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Chaos and bipartite entanglement between Bose-Josephson junctions
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The entanglement between two weakly coupled bosonic Josephson junctions is studied in relation to the
classical mixed phasespace structure of the system, containing symmetry-related regular islands separated by
chaos. The symmetry-resolved entanglement spectrum and bipartite entanglement entropy of the system’s energy
eigenstates are calculated and compared to their expected structure for random states that exhibit complete or
partial ergodicity. The entanglement spectra of chaos-supported eigenstates match the microcanonical structure
of a Generalized Gibbs Ensemble due to the existence of an adiabatic invariant that restricts ergodization on
the energy shell. The symmetry-resolved entanglement entropy of these quasistochastic states consists of a
mean-field maximum entanglement term and a fluctuation correction due to the finite size of the constituent
subsystems. The total bipartite entanglement entropy of the eigenstates correlates with their chaoticity. Island-
supported eigenstates are macroscopic Schrödinger cat states for particles and excitations with substantially
lower entanglement.
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I. INTRODUCTION

The study of quantum entanglement has lately focused on
many-body systems, with important applications in quantum
information and condensed matter physics [1,2]. Entangle-
ment lies at the heart of quantum information processing [3]
and quantum teleportation [4]. In condensed matter physics it
underlies the density matrix renormalization group methodol-
ogy [5–7], quantum phase transitions [8–10] and topological
order [11], quantum quench dynamics [12–15], quantum ther-
malization [16–20], and many-body localization [21,22].

Considerable effort has recently been concentrated towards
the study of bipartite entanglement in the stochastic-like
eigenstates of quantum chaotic Hamiltonians [23–40]. The
entanglement entropy of such states is near maximal, because
chaotic ergodization implies the eigenvalues of the reduced
subsystem density matrices are spread nearly uniformly, with
a fluctuation correction due to the finite size of the subsystems
[23,34].

So far, the analysis of eigenstate entanglement has fo-
cused on systems that exhibit “hard” chaos, i.e., their entire
phasespace is chaotic. However, in many-body systems with
few classical degrees of freedom the phase space is often
mixed, with “islands” of quasiintegrability due to the local
conservation of residual motional constants, interspersed be-
tween chaotic “seas” in which the dynamics is ergodic. The
ergodicity of such systems is incomplete and corresponds to
generalized Gibbs ensembles (GGEs) rather than the canoni-
cal ensembles encountered in the presence of relaxation and
pumping, or the microcanonical ensembles obtained for iso-
lated systems. It is thus desirable to establish how bipartite
quantum entanglement is affected by the partition of the clas-
sical phasespace into regular and chaotic regions.

In this work, the U (1) symmetry resolved entanglement
spectrum [2,11] and entanglement entropy [41–43] are studied

for the minimal model system of two weakly-coupl ed bosonic
Josephson junctions. In a sense, this is the interacting many-
body bosonic equivalent of the ubiquitous two qubits system
in which the notion of bipartite entanglement first appears
[44]. It was previously shown [45,46] that the timescale sep-
aration between the fast internal motion within each junction,
and the slow exchange of particles and energy between them,
implies the adiabatic invariance of the total number of Joseph-
son excitations J corresponding in the classical limit to the
sum of subsystem actions, in addition to the obvious conserva-
tion of the total system energy E and the number of particles
N . The adiabatic system dynamics can thus be described as
the slow motion of particles and Josephson quasiparticles
(“josons”) between the constituent subsystems.

While for small perturbations around the stationary points,
the classical dynamics of this system reduces to coupled
Josephson oscillations [45–48]; at higher energy it is surpris-
ingly rich. In particular, we find that the mutual conservation
of E and J generates a mixed phase space structure, with
integrable self-trapping islands of two types separated by
a chaotic sea. The quantum eigenstates are correspondingly
supported by the different classical phase-space regions. The
bipartite entanglement entropies of the system’s eigenstates
are correlated with ergodicity measures such as the participa-
tion number and the Shannon entropy. The chaos-supported
eigenstates exhibit the expected near maximal entanglement.
By contrast, island-supported eigenstates are macroscopic
Schrödinger cat states involving only O(2) nonvanishing
eigenvalues in the reduced subsystem density matrices. The
population imbalance distribution and the symmetry resolved
entanglement entropy of the chaotic eigenstates corresponds
to a GGE that accounts for the adiabatic invariance of J within
the respective energy shell.

The model system is introduced in Sec. II, its adiabatic
dynamics is discussed in Sec. III, and the methodology for
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evaluation the number of excitations is briefly recalled in
Sec. IV. Subspace dimensionality notation is summarized in
Sec. IV. The system’s eigenstates and their relation to the
mixed classical phasespace are discussed in Sec. VI. The
bipartition of the system and the symmetry-resolved entan-
glement spectrum are presented in Sec. VII. The expected
particle imbalance and bipartite entanglement entropy dis-
tributions for ergodic and semiergodic states are compared
in Sec. VIII with the numerically calculated distributions of
the chaos-supported eigenstates, demonstrating the agreement
with the GGE prediction. Recently employed experimental
techniques for the measurement of symmetry resolved entan-
glement in bose-Hubbard systems are described in Sec. IX.
Finally, summary and concluding remarks are provided in
Sec. X.

II. THE COUPLED DIMERS MODEL

Consider a system of two weakly-coupled bosonic Joseph-
son junctions (AKA “Bose-Hubbard dimers”), described by
the four-mode Hamiltonian [45–48]

Ĥ = −�

2

(∑
α

â†
+,α â−,α + H.c

)
+ U

2

∑
α,σ

n̂σ,α (n̂σ,α − 1)

− ω

2

(∑
σ

â†
σ,Lâσ,R + â†

σ,Râσ,L

)
, (1)

where âσ,α annihilate a boson in the σ = ± mode of the α =
L, R junction. The interdimer coupling ω is assumed to be
much smaller than the coupling � between the two modes of
each dimer and the on-site interaction strength U . Below we
rescale time as t → �t so that frequencies are given in units of
� and the dimensionless system parameters are w = ω/� �
1 and u = UN/�.

In the limit of large N , the restricted coherent-state (mean
field) dynamics is obtained by replacing the operators âσ,α

with c numbers. The resulting classical motion has three de-
grees of freedom, e.g., three population imbalances and three
relative phases between the classical amplitudes serving as
action-angle variables.

III. ADIABATIC DYNAMICS

The dynamics of the double-dimer model in the adiabatic
limit w � 1 was reduced by Strzys and Anglin [45,46], to the
slow exchange of particles and “‘josons” between the two sub-
systems. Their procedure begins with a Holstein-Primakoff
transformation (HPT) applied to Eq. (1):

nα

2
− Â†

αÂα ≡ 1

2
(â†

α,+âα,− + â†
α,−âα,+),√

nα − Â†
αÂαÂα ≡ 1

2
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Â†
α

√
nα − Â†

αÂα ≡ 1

2
(â†

α,+ − â†
α,−)(âα,+ + âα,−). (2)

The operators Âα shift atoms between the two σ = ± modes
of the α = {L, R} dimer. They obey the commutation relation,
[Âα, Â†

α] = 1 and [Âα, n̂α] = 0. Consequent application of

the Bogoliubov transformation, Âα = uαĴα + vαĴ †
α , trans-

form the single dimer Hamiltonian as

Ĥα = −�

2
(â†

+,α â−,α + h.c.) + U

2

∑
σ

n̂σ,α (n̂σ,α − 1)

→ �

2
n̂α + U

4
n̂α (n̂α − 2) +

√
�(� + Un̂α )Ĵ †

α Ĵα

− U

8

4� + Un̂α

� + Un̂α

Ĵ †2
α Ĵ 2

α + O
(
Un−1

α

)
, (3)

where uα and vα are quasihole and particle excitation am-
plitudes, respectively, and Ĵα obeys the bose commutation
relation, [Ĵα, Ĵ †

α ] = 1. In deriving Eq. 3, terms that do not
commute with Ĵ †

α Ĵα have been neglected. A second HPT
applied to the interdimer hopping, reads in the large-N limit,

n̂L,R = 1
2 [N ± N1/2(Â† + Â)], (4)

where Â shifts atoms between the junctions, and obeys the
commutation relation, [Â, Â†] = 1. Equation (4) retains total
number conservation. Hence, the total Hamiltonian in Eq. (1),
including the single dimer Hamiltonians Ĥα and the inter-
dimer coupling, can be written (in units of �) as

Ĥ → wÂ†Â + u

8
(Â† + Â)2

− wJ
2

(Ĵ †
L ĴR + Ĵ †

R ĴL) − UJ
2

∑
α=L,R

Ĵ †2
α Ĵ 2

α

+ u

4

√
1

1 + u/2

(Â + Â†)√
N

(Ĵ †
L ĴL − Ĵ †

R ĴR), (5)

where the effective tunneling frequency and interaction
strength of the Josephson excitations are given by

wJ = w
1 + u/4√
1 + u/2

and UJ = U
1 + u/8

1 + u/2
, (6)

respectively. The two first terms on the r.h.s. of Eq. (5) cor-
respond to Josephson oscillations of particles whereas the
third and fourth terms are a Josephson Hamiltonian for the
excitations with effective attractive interaction between them.
The last term couples the two oscillations (due to the de-
pendence of the fast internal dimer frequencies on particle
number). In addition to N , the total number of excitations
J = ∑

α=L,R J †
α Jα → jL + jR is also conserved by the ap-

proximate Hamiltonian (5). Thus, while the conservation of
N is strict, J is an adiabatic invariant.

IV. NUMBER OF EXCITATIONS

The number of excitations in the two subsystems was eval-
uated in Ref. [49] using a semiclassical approach. Given the
energy Eα and the number of particles nα of the α = L, R
Bose-Josephson subsystem, the number of excitations jα is
just the classical action, i.e., the phase space area enclosed by
the classical energy contour in units of the effective Planck
constant h = 4π/nα . This area can be analytically evaluated
for the elliptical energy contours encountered as long as uα ≡
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TABLE I. Notation of subspace dimensions used throughout the
manuscript

Symbol Dimension

D Hilbert space of the composite system
D(J ) Jth shell of the composite system’s spectrum
D(nL ) nLth symmetry sector of the composite system
dα (nL ) Dimension of α = L, R Hilbert space

with nL particles in L
dnα

Rank of the ρ̂ (nα ) sector of ρ̂α

Unα/� � 1, resulting in the expression

jα = 1

2
− 1

π
Re

[
2 cos ηα

K
( 1−ie−iηα uα

1+ieiηα uα

)
√

1 + ieiηα uα

+ 2i

uα

√
1 + ieiηα uα E

(
1 − ie−iηα uα

1 + ieiηα uα

)

+
ieiηα (1 − ie−iηα uα )	

(
ie−iηα uα| 2iuα cos ηα

1+ieiηα uα

)
√

1 + ieiηα uα

]
, (7)

where K (m), E (m), and 	(n|m) are respectively the complete
elliptic integrals of the first, second, and third kinds, and
ηα = arcsin[2Eα/(�nα )] is used to parametrize −�nα/2 <

Eα < �nα/2 to the [−π/2, π/2] range. While the expression
of Eq. (7) is admittedly convoluted, it can be verified that in
the limit where uα � 1, it reduces to

jα = Eα + �nα/2√
�(� + Unα )

≈ Eα

�
+ nα

2
, (8)

which is just the excitation energy over the one-dimer Joseph-
son frequency, as appropriate for the equally spaced levels in
the harmonic Josephson limit.

Below we denote the total particle and excitation numbers
as N = nL + nR and J = jL + jR = 0, 1, ..., N , respectively,
and the corresponding particle and excitation imbalances
as n = nL − nR = −N, ..., N and j = jL − jR = −J, ...J , re-
spectively.

V. NOTATION OF SUBSPACE DIMENSIONS

The characterization of the many-body spectrum for the
coupled dimers model and the evaluation of bipartite en-
tanglement limits for the resulting eigenstates, require the
specification of several subspace dimensions. To improve clar-
ity, the notation of these dimensions is summarized in Table I.
The following relations hold:

(i) The Hilbert space dimension for the composite four-
mode system:

D = (N + 1)(N + 2)(N + 3)

6
. (9)

(ii) The number of eigenstates in the Jth shell (see below)
of the composite’s system spectrum:

D(J ) = (J + 1)(N + 1 − J ). (10)

The total number of states in all shells is of course the Hilbert
space dimension:

∑N
J=0 D(J ) = D.

FIG. 1. Spectrum of decoupled dimers. (a) The eigenstates of the
double-dimer model with N = 21, ω = 0, and u = 0.5, arranged ac-
cording to the good quantum numbers n, j, and J . Each eigenstate is
colored according to its participation number in the exact eigenbasis
with the same parameters except ω = 0.082. Grey points mark the
projections onto the {n, J} and { j, J} planes; (b) The energies of the
J = 11 shell of the spectrum in (a) and its projection onto the {n, j}
plane. The J = 11 shell contains D(11) = 132 states.

(iii) Subsystem Hilbert space dimensions when there are
nL particles in the L subsystem and N − nL particles in the R
subsystem:

dL(nL) = nL + 1, dR(nL) = N − nL + 1. (11)

(iv) Dimension of the nLth block of the composite’s sys-
tem density matrix:

D(nL ) = dL(nL) × dR(nL). (12)

It is easily verified that
∑N

nL=0 D(nL ) = D.
(v) Maximum number of non-zero eigenvalues in the

dα (nL) dimensional block ρ̂ (nL )
α of the reduced α = L, R sub-

system density matrices:

dnα
= Rank

(
ρ̂ (nL )

α

) = min{dL(nL), dR(nL)}. (13)

VI. EIGENSTATES

A. The unperturbed basis

In the absence of interdimer coupling (ω = 0), the two-
dimer energy eigenstates are direct products of single dimer
eigenstates in the form

|μ〉 = |N, J, n, j〉 = |nL, jL〉 ⊗ |nR, jR〉, (14)

with N, J, n, j being good quantum numbers, as illustrated
in Fig. 1(a). The dimension of each fixed-J shell, i.e., the
number of states in the Jth layer of the plotted spectrum in
Fig. 1(a), is D(J ). The energies of one such J shell in the
middle of the spectrum are plotted in Fig. 1(b). Within this
shell, the energies of high |n| eigenstates are elevated due to
the repulsive interaction between particles. By contrast, the
energies of high | j| eigenstates are lowered due to the effective
repulsion between the Josephson excitations in Eq. (5).

B. Exact spectrum

For finite ω we can numerically diagonalize the Hamilto-
nian in Eq. (1) to obtain the exact eigenstates |ν〉. Projecting
the unperturbed states of Eq. (14) onto the exact basis to
obtain pν,μ = |〈ν|μ〉|2, we can calculate the participation
number PNμ = (

∑
ν p2

ν,μ)−1, estimating the number of exact
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FIG. 2. Mixed structure of the fixed J shells. (a) The J = 11 shell
of the coupling-free spectrum from Fig. 1 overlaid on representative
classical trajectories launched at J = 11, n = j = 0 (orange) and
J = 11, n = 18.2, and j = 9.3 (blue), with the same parameters.
The relative interdimer phase of both trajectories is ϕLR = 0. The
dynamics of the particle and joson imbalances n, j for the same
trajectories is plotted in panels (b) and (c), respectively.

eigenstates that contribute to the unperturbed state |μ〉. The
participation numbers in the ω = 0.082 basis are denoted
by color in Fig. 1. It is clear that the midspectrum fixed
J surfaces contain two pairs of regions with low participa-
tion, corresponding to the maxima and minima of the energy
surface. These localization regions are separated by a large
high-participation ergodic region around the central energy
saddle point.

In Fig. 2 the same J shell of the unperturbed spectrum
is plotted over two representative classical trajectories. The
participation numbers in the finite-coupling basis correlate
well with the classical phasespace structure for the same
parameters, which due to mutual conservation of J and E
separates into two pairs of integrable islands in which either
particles or excitations are macroscopically self-trapped, and a
central chaotic region, explored ergodically by all trajectories
launched in it.

For finite interaction, n and j are no longer good quantum
numbers. Due to its symmetry, the exact eigenstates of the
coupled-dimers system belong to one of the four irreducible
representations of the dihedral group D2. Therefore, the ex-
pectation values of the particle and excitation imbalance are
〈n〉 = 〈 j〉 = 0. Therefore, in Fig. 3(a) we classify the exact
eigenstates according to the standard deviations σn =

√
〈n2〉

and σ j =
√

〈 j2〉. Each state is colored according to its partic-
ipation number in the unperturbed basis PNν = (

∑
μ p2

ν,μ)−1.
Since the timescale separation between fast intradimer motion
and slow interdimer particle and excitation exchange is main-
tained, J is conserved so that the exact eigenstates only mix
zero-coupling states within a single J shell. This is evident in
the layering of the spectrum in shells with integer value of 〈J〉.

Plotting a fixed J = J0 shell of the exact spectrum in
Fig. 3(b), we identify three representative states for which we
plot the probability distribution pn, j (ν) = |〈ν|N, J0, n, j〉|2 (it
was verified that

∑
n, j pn, j = 1, i.e., that there is no projection

FIG. 3. Coupled dimers spectrum. (a) The eigenstates of the
double-dimer model with N = 21, ω = 0.082, and u = 0.5, ar-
ranged according to their particle-imbalance variance σn =

√
〈n2〉,

excitation-imbalance variance σ j = √〈 j2〉, and mean number of ex-
citations 〈J〉. Each eigenstate is colored according to its participation
number in the unperturbed basis set; (b) The J = 11 shell of the spec-
trum in (a). Markers in (a) and (b) mark the states with the minimum
σn (◦), the maximum σn (�), and the maximum Shannon entropy H
(�) within this J shell; (c–e) The probability distribution pn, j for the
marked states in (a) and (b) with the same marker convention.

onto states with J �= J0). The states with high σn [Fig. 3(c)]
are macroscopic cat states, i.e., superpositions of localized
states supported by the integrable particle-self-trapping is-
lands. Similarly, states with high σ j and low σn [Fig. 3(d)]
are joson macroscopic catstates, depicting similarly populated
dimer subsystems with the excitations in a superposition of
all-L and all-R. In between these macroscopic superpositions
that come as odd-even doublets with spacing that vanishes ex-
ponentially with h lie the high participation states distributed
ergodically over the classically chaotic region of the J shell
[Fig. 3(e)]. The chaoticity of the eigenstates |ν〉 can be quan-
tified by their Shannon entropy,

Hν = −
D∑

m=1

pν,m ln pν,m � ln(D) = Hmax, (15)

where pν,m = |〈m|ν〉|2 are the expansion probabilities
of |ν〉 in the computational Fock state basis |m〉 =
|nL,+, nL,−, nR,+, nR,−〉. For a fully chaotic system, pν,m may
be replaced by independent real random variables from a
Gaussian distribution fluctuating around 1/D, resulting in the
limiting value [50],

HGOE = ln(0.48D). (16)

In Fig. 4 the Shannon entropy of the coupled-dimers eigen-
states is plotted for three values of the interdimer coupling ω,
along with the level-spacing statistics obtained by separating
the spectrum to the four D2 symmetry classes and unfolding
each class according to the local mean spacing s̄(E ). Poisso-
nian level statistics P(s) = e−s indicates integrability, whereas
chaos is detected by the Wigner surmise distribution P(s) =
(π/2)se−πs2/4. When the coupling is weak [Fig. 4(a)] the
chaotic region is small and the dynamics takes place mostly
in the integrable self trapping islands, where |n| is still a good
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FIG. 4. Level spacing statistics. The coupled-dimers spectrum (top), colorcoded according to the Shannon entropy H, and the level spacing
statistics (bottom) at ω = 0.01 (a), 0.082 (b), and 0.5 (c). Other parameters are the same as in Fig. 3

quantum number. Level spacing statistics is therefore nearly
Poissonian. The chaotic sea grows with ω, peaking [Fig. 4(b)]
at the value used in Fig. 1 and Fig. 3 (the exact parameters for
maximizing chaos were determined by analysis of the Brody
parameter [51] and the adjacent spacing correlation function
[52]). Further increase in ω restores integrability because the
dynamics becomes linear [Fig. 4(c)]. Note also that when
ω becomes comparable with the internal dimer frequencies,
joson number conservation is violated due to the breakdown
of adiabaticity so that 〈J〉 can take noninteger values.

Below, we aim to characterize the number-resolved bi-
partite entanglement between the Josephson qubits for the
coupled-dimers eigenstates, and correlate it with their chaos
measure.

VII. BIPARTITE ENTANGLEMENT

A. Reduced subsystem density matrices

Consider the bipartition into the L, R dimer subsystems.
The state of the system can be expanded in any arbitrary
bipartite basis,

|ψ〉 =
N∑

nL=0

dL (nL )∑
l=1

dR (nL )∑
r=1

cnL,l,r |nL, l〉|N − nL, r〉, (17)

where |nL, l〉 and |N − nL, r〉 are one-dimer basis states for
nL and nR = N − nL particles in the L and R dimer, re-
spectively. Given a fixed nL sector of the bipartite basis, the
Hilbert space dimensions of the two subsystems are dL(nL) =
nL + 1 and dR(nL) = N − nL + 1. For example, one may
use the Fock basis |nα, l〉 = |
, m〉 where 
 = nα/2 and m =
(n+,α − n−,α )/2 = nα − 2n−,α with n−,α = 0, 1, ...nα . Or, al-
ternatively, the one-dimer energy eigenstates |nα, jα〉 as in
Eq. (14).

Regardless of the choice of subsystem basis, the U (1)
symmetry of the Hamiltonian in Eq. (1) means that the pure
density matrix of the composite system ρ̂ = |ψ〉〈ψ | is block
diagonal, with the nL block having dimension D(nL ). There-
fore, the reduced density matrix of the L subsystem ρ̂L =
TrRρ̂ is also block diagonal

ρ̂L =
N∑

nL=0

ρ̂
(nL )
L , (18)

with the nLth block given as

ρ̂
(nL )
L =

dL (nL )∑
l,l ′=1

ρ
nL
l,l ′ |nL, l〉〈nL, l ′|, (19)

and its matrix elements are

ρ
nL
l,l ′ =

dR (nL )∑
r=1

c∗
nL,l ′,rcnL,l,r . (20)

The formal dimension of the ρ
(nL )
L block is dL(nL) but it only

has a maximum of dnL nonzero eigenvalues. The eigenvalues
of the reduced density matrix of the R subsystem ρ̂R = TrLρ̂

are the same as those of ρ̂L.

B. Number resolved entanglement

Diagonalizing the reduced one-dimer density matrix and
expressing the nonzero eigenvalues as

λ
(nL )
i = e−ξ

(nL )
i , (21)

with nL = 1, ..., N and i = 1, ..., dnL , we obtain the
symmetry-resolved entanglement spectrum ξ

(nL )
i [2,11].

The entanglement spectra of the three representative states
in Fig. 3 are shown in Fig. 5. The reduced subsystem
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FIG. 5. Entanglement spectra. The number-resolved entangle-
ment spectra of representative states marked by (a) ◦, (b) �, and
(c) � in Fig. 3.

density matrix for the island cat states is dominated by few
eigenvalues in the populated integrable regions. In particular,
for the “population cat state” in Fig. 3(c), it is clear that the
distribution decays exponentially across the chaos border as
befitting particletunneling, whereas for the “excitation cat
state” in Fig. 3(d) the n distribution is Gaussian, as expected
for a superposition of coherent states localized in the two
j islands with n ≈ 0. By contrast, for the chaotic states
we observe many eigenvalues of comparable magnitude,
spread throughout the chaotic sea. The bipartite entanglement
entropy of the chaotic states should thus be much larger than
that of the island-supported eigenstates.

Given the symmetry resolved entanglement spectrum, the
probability for each symmetry sector, i.e., the probability of
finding nL particles in the L subsystem and N − nL particles
in the R subsystem is

pnL =
dnL∑
i=1

λ
(nL )
i . (22)

The total entanglement entropy between the two dimer sub-
systems

S = −Tr(ρ̂L ln ρ̂L) =
N∑

nL=0

S(nL ) (23)

can thus be written as the sum of the symmetry-resolved
entanglement entropies [41–43]

S(nL ) = −Tr
(
ρ̂

(nL )
L ln ρ̂

(nL )
L

)

= −
dnL∑
i=1

λ
(nL )
i ln λ

(nL )
i . (24)

VIII. ENTANGLEMENT OF ERGODIC STATES

Having defined the number resolved entanglement entropy,
we turn to predict its expected form for states corresponding
to different semiergodic ensembles. These include uniform
canonical states, canonical random states that account for fluc-
tuations about the uniform mean, microcanonical states spread
on a single energy shell, and GGE states where ergodicity only
applies to a restricted fixed J region within the energy shell.

A. Uniform states

Consider a completely uniform state |ψerg〉 defined by
Eq. (17) with |cnL,l,r | = 1/

√
D for all nL, l, r. The population

distribution for such a state is proportional to the density of
states

perg
nL

= D(nL )

D
. (25)

Each ρ̂
(nL )
L block of the reduced one-dimer density matrix will

have dnL equal eigenvalues λ
(nL)

i = perg
nL /dnL , hence the number

resolved entropy is

S(nL )
erg = −perg

nL
ln

perg
nL

dnL

, (26)

and the total bipartite entanglement entropy is

Serg =
N∑

nL=0

S(nL )
erg < ln

⎛
⎝ N∑

nL=0

dnL

⎞
⎠ = Smax. (27)

B. Canonical random states

To account for fluctuations over the ergodic mean, consider
a random canonical state |ψGOE〉 in which

cnL,l,r = znL,l,r√
D

, (28)

where znL,l,r are real random numbers, picked from a normal
distribution with zero mean and unit variance. Such states
emulate the eigenstates of random matrices from a Gaussian
Orthogonal Ensemble (GOE), expected for fully chaotic sys-
tems that are not restricted to one energy shell (e.g., the kicked
rotor). While they are not strictly normalized, the mean of
their norm is one and the norm fluctuations rapidly decline
with N . Thus, we simply renormalize the state vector by the
norm N ≈ 1. The mean population distribution remains perg

nL

064210-6



CHAOS AND BIPARTITE ENTANGLEMENT BETWEEN … PHYSICAL REVIEW E 106, 064210 (2022)

(a)

(b)

FIG. 6. Entanglement of canonical random states. The particle
distribution probability pnL and the number-resolved entanglement
entropy S(nL ) are plotted as a function of nL in panels (a) and (b),
respectively. Symbols and error bars correspond to the mean and
standard deviation over an ensemble of 103 symmetrized canonical
random states with N = 29 particles. The solid line in (a) cor-
responds to the anticipated ergodic distribution perg

nL
of Eq. (25),

whereas the dashed and solid lines in panel (b) correspond to the
estimates of S(nL )

erg in Eq. (26) and S(nL )
GOE in Eq. (29), respectively.

but the expected entanglement entropies S(nL ) now include a
finite-size fluctuation correction [23,34]

S(nL )
GOE = S(nL )

erg − perg
nL

2

d2
nL

D(nL )

= S(nL )
erg − perg

nL

2

min{dL(nL), dR(nL)}
max{dL(nL), dR(nL)} (29)

so that the total entanglement entropy is

SGOE = Serg − 1

2

N∑
nL=0

perg
nL

d2
nL

D(nL )
. (30)

In Fig. 6 we validate the predictions of Eq. (25) and
Eq. (29) by comparison to the mean population distribution
and the mean number-resolved entanglement entropy of a
numerically generated ensemble of canonical random states.
Each random state realization is symmetrized to the A1 irre-
ducible representation of the D2 group. and the mean number
distribution and entanglement entropy over all realizations
are calculated within each nL sector. The ergodic number
distribution and the finite-size fluctuation correction to the
entanglement entropy clearly capture the behavior of the
canonical random states.

C. GGE states

Due to the conservation of E and J , the ergodicity of the
chaos supported eigenstates is incomplete in the sense that
they are restricted to the fixed J region within the energy shell.
The expected population distribution for such states will thus

FIG. 7. Entanglement of chaos-supported states. Particle distri-
bution probability (a) and number-resolved entanglement entropy
(b) for the D(J )

ch = 100 highest H states in the J = 11 shell of the ex-
act spectrum. Diamond symbols mark the mean value, whereas solid
lines correspond to the predicted generalized Gibbs ensemble values
pGGE

J,nL
and S(J,nL )

GGE . Triangles mark the number resolved entanglement
entropy of the chaotic state of Fig. 3. Parameters are the same as in
Fig. 3.

differ from pGOE
nL

and correspond to that of a GGE,

pGGE
J,nL

= D(J,nL )
ch

D(J )
ch

, (31)

where D(J )
ch is the total number of unperturbed eigenstates in

the chaotic region of the J shell, and D(J,nL )
ch is the dimension

of the fixed nL subset, hence
∑

nL
D(J,nL )

ch = D(J )
ch .

The expected number-resolved entanglement entropy for
the chaos-supported eigenstates in the coupled-dimers system
is, accordingly,

S(J,nL )
GGE = pGGE

J,nL

(
ln D(J )

ch − 1
2

)
, (32)

so that the total bipartite entanglement entropy S(J )
GGE =

ln D(J )
ch − 1

2 depends on the area of the J shell, rather than on
the system’s volume. The first term corresponds to the entropy
of a uniform state with pJ,nL = 1/D(J )

ch , whereas the subtracted
factor accounts for maximal fluctuations around this mean
value.

In Fig. 7, the expressions for the GGE population-
distribution in Eq. (31) and entanglement entropy in Eq. (32)
are validated by comparison with the corresponding mean val-
ues over all the chaotic states in a representative fixed-J shell.
While there is an overall good agreement, the entanglement
entropy of the chaos supported states is slightly lower than
the GGE prediction, indicating larger fluctuations due to the
incomplete ergodicity of the eigenstates.

The total bipartite entanglement entropy S of all the eigen-
states of the coupled dimers system is correlated in Fig. 8 with
their ergodicity, quantified by the Shannon entropy H. The an-
ticipated SGOE and SGGE estimates match the numerical results
for canonical random states and chaos-supported eigenstates,
respectively. It is also verified that the chaos-supported states
are not entirely ergodic, as their Shannon entropy is somewhat
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FIG. 8. Correlation between chaos and bipartite entanglement.
The Shannon entropy vs the bipartite entanglement entropy of the
double dimer eigenstates with N = 21. Symbols point to the marked
representative states in Fig. 3. Black dots correspond to numerically
generated canonical random states. The horizontal solid line marks
HGOE, whereas the vertical lines mark Serg (dashed), SGOE (dash-
dotted), and SGGE ≡ maxJ (S(J )

GGE ) (dotted).

below HGOE. In comparison, the bipartite entanglement en-
tropy of the island-supported states matches the expectation
for macroscopic cat states, for which the reduced density
matrix contains only a few (minimally two) nonvanishing
eigenvalues.

IX. EXPERIMENTAL REALIZATION

The experimental relevance of the symmetry-resolved en-
tanglement entropy has been demonstrated in [53–55]. In
particular, Ref. [53] outlines a method for measuring pnL

and S(n(L) in Bose-Hubbard systems. Projection into the Fock
basis |m〉 is obtained by a sudden increase of the lattice
depth and number-sensitive imaging with single-site resolu-
tion. Atom number counting on individual lattice sites in
different runs of the experiment then probes the probabil-
ity distribution pnL , and consequently provides the “number
participation” PNn = (

∑
nL

p2
nL

)−1 and the “number entropy”
Sn = −∑

nL
pnL ln pnL that quantify the effective number of

contributing ρ̂
(nL )
L blocks and the interblock entanglement, re-

spectively. The symmetry resolved entanglement S(nL ), called
the “configurational entropy” in [53], is cleverly probed by
monitoring number resolved correlators that quantify the in-
trablock entanglement via the deviation from separability
between the constituent subsystems. One caveat is that the
parameter range for linear dependence between these config-
urational correlators and the symmetry resolved entanglement
entropies, is limited. However, systematic studies of the
relation between entanglement entropy and subsystem corre-
lations may overcome this problem. The quantities presented
in this paper are thus measurable with current experimental
techniques.

X. CONCLUSIONS

The bipartite entanglement of eigenstates of partitioned
systems and its relation to chaotic ergodicity are the subject of
a growing body of work [23–40]. Most effort has so far been
concentrated on fermionic systems and spinchains for which
the classical limit is sometimes obscure. The mean-field limit
of many-boson systems allows for a relatively simple analysis
of the classical phase space structure, and a tractable connec-
tion to the resulting eigenstate entanglement entropy and its
deviations from complete ergodicity.

The coupled Bose-Josephson system provides an excellent
testbed for studying bipartite entanglement in a mixed phase
space with partial ergodicity. We have characterized the global
phasespace structure of this system and correlated it with
the structure of the U(1) symmetry-resolved entanglement of
midsystem eigenstates supported by the different dynamical
regions. The dependence of symmetry-resolved entanglement
entropy of random states on the relative size of the con-
stituent subsystems was found to follow the Page formula
[23]. The overall entanglement was found to be restricted
by incomplete ergodicity due to the adiabatic invariance of
the sum of subsystem actions. Future work will establish
how bipartite entanglement is affected by the breakdown of
joson conservation at strong interdimer coupling and strong
interaction.
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