10/18/1999 on three different planes (columns) and at three different scales (rows) for
the inverse persistence θ	. The space evolves with the scale from a dense unstable region, extending along the component δU3 and embedded
in a more stable region (top row), to a specular symmetric structure with two unstable lobes embedded in a stable region (center and bottom
rows). On the plane δU1,2, the evolution presents a disordered spatial distribution of multiple regions, characterized by both stable and unstable
regions respectively (left column).
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FIG. 7. Poincaré maps for the intermittent sample 10/18/1999 on three different planes (columns) and for three different scales (rows) for
the dimensionality D	. First column: Scale-by-scale emergence of lower-dimensional region in a higher-dimensional background, observed on
the plane δU1,2. Second column: Transition from a quadrupolar to a specular symmetric structure on the plane δU1,3. Third column: Same as
previous case in the plane δU2,3.
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FIG. 8. Poincaré maps for the continuous turbulent sample 10/15/1999 on three different planes (columns)and at three different scales 	

(rows) for the inverse persistence θ	. Starting from a fully unstable region, with an almost isotropic shape, in the range of scales comparable
with the inertial subrange (top row) the system evolves with the scale 	 toward a stretched structure, characterized by an unstable region
embedded in a stable one of constant thickness (center and bottom rows). The strongly anisotopic structure is particular evident along the
dimension δU3.
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FIG. 9. Poincaré maps for the continuous turbulent sample 10/15/1999 on three different planes (columns) and at three different scales
(rows) for the dimensionality D	. The dimensionality presents a similar structure on all planes composed of a three-dimensional center region
surrounded by a higher-dimensional shell for extreme values. An inversion of the anisotropy is observed as the scale increases. For the inertial
range (top row), the system is almost isotropic (i.e. spherical in 3D, circular in 2D) on the plane δU1,2 and strongly stretched along the
dimension δU3such structure is reverted (center and bottom rows), since the system appear almost isotropic on the plane δU1,3 and strongly
stretched along the dimension δU2.
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as a function of the scale. Starting from an isotropic map
composed of a very small spot with D	 ≈ 1 embedded in a
higher-dimensional cluster, the PS undergoes a continuous
transformation, characterized by the emergence of multiple
clusters of low dimensionality, whose size and number in-
crease with 	. The projection on the other two planes, Û	 =
{δU1, 0, δU3} and Û	 = {0, δU2, δU3} [Fig. 7 (center and right
columns, respectively)], again presents a stretching along δU3,
and a transition from a quadripolar structure [Fig. 7 (top row,
center panel)] to the two-lobed mirror symmetric structure
[Fig. 7 (bottom row, center panel)], in the range of scales
2�t � 	 � 1000 s. The evolution of the radiative sample fol-
lows a similar path, characterized by the emergence of small
low-dimensional clusters embedded in a higher-dimensional
background and the formation of a mirror symmetric structure
(not shown).

The continuous turbulent samples present a simple and
uniform structure for D	, as illustrated in Fig. 9. In these
cases, the PS presents a D	 = 3 core in the center of the plane,
surrounded by a higher-dimensional shell, whose thickness
decreases with the scale. The structure is weakly anisotropic
on a single plane that depends on the scale and strongly
anisotropic on the other two. For example, at 	 = 0.4 s
[Fig. 9 (top row)] the structure is weakly anisotropic in
the plane Û	 = {δU1, δU2, 0} and strongly anisotropic, with
a stretched and elongated shape on Û	 = {δU1, 0, δU3} and
Û	 = {0, δU2, δU3}. The situation is reversed for larger scales,
e.g., 	 = 600 s and 	 = 3600 s [Fig. 9 (center and bottom
rows, respectively)], where the anisotropic structure is ob-
served for the plane Û	 = {δU1, 0, δU3} and stretched in the
planes Û	 = {δU1, δU2, 0} and Û	 = {0, δU2, δU3}.

To check for spatial dependence of the two indicators,
in Fig. 10 we show the temporal average of the two met-
rics obtained at different satellite stations for all the regimes
presented in Table I. For the continuous turbulent sample
on 10/15/1999, all stations present the same values of both
〈D	〉 and 〈θ	〉 [Fig. 10 (first column, left panels, first and
second row)]. The local dimensionality shows a constant value
〈D	〉 = 3.1, indicating a global three-dimensional structure
of the PS, with only a weak effect of the large-scale forc-
ing (〈D	〉 > 3), which is independent of the station under
analysis. Moreover, the same behavior is observed for the
inverse persistence parameter: All stations present the same
decreasing behavior. The two sectors observed in the dynami-
cal stability index θ	 for sample 10/15/1999 (Fig. 4 (top row,
right panel)] are still evident. The first group is characterized
by a rapidly decreasing curve over the range of scales 2�t �
	 � 1 s, passing from 〈θ	〉 = 0.9 to 〈θ	〉 = 0.6 at 	 ≈ 2 s. The
second cluster has a constant value of the inverse persistence
〈θ	〉 = 0.6 in the range of scales 2 � 	 � 1000 s, with a slow
decrease to 〈θ	〉 = 0.55 at very large scales. The turbulent
fluctuations explore the entire three-dimensional PS under the
effect of strong mixing.

In the center column of Fig. 10, we show the re-
sults obtained for the intermittent sample on 10/18/1999.
Interestingly, the local dimensionality presents a different
scale-by-scale dependence up to a station-dependent limit
scale. In fact, an increasing 〈D	 is observed for the various
stations starting form 〈D	〉 ≈ 1.7 (mixed two-dimensional
sheet and tangled wires structures) up to 〈D	〉 � 3 (Fig. 10,

first row, center column, center panel), where the fluctuations
cover the entire PS at the scale 	 ≈ 200 s. However, the path
to the three-dimensional structure is not the same but rather
strictly dependent on the station. The convergence to a similar
trend is retrieved only at large scales 	 � 200. Such com-
plex behavior could be due to the continuous fragmentation
and distortion of the various flow parcels resulting from the
competition between thermal- and shear-induced fluctuations,
and such competition could create self-organized large-scale
structures (approximately of the order of the distance between
the various satellite stations) able to “transport” with their mo-
tion smaller eddies with different local characteristics [80,81].
Despite the strong variations in the dimensionality, a smoother
evolution is observed for 〈θ	〉 [Fig. 10 (second row, center col-
umn, center panel)]. All stations present the same decreasing
trend, within small-amplitude variations, from 〈θ	〉 = 0.90 at
	 = 2�t to 〈θ	〉 = 0.49 at large scale 〈	3〉. Moreover, the three
sections observed in the time-	 plane are still evident: The first
section in the range 2�t � 	 � 100 s is characterized by a
fast decrease; the second cluster in the range 2 � 	 � 100 s is
characterized by quasiconstant behavior; and, finally, a third
range for 	 > 200 s is characterized by strongly stable fluctu-
ations.

A comparison of 〈D	〉 and 〈θ	〉 for two different samples
of each group is shown in the third and fourth rows of Fig. 10.
The two continuous turbulent cases show the same behavior
for 〈D	〉 and 〈θ	〉. Small variations in 〈θ	〉 are observed for
	 > 10 s, probably due to the different thermal properties of
the flow. Similar behavior is observed for the intermittent
samples. In terms of mean dimensionality, these both have
the characteristic peak at 	 = 200 s, with small differences
in the intermediate range of scales 4�t � 	 � 40 s, while a
slight difference in the inverse persistence becomes notice-
able for 	 � 20 s. For the radiative sample (10/14/1999 and
10/19/1999), the discrepancy for both metrics is evident at
all scales [Fig. 10 (right column)]. The dimensionality differs
already at small scales and reaches its minimum at 	 ≈ 100 s,
after which it increases again. The same trend is observed
for the inverse persistence, with the only difference that 〈θ	〉
seems to converge to a constant value after 	 ≈ 100 s. Since
the thermal parameters are exactly comparable, with the ex-
ception of LvE , the heat flux from the Earth’s surface to
the atmosphere potentially affects the local properties of the
turbulent fluctuations.

Finally, the transient regime demonstrates mixed behavior
with elements common to the other regimes for both D	

and θ	, respectively. These include, for example, a constant
dimensionality or the variation from D	 < 3 to a fully three-
dimensional structure D	 = 3. This mixed behavior is strictly
sample and site dependent.

In classical theory of isotropic, fully developed turbulence
[38], the hierarchy of fluctuations at all scales is generated
by nonlinear straining effects, giving rise to energy transfer
toward smaller scales. The field correlation decay is then
attributed to nonlinear interactions among triads of wave
vectors, and within this framework, the global energy cas-
cade rate scales as ε ∼ u3L−1, where u is the rms turbulence
amplitude and L the energy-containing scale. Similarly, a
scale-dependent energy cascade rate can be introduced as
ε	 ∼ u3

		
−1 ∼ u2

	τ
−1
	 , where 	 represents the local scale and τ	
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FIG. 10. Temporally averaged local dimensionality 〈D	〉 (top row) and inverse persistence parameter 〈θ	〉 (second row) measured at three
different satellite stations for the continuous turbulent sample on 10/15/1999 (left column), the intermittent sample on 10/18/1999 (center
column), and the radiative sample on 10/19/1999 (bottom column). Third and bottom rows: Comparison of the average dimensionality and
inverse persistence for two distinct samples of each regime of Table I for a single station.

064211-13



FRANCESCO CARBONE et al. PHYSICAL REVIEW E 106, 064211 (2022)

defines the scale-dependent decorrelation time. In Fourier
space, the amplitude of the fluctuations at scale 	 = 1/k
is uk = √

kE (k), where E (k) = ε2/3k−5/3. As a result, the
nonlinear time at scale k is τk = k−1u−1

k , indicating that
smaller and less energetic scales are characterized by shorter
decorrelation time. Such features are robustly captured by
the measure, 〈θ	〉, which can be considered as a “global
proxy” of the cascade properties. Indeed, smaller scales are
characterized by lower persistence. With an extremely short
decorrelation time, these are continuously affected by the en-
ergy flowing from larger scales to the inertial subrange. As the
scale 	 increases, the turbulent structures show increasing per-
sistence due to the slower decorrelation time. This is observed
up to a characteristic scale, comparable with the peak of
the Von Kármán spectrum (Fig. 2), representing the coherent
structures of the flow. At larger scales, the persistence slowly
increases, indicating a modification in the PSD exponent
or a plateau (depending on the specific sample), separating
the fine-scale from large-scale motions (e.g., gravity waves,
mesoscale disturbances, or synoptic-scale variability), reach-
ing its maximum (minimum 〈θ	〉) at 	 = 3600 s. This behavior
is robust and only slightly dependent on 〈D	〉; indeed, despite
the small variations (sample or site specific) observed, the be-
havior is consistent in each regime analyzed. In fact, whether
the fluctuations densely cover the whole three-dimensional
space or are constrained to a lower dimensionality, the smaller
scales, characterized by fast decorrelation time, are the easiest
to destabilize and have lower persistence. Conversely, larger
scales (the more energetic coherent structures) have higher
persistence. The parameter 〈D	〉 is more of a “local proxy”
of the flow properties, or, in other words it can be considered
as a proxy for the anisotropy of the flow. It seems to be related
to the mechanical and thermal properties of the flow due to
the atmospheric conditions (e.g., u� and the heat fluxes).

IV. CONCLUSIONS

In this work the properties of the turbulent stable boundary
layer, observed over six nights of the CASES-99 experiment,
have been investigated in terms of dynamical systems theory.
This was done by sampling the recurrences of a state of inter-
est Û	, over a fairly wide range of temporal scales 	, whose
maximum value 〈	3〉 = 3600 s was empirically determined
based on the kurtosis of the fluctuations.

Continuous turbulent samples, where the dynamic is gov-
erned by the strong turbulent mixing (comparable friction
velocity u� for both samples), are characterized by constant lo-
cal dimensions D	 ≈ 3 at all scales, indicating that the system
is able to explore the whole PS, independent of the scale. The
inverse persistence θ	 presents a steep variation (indicating a
cutoff) that separates the strongly unstable dynamics of the in-
ertial range from the stable dynamics at larger scales (>90 s),
where the distributions P(θ	) collapse on the same shape. The
PS projections reveal a weakly anisotropic spherical structure,
characterized by a central core with D	 = 3 surrounded by
a higher-dimensional shell with scale-dependent thickness.
Similarly, the inverse persistence θ	 shows a central core of
unstable fluctuations and a surrounding external shell of stable
fluctuations.

In the intermittent and radiative samples the local dimen-
sion D	 is strongly scale dependent and spatially inhomoge-
neous, with values in the range 0.1 � D	 � 3. This indicate a
continuous reorganization of the phase space, and two distinct
cutoff scales have been observed in the dynamic. For 	 ≡ 〈	3〉
the phase space undergoes a series of continuous transforma-
tions characterized by the emergence of multiple clusters of
low dimensionality, whose size and number increases with the
scale for D	. At smaller scales, the distributions P(D	) peak
on a lower-dimensional structure, specifically D ≈ 1 for the
radiative cases and D � 1 for the intermittent samples. The
system is therefore not able to explore the entire 3D phase
space, but, rather, the dynamics are constrained to a lower-
dimensional space at certain times or in certain spatial zones.
As the scale increases and exceeds the inertial subrange, the
system shifts to a three-dimensional structure, D = 3, with the
PDFs convergence on a common shape only being retrieved
at larger scales, 	 � 200 s. The inverse persistence presents
a nearly isotropic coaxial cylindrical structure at small scales
(	 � 1 s), consisting of an unstable internal region with θ	 �
0.55 and an external stable region with θ	 � 0.45. As the
scale increases, this stable region tends to extend toward the
peripheral regions of the plane, while the unstable region tends
to concentrate into two distinct symmetric lobes character-
ized by a specular structure. This transition is accompanied
by a shift in the P(θ	) distributions toward lower θ	 values
(higher stability), with the core of the distribution peaking at
θ	 ≈ 0.35 for the intermittent case and at θ	 ≈ 0.50 for the
radiative case. Moreover, the PDFs P(D	) and P(θ	) present
multiple peaks, probably related to the local competition of
thermal and shear-induced fluctuations.

Summarizing, the study of the two metrics D	 and θ	

presented here enabled us to disentangle the characteristics
of the various flow regimes and to identify the presence of
sharp changes in the dynamics at specific cutoff temporal
scales. Moreover, the two parameters can be considered as
proxies for interesting features of the flow. In particular, the
inverse persistence θ	 robustly captures the “global proper-
ties” of the turbulent cascade by identifying the scale-by-scale
variation of the decorrelation time for the turbulent structures
embedded in the flow, while the local dimensionality D	 is
mostly related to the “local properties” of the flow and can be
considered as a proxy for the anisotropy of the flow. However,
further studies are necessary in order to obtain an exhaustive
description of the turbulent fluctuations in the framework of
the dynamical system theory. The analysis also highlighted the
emergence of overlapping space and time multidimensional
structures in the dynamics, and that for different regimes
thermal effects can be different. Finally, we determined the
scale-dependent nature of persistence. The results presented in
this work indicate that local dimension and inverse persistence
can be useful analysis tools for dynamical systems character-
ized by scale and spatial variability, such as SBL turbulence.
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