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Full self-consistent stationary Vlasov-Maxwell solutions of magnetically confined plasmas are built for
systems with cylindrical symmetries. The stationary solutions are thermodynamic equilibrium solutions. These
are obtained by computing the equilibrium distribution function resulting from maximizing the entropy and
closing the equations with source terms that are then computed by using the obtained distribution. This leads
to a self-consistent problem corresponding to solving a set of two coupled second order nonlinear differential
equations. Relevant plasma parameters are introduced and a bifurcation leading to an improvement of plasma
confinement is shown. Conversely, in the improved confinement setting, we exhibit the emergence of a separatrix
in the integrable motion of a charged particle .
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I. INTRODUCTION

Within the scope of the search for better containment of
Tokamak-based fusion plasma, understanding the emergence
of transport barriers is a major issue. Indeed, they may give
rise to the so-called H-mode which is at the heart of the
current approach of magnetically confined fusion reactors. It
now seems accepted that the internal transport barrier plays a
major role in magnetized fusion plasma [1,2].

When considering magnetized fusion plasma, it is now
commonly accepted that one of the best descriptions of the
plasma is the kinetic one coupled to the Maxwell equations,
and due to the low collisionality of the plasma the Maxwell-
Vlasov system becomes the de facto first choice. The Vlasov
equation is a common feature observed when considering
systems with long range interactions, and beyond plasmas a
large number of physical systems are in this category, like for
instance gravitational forces and Coulomb interactions, vor-
tices in two dimensional fluid mechanics [3–6], wave-particle
systems relevant to plasma physics [7–9], and Free-Electron
Lasers (FELs) [10,11]. In these settings, long range interact-
ing Hamiltonian systems display some common dynamical
features. Given some initial conditions, the systems exhibit a
rapid relaxation towards a quasi-stationary state (QSS). These
QSS have an extended lifetime, and one way to tackle them
in statistical mechanics is to use the Lynden-Bell formalism
[12,13]. In the realm of long range models the Hamilto-
nian mean field (HMF) model [14] has emerged as being a
paradigmatic one, displaying most of the features observed
in systems with long range interactions: nonadditivity [15],
out of equilibrium phase transition [16,17], long lived quasi-
stationary states, and slow relaxation towards equilibrium.
More recently, the Hamiltonian microscopic dynamics has
been investigated, displayed surprising regularity [18], and
lead to the understanding of stationary states of the problem

as a self-consistent infinite collection of uncoupled thus in-
tegrable pendula [19], and this could be extended to other
models [20]. This regularity lead to the idea that long range
systems organized themselves in terms of self-organized reg-
ularity [21], at least when it was possible, i.e., the underlying
microscopic dynamics became integrable once an equilib-
rium was reached and the self-consistent fields were thus
stationary. This was also the case for the true thermodynamic
equilibrium. Given this feature, we will take a similar ap-
proach in the context of plasma physics and follow the recent
results discussed in [22,23]. We construct complete thermody-
namic equilibrium solutions of the classical Maxwell-Vlasov
equations in a cylindrical geometry in the spirit of already
discussed equilibria [24–28]. Indeed, in this geometry the
motion of a charged particle in a two-component magnetic
field can be made integrable, while it is not guaranteed in a
toroidal configuration [29]. After applying the recipes we find
stationary solutions of the Maxwell-Vlasov problem in this
geometry, are obtained after solving a system of two coupled
nonlinear ordinary differential equations. In this paper, these
equations are computed and then solved, and regimes leading
to a plasma confinement are discussed and investigated. The
influence of plasma flows is thoroughly investigated and a
bifurcation leading to an improved plasma confinement is
presented; this is reminiscent, at least formally, to what one
expects from the H-mode. Another important question that
arises is whether or not the integrable individual microscopic
dynamics resulting from the obtained self-consistent field can
have a separatrix in their phase space. Indeed when only
taking into account the self-consistency partially [22], it was
shown that no separatrix could exist, while as will be shown,
taking into account the full self-consistency can lead to the
emergence of a separatrix. This feature is quite crucial, as
it was shown in [29,30] that when moving to a toroidal
configuration, the breaking of the separatrix was leading to
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Hamiltonian chaos. Accompanying this chaos, large fluctua-
tions of the magnetic moment are observed which therefore
cannot be considered as an adiabatic invariant [31,32]. These
observations might affect the foundations of gyrokinetics [33],
and as such the results obtained through gyrokinetic simula-
tions may not be considered as “first principles.”

Finally, one last benefit of having exact solutions of the
Vlasov-Maxwell system is that, besides their physical rele-
vance for fusion plasmas, if proved to be stable, the solutions
could be used as well as tests for numerical codes like, for
instance, the one discussed in [34] as part of their verification
process.

This paper is organized as follows. In the first part we
briefly recall the recipes of the problem that were used in
[22,23] and extend it by taking into account the poloidal cur-
rent feedback. We also introduce the relevant physical plasma
parameters that are at the core of our analysis. Then in Sec. II,
we quickly derive the equations that allow us to study the dif-
ferent possible regimes, the full derivation, and computations
of a two species plasma being derived in the Appendix. The
solutions are studied in Sec. III, and a bifurcation between two
regimes is exhibited and the individual microscopic dynamics
is discussed. Finally, we conclude.

II. FULL SELF-CONSISTENT EQUILIBRIUM EQUATIONS

In this section we present the two nonlinear coupled or-
dinary differential equations that govern the self-consistent
equilibrium solutions of the Maxwell-Vlasov problem in the
considered cylindrical geometry. In order to do so, let us start
by describing our considered setting.

A. Electromagnetic setting

We consider the problem of an infinite aspect ratio limit
of an ideal Tokamak such that we can consider the torus
as a cylinder and the usual cylindrical coordinates (r, θ, z)
and associated unit vectors (er, eθ , ez ). In this setting, we
consider a magnetic field with cylindrical symmetry B(r) in
the following form

B = BPlasma + BExt, (1)

where BExt = B0 ez is an external uniform magnetic field of
intensity B0 applied to the plasma, and BPlasma is the magnetic
field generated by the plasma. In order to comply with the
symmetry we choose to consider magnetic fields that can be
expressed as

B = B0[g(r) eθ + (1 + k(r)) ez], (2)

where g and k are two functions that remain to be determined,
and correspond to the plasma generated field, i.e., BPlasma =
B0(g(r) eθ + k(r) ez ). From this we can get an expression of
the vector potential

A = Aθ (r) eθ + Az(r) ez (3)

in a Coulomb gauge which introduces two other related func-
tions K (r) and G(r):

Aθ (r) = B0

r

∫ r

0
u(1 + k(u)) du = B0

r

(
r2

2
+ K (r)

)
, (4)

and

Az(r) = −B0

∫ r

0
g(u) du = −B0G(r) . (5)

So, the magnetic potential A(r) writes

A(r) = B0

[(
r

2
+ K (r)

r

)
eθ − G(r) ez

]
. (6)

Finally, we will assume that there is no electric field by,
for instance, considering that there is some neutralizing back-
ground or that the charge density is zero using a two species
approach (this is detailed in the Appendix).

B. Charged particle dynamics

We will consider the motion of a charged particle in the
fields described previously. We shall assume that we have
a classical non relativistic point particle with charge Q = 1
and mass m = 1. Using the canonical variables, the motion is
Hamiltonian and the Hamiltonian of the system writes

H = (p − A(q))2

2
, (7)

where p and q form three pairs of canonically conjugate
variables.

The associated equations of motions are{
q̇ = p − A
ṗ = ∇A. (p − A) . (8)

Given the specific form of the magnetic field and the associ-
ated symmetries (translation along z, and rotation around θ ),
the motion of charged particles is integrable and we can re-
duce the system to an effective one-dimensional Hamiltonian
system

H = 1

2

[
p2

r +
(

pθ

r
− B0

(
r

2
+ K (r)

r

))2

+ (pz + B0G(r))2

]
(9)

= p2
r

2
+ Veff (r), (10)

where pθ and pz are constants of the motion, see for instance
[22].

C. Kinetic approach and equilibrium stationary distribution

In order to describe the plasma, we take a kinetic point
of view and will consider a one particle distribution function
at equilibrium in order to describe the physical state of the
plasma. As mentioned we consider no electric field and ne-
glect the collisions, so we can assume that the dynamics of the
distribution function is governed by the Vlasov equation, and
in our nonrelativistic setting it corresponds to the conservation
of the particle distribution function along the trajectory of
each particle, i.e.,

d

dt
f (q, p, t ) = 0, (11)

where q and p satisfy (8). More information can be found in
[35], for example. The particles are sources for the fields in
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the Maxwell equations, and we have the source terms n for
the spatial density function of charges, and j for the current
vector, are given by

n(q,t) =
∫ +∞

−∞
f (q, p, t ) d3 p, (12)

and

j(q, t ) =
∫ +∞

−∞
v f (q, p, t ) d3 p . (13)

Since the motion of the particles is governed by the mag-
netic field, this implies a self-consistent problem [36]. In
what follows we derive a possible candidate of the stationary
distribution function by following the steps of the procedure
described in [22,23]. Note that the full derivation of the equa-
tions is done in the Appendix, and for clarity we decided to
go as straight as possible to the self-consistent equations to be
solved.

When looking for a stationary solution of the nonself-
consistent Vlasov equation (11), we can rewrite it with the
usual Poisson bracket as

{ f , H} = 0, (14)

and so any function of H is a solution of the problem.
Furthermore, when building the distribution function com-

ing from integrable microscopic motion we want to consider
the fact that the total energy of the system H , the total mo-
mentum along z, and the total angular momentum along θ are
conserved. Accordingly, the Poisson bracket with one of these
conserved quantities is null. So, we can introduce respectively
four Lagrange multipliers β, γz, γθ, and γ0 in order to im-
pose constraints corresponding to these conserved quantities,
respectively, the energy, the momentum along z, the angular
momentum, and the number of particles conservation (see
[37,38] for quite similar approaches). And, in order to select
a solution among the infinite possibilities, we settled for the
one which maximizes the entropy

S[ f ] = −kB

∫
�

f ln( f ) d�, (15)

where kB is the Boltzmann constant and d� the infinitesi-
mal volume of phase space � with the previously mentioned
constraints. In order to fully characterize our problems we
have to fix the number of particles N . However, since our
geometry is the infinite cylinder, the actual relevant quantity
is the particle density per unit length. Introducing an analogy
with some kind of flat torus, we introduce a length scale, noted
R, in the cylinder so that the particle density per unit length is
noted λ = N/2πR. The solutions to this variational problem
are given by a distribution of the form

f ∝ e−βH−γz pz−γθ pθ . (16)

We can get the exact expression knowing the total number
of particles N . Indeed, we choose to normalize f , such that

N =
∫

�

f d�, (17)

and so the proportionality constant in Eq. (16) is

f0 = N

4π2R
(

2π
β

)3/2 ∫ +∞
0 re−ar2−bG(r)−cK (r)−γ1 dr

, (18)

with γ1 = − γ 2
z

2β
, a = γθ

2 (B0 − γθ

β
), b = −B0γz, and c = B0γθ .

That leads to the final expression

f = Ne−βH−γz pz−γθ pθ

4π2R
(

2π
β

)3/2 ∫ +∞
0 re−ar2−bG(r)−cK (r)−γ1 dr

. (19)

It may be worth noting here that the β parameter corresponds
to the thermodynamic temperature

1

T
= ∂S

∂E = kBβ, (20)

with the average energy E and it can be assumed positive. We
also insist on the fact that γθ and γz are proportionalto the
averages of vθ = rθ̇ and vz = ż, respectively. In the literature
[23], it has been noted that when a plasma rotation exists an
internal transport barrier can exist. Then, it can be expected
that in such states the statistical averages of vθ and vz are not
null and so are γθ and γz, respectively.

D. Sources of the plasma magnetic field

Always considering only one species of a charged particle
with charge q = 1 and mass m = 1, we can compute the
particle density and the current density in the plasma from
the form of the resulting distribution function (19) and the
Hamiltonian (9), and extract an explicit form of the source
terms which depends on the functions G and K . For instance,
the spatial density n behaves like

n(q) ∝ e−ar2−bG(r)−cK (r) . (21)

We can also compute the proportionality term in Eq. (21) and
express the radial density ρ given by

ρ(r) =
∫

n(q) r dθ dz∫
r dθ dz

= 1

4πrR

∫
n(q) r dθ dz, (22)

as

ρ(r) = 1

V
e−ar2−bG(r)−cK (r), (23)

with

V = 4π2R
∫ +∞

0 re−ar2−bG(r)−cK (r)dr

N
. (24)

We notice that as discussed in [23], Eq. (23) shows that the
equilibrium profile is not flat as soon as γθ is not zero and
it depends on the poloidal magnetic field configuration when
γz �= 0. In other words as soon as the plasma has nonvanishing
angular momentum the profiles are not flat. Moreover, since
we consider an equilibrium configuration, we also obtain a
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nonflat temperature profile but we have to consider the local
radial kinetic temperature profile, rather than the thermody-
namic one (20) discussed previously. For instance we can
compute the average kinetic energy at a constant radius

ε(q) =
∫

H f d3 p, (25)

that leads to

ε(q) = ∂n(q)

∂β
, (26)

which implies that the radial kinetic energy profile is, akin to
an ideal gas, related to the radial density and therefore has the
same shape.

In the same spirit we now compute the source terms of the
plasma magnetic field and move to the current density j. We
start directly from (13) and the speeds

vz = pz + B0G(r), (27)

and

vθ = pθ

r
− B0

(
r

2
+ 1

r
K (r)

)
. (28)

So, if we break down j by component, the density current
along the θ coordinate is given by

jθ (q) =
∫ +∞

−∞
vθ f d pr d

pθ

r
d pz, (29)

and ends up as

jθ (q) = − 1

V

γθ

β
re−ar2−bG(r)−cK (r) . (30)

For the density current along the z coordinate, we do the same

jz(q) =
∫ +∞

−∞
vz f d pr d

pθ

r
d pz, (31)

and we obtain

jz(q) = − 1

V

γz

β
e−ar2−bG(r)−cK (r) . (32)

So we finally find

j(r) = − 1

V

(
γθ

β
r eθ + γz

β
ez

)
ear2−bG(r)−cK (r), (33)

or when rewritten as a function of radial density:

j(r) = −
(

γθ

β
r eθ + γz

β
ez

)
ρ(r) . (34)

Now that the source terms have been computed we may move
to the self-consistent solutions. However, we can already no-
tice that the solutions will obey an interesting condition that is
independent of the thermodynamic temperature:

jθ (r)

r jz(r)
= γθ

γz
. (35)

E. General Self-Consistent Equation

1. Self-consistent system and reduction

We have computed the currents which depend on the func-
tions K and G that are defining the vector potential (6) in

Coulomb gauge (∇ · A = 0) which itself is related to the
current through Ampère’s law and ends up to be a Poisson
equation

�A = −μ0j, (36)

and so, using the previously computed source terms we obtain
a set of self-consistent equation{

1
r

∂
∂r

(
1
r

∂
∂r K (r)

) = κθe−ar2−bG(r)−cK (r)

1
r

∂
∂r

(
r ∂

∂r G(r)
) = −κze−ar2−bG(r)−cK (r) , (37)

with

κθ/z = μ0

B0βV
γθ/z . (38)

A full derivation of these equations when considering a two
species neutral plasma is performed in the Appendix, and we
end up with the same form as expressions (37).

Let us now study the system more (37). First, in order to
simplify and given the relation (35), we rescale the length us-
ing a scaling of the type r̃ → γθ

γz
r. Furthermore, if we also do

the transformations G̃(r) → bG(r) and K̃ (r) → ar2 + cK (r),
and finally we set j̃z (̃r) = αe−G̃(̃r)−K̃ (̃r) where α = (bκz )2

cκθ
for

the current density, we end up with{
1
r̃

∂
∂ r̃

(
1
r̃

∂
∂ r̃ K̃ (̃r)

) = j̃z (̃r)
1
r̃

∂
∂ r̃

(̃
r ∂

∂ r̃ G̃(̃r)
) = j̃z (̃r)

. (39)

For convenience we now omit the ˜, and forget the z in jz.
Also, since we only have functions depending on r, partial
derivatives are simple ones. Working with Eq. (39) we have

1

r

d

dr

(
1

r

dK (r)

dr

)
= 1

r

d

dr

(
r

dG(r)

dr

)
, (40)

and obtain

dK (r)

dr
= r2 dG(r)

dr
+ α0r, (41)

with the integration constant α0 that will need to be deter-
mined. Then from the logarithmic derivative of j(r) we obtain

1

j(r)

d j

dr
= −dG(r)

dr
− dK (r)

dr
. (42)

And by combining these equations and differentiating (42) we
end up with

d2 j

dr2
= −

(
2α0

1 + r2
+ (1 + r2) j

)
j +
(

1

j

d j

dr
− 1 − r2

r(1 + r2)

)
d j

dr
.

(43)
So we end up with one second order nonlinear ordinary
differential equation, which once solved gives us the whole
properties of the self-consistent Vlasov-Maxwell stationary
state. Before solving it let us first discuss the conditions that
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need to be met for typical physical expected conditions, we in-
sist that in contrast to the analytical work performed [22], here
the full self-consistent field is taken into account and possible
moderation effects on the external magnetic field are taken
into account, leading to a set of differential equations (37)
instead of just one.

2. Constraints and parameters

Let’s take a closer look at the parameters necessary for the
integration of (43) in order to construct our Vlasov-Maxwell
stationary solutions. Given the symmetry of the problem, it
is natural to expect that d j

dr (0) = 0, so only two parameters
α0 and j(0) are needed to obtain the solution of (39). Then
after fixing the plasma constants we will have access to the
full Vlasov-Maxwell solution. The problem lies in connecting
these two parameters with the global equilibrium parameters
of the plasma which are β, γz, and γθ , and also connect these
to the external parameters, B0 and the lineic average plasma
density λ = N/2πR. Note that we will assume that the unit
length, i.e., the typical scale on which particles are confined,
or a typical radius of the cylinder to be equal to 1, so 1/R has
no dimension and can be more considered like, for instance,
an aspect ratio if we imagine the cylinder as the limit of a
torus. We shall now attempt to compute the two parameters
from the global parameters, and start our analysis with α0.

For this purpose let us recall Eq. (41) and compute the
constant in r = 0. Tracing back we obtain

α0 =
(

γz

γθ

)2[
2a + c

(
1

r

∂K

∂r

)∣∣∣∣
r=0

]
− b

(
r
∂G

∂r

)∣∣∣∣
r=0

. (44)

On the one hand, (r ∂G
∂r )|r=0 = 0 [from (5) we note that ∂G(r)

∂r =
g(r) and g(r) is bounded]. On the other hand, from (4) we
note that ( 1

r
∂K
∂r )|r=0 = k(0). Given the cylindrical geometry,

along z and for r = 0, the magnetic field Bz(0) corresponds to
the sum of the external B0 field and the sum of infinitesimal
uniform fields generated by infinitesimal solenoids of thick-
ness dr. These correspond in fact to the field generated by
the current per unit length Iθ

2πR = ∫ +∞
0 jθ (r)dr. So we end up

with

k(0) = μ0

B0

∫ +∞

0
jθ (r)dr

= −μ0

B0

N

4π2R

γθ

β
, (45)

and thus

α0 = γ 2
z

γθ

(
B0 − γθ

β

)
− μ0

γ 2
θ N

4π2Rβ
. (46)

Regarding j(0), since the vector potential is defined up to
some constants, we end up with

j(0) = α = (bκz )2

cκθ

= γ 4
z

γ 2
θ

μ0

βV
. (47)

Unfortunately V depends on the integral of the function
r j(r)/ j(0), j(r) depends on j(0), and the differential equation
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0.9

1

FIG. 1. Typic al density profile here obtained with j(0) = α0 = 1.

(43) is nonlinear, so we have some implicit problem. Fortu-
nately we also have some constant parameters in V , that we
may adjust. So the strategy in what follows will be to fix a
value of α0 and a value of j(0), so we can obtain the function
j(r), from which the equilibrium will be defined.

III. SOLUTIONS

A. Standard equilibrium profiles

From the form of the solutions (43) and having the con-
stants, (46) and (47), more or less defined from plasma
parameters, we can now compute and sketch some density
current profiles. Note that we also consequently have access to
the density profile since ρ(r) ∝ n(q) ∝ j(r). In order to plot
these profiles, we have to choose values for the parameters set
( j(0), α0). The solutions from the differential equation (43)
are computed using octave (lsode) [39]. As we expected from
[22], we also get nonflat “Gaussian” type profiles for a given
cho ice of parameters (see figure 1). The quantity j(0), as we
can expect, is linked to the height of the j(r) curve, conversely
α0 appears to influence the shape of the profile.

B. Bifurcation towards enhanced confinement profiles

Regarding the behavior of the profile, for a fixed value of
j(0), a bifurcation with the emergence of a positive curvature
and an enhanced density profile near r = 0 can be identified.
To do so, we make some Taylor expansions near r = 0 and
use the self-consistent Eq. (43). We find that the threshold
∂2 j
∂r2 |r=0 = 0 is obtained when

j(0)

−2α0
= 1, (48)

from which we obtain solutions where the profiles exhibit a
maximum in r = 0 and others with “eccentric” profiles, i.e.,
a maximum of the density function for a given r0 > 0. In
order to study the different shape of solutions we choose to fix
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1.2

FIG. 2. Density profiles with j(0) = α = 1. (a) with α0 = −1,
(b) with α0 = −1/2, (c) with α0 = 0. The critical bifurcation value
is α0 = −1/2, we see an enhanced density profile emerging for α0 <

−1/2.

j(0) = 1 and we tune the parameter α0, results are displayed
in figure 2.

We can notice also the role of the poloidal current density
jθ (r) depicted in figure 3, tends to be stronger and more
peaked, i.e., localized, once the bifurcation is crossed.

C. Link to hyperbolic points

Some evidence that steeper density profiles could be linked
to the presence of hyperbolic points in particle trajectories
have been made in [23]. In order to check if this is still the
case with a self-consistent solution let us consider the effective
potential defined in Eq. (10) and rewrite it with the scaled

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIG. 3. jθ (r) profiles with j(0) = α = 1. (a) with α0 = −1, (b)
with α0 = −3/2, (c) with α0 = 0. The critical bifurcation value is
α0 = −1/2, we see that the current profile gets more peaked when
α0 < −1/2.
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FIG. 4. Effective potential Ṽeff = βVeff as a function of r rescaled
by rγ , with j(0) = 1, α0 = −1, pθ = 0.01, and pz ≈ 0.30. Both con-
tributions of the term involving G (dubbed Ṽz) and the one involving
K (dubbed Ṽθ ) are represented. Both are needed to explain the shape
of the double well potential highlighted in the insert.

variables, we obtain

βVeff (r) = β

2γ 2
z

⎡⎣(pθ

r
−
(
γ 2

z

β

r

2
+ K (r)

r

))2

+ (pz − G(r))2

⎤⎦ .

(49)

To look for hyperbolic points, we need to check the shape of
this potential, which obviously does not depend directly on
γz, but we have to choose a value for the particle density λ

to determine an effective potential. In order to be somewhat
realistic, we settled for an ITER like value of the parameter

and fixed γ 2
z

β
= β〈vz〉2 ∼ 0.1, with the orders of magnitude

and notations developed in section III D. We recall that here
the functions G and K are actually G̃ and K̃ which are solu-
tions of the self-consistent equations (39), which thus depend
on the plasma parameters. Now, exploring the shape of the
potential for different values of pθ and pz, we find that there
are effective potentials that give rise to unstable hyperbolic
fixed points (see figure 4), we find these potentials once we
have crossed the bifurcation threshold.

It is important also to point out the influence of diamagnetic
effects due to the poloidal current. Indeed, when neglecting
these effects it was not possible to obtain effective potentials
with hyperbolic points (see [22]). In fact, in figure 4 we can
see the individual contribution of both terms in the effective
potential, namely the one involving G and the one involving
K , and one clearly sees that both are needed to create the
hyperbolic points in between the two two stable elliptic points.
Moreover the presence of such effective potentials above the
bifurcation threshold that creates an enhanced density profile
is also consistent with the results depicted in [23]. This phe-
nomenon could indeed be important as any perturbation will
break the separatrix and lead to Hamiltonian chaos. This could
occur, for instance, in toroidal magnetic fields configurations
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with large aspect ratios which can lead to chaos and destroy
the magnetic moment, impacting as such the reliability of
gyrokinetic simulations.

D. Back to plasma parameters

Now that we have briefly analyzed the solutions that we
get, we want to summarize what are the plasma parameters
corresponding to these solutions and discuss the m. We list
them in three categories:
(a) External constraints: R, B0,

(b) Microscopic physics: m−, m+, q−, q+
(c) Plasma parameters: N , β, γθ , γz.

We shall below consider only the one species solution dis-
cussed previously. We recall that the characteristic length
scale of the systems is given by

rγ = γz

γθ

. (50)

We then have α0 given by Eq. (46) and j(0) by Eq. (47).
We can then, for instance, compute the poloidal and

toroidal current by computing the flux of j, that leads to the
currents

Iθ = −qN

2π

γθ

β
, (51)

Iz = − qN

2πR

γz

β
, (52)

or the typical speed of the plasma along both directions

〈v〉
N

= −

⎛⎜⎝ 0
γθ

β

〈r〉
N

γz

β

⎞⎟⎠ . (53)

We may as well compute the energy density

〈H〉
N

=
[

3

2β
+ mγ 2

θ

2β2

〈r2〉
N

+ mγ 2
z

2β2

]
(54)

that corresponds to the average kinetic energy of the particles.
We see here that due to the plasma flow we do not have the
usual direct link between β, and the kinetic energy per particle
and additional terms appear.

In order to see if these stationary solutions could be rel-
evant in the context of magnetized fusion, we also compute
some order of magnitudes, considering T ∼ 10 keV, B0 ∼
1 T, N ∼ 1020 m−3, m ∼ 10−27 kg, and Q = e. Let us con-
sider a distribution with a ∼ 10, b ∼ 10, and c ∼ 10, like
what was done in [23]; we also want our typical scale rγ to
be of the order of the small radius of a tokamak, so about
1 m, and some aspect ratio of order 1/3, this means γz ∼ γθ .
With these values, we end up with 〈vz〉 ∼ 〈vθ 〉 ∼ c/1000, c
being the speed of light. Also, γz ∼ γθ ∼ β〈v〉 ∼ 5 10−10 USI
(corresponding to the international units, note γz and γθ do not
have the same dimensions, but r ∼ 1). We can also estimate
the current Iz ∼ 5 105 A. These estimations are in line with
typical scales of parameters in magnetized fusion machines.
We may thus anticipate that these stationary solutions could
be relevant in the fusion context, and especially the exhibited
bifurcation.

IV. CONCLUSION AND PERSPECTIVES

In this paper we have computed a family of stationary
solutions to the Vlasov-Maxwell equations, in a cylindrical
geometry. These solutions correspond to a thermodynamic
equilibrium and display a nonuniform density profile at equi-
librium, also with a nonuniform kinetic temperature profile
as soon as the plasma displays nonvanishing angular momen-
tum, i.e., collective motion in the poloidal or the toroidal.
This simple feature is already somewhat counter intuitive as
the commonly accepted paradigm in tokamak physics is that
these nonuniform profiles are the result of out of equilibrium
features, with energy injection at the center and dissipation at
the walls, so these solutions with global plasma momentum
are offering a possibly different perspective on the confine-
ment. As shown, the solutions are obtained from applying
an entropy maximization principle from which a probabil-
ity density function is obtained, and then a self-consistent
equation has to be solved on the vector potential using the
Maxwell-Ampère equation that looks like a Poisson equation
and ends up in solving two coupled nonlinear second order
ordinary differential equations. The solutions are described
using three intensive variables β, γz, and γθ corresponding to
the Lagrange multipliers related respectively to energy, mo-
mentum, and angular momentum conservations. From these
parameters a typical scale on which plasma confinement is
observed rγ emerges and depends only on the ratio of γz

and γθ , and is as such independent of the global temperature.
Moreover, diamagnetic effects play an important role and a
bifurcation between solutions showing an enhanced confine-
ment profile from a more regular one is displayed and the
threshold computed. Finally, when the bifurcation is crossed
and confinement is enhanced, there are regions in phase space
where individual particles are subject to a double well poten-
tial exhibiting a separatrix. The presence of this separatrix in
these enhanced confinement profile is consistent to what was
previously anticipated in a non self-consistent setting [23] and
are also roots for Hamiltonian chaos under any perturbations
that can also break the magnetic moment conservation [29]
and create some possible problems regarding the validity of
gyrokinetic simulations.

Even though computed through a maximizing principle,
the stability of these solutions under, for instance, a small
perturbation like moving the system to a torus with a large
aspect ratio is not at all given. A perspective of this work
would then be to assess the stability of these solutions, to
also check what happens near the chaotic separatrices and
the breaking of the magnetic moment when moving to a real
toroidal geometry where poloidal symmetry is lost or when
adding the possibility to develop electric fields.
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APPENDIX: GENERALIZATION TO A TWO SPECIES
SYSTEM WITH CHARGES q+ AND q−, AND MASS

m+ AND m−

Below, we derive the full self-consistent system that gives
rise to a stationary solution of the Vlasov-Maxwell system.
We follow the same path as the one used for only one species.
We use the notation with a + or a - at the upper corner
to simplify the notations corresponding to each species, for
example, the test particle Hamiltonians write

H± = (p± − q±A)2

2m± , (A1)

and then lead to the distributions functions

f ± = f ±
0 e−βH±−γ ±

z p±
z −γ ±

θ p±
θ −γ ±

1 , (A2)

after the Lagrange multipliers introduction and maximization
of the entropy. Note that by doing so, we assume that the
entropy is additive so the global maximum may be the sum
of two maxima taken for each species individually, which
somehow neglect the couplings through the current, for in-
stance, so this may not be a thermodynamic equilibrium in
the end, but anyhow, this leads to a stationary solution of the
Vlasov-Maxwell system. We assume that each distribution is
a stationary solution of the Vlasov so that

{ f ±, H±} = 0 . (A3)

If we take a± = γ ±
θ

2 (q±B0 − m±γ ±
θ

β± ), b± = −q±B0γ
±
z , c± =

q±B0γ
±
θ, and γ ±

1 = −m±(γ ±
z )2

2β± , the normalization of each distri-
bution function can be derived through

N± =
∫

f ± d3 p±d3q±

= f ±
0 4π2R

(
2πm±

β±

)3/2∫ +∞

0
re−a±r2−b±G(r)−c±K (r)−γ ±

1 dr,

(A4)
for N± the numbers of particles. So the normalization of f is

f ±
0 = N±

4π2R
(

2πm±
β±

)3/2 ∫ +∞
0 re−a±r2−b±G(r)−c±K (r)−γ ±

1 dr
.

(A5)
We can then compute the spatial densities for each species

n±(q) =
∫

f ± d3 p±

= N±e−a±r2−b±G(r)−c±K (r)

4π2R
∫ +∞

0 re−a±r2−b±G(r)−c±K (r)dr
, (A6)

and the charge radial density

ρ±(r) = q±
∫

n±(q)r dθ dz∫
r dθ dz

= q±

V ± e−a±r2−b±G(r)−c±K (r), (A7)

with V ± = 4π2R
∫ +∞

0 re−a±r2−b±G(r)−c±K (r)dr
N± . In order to move to

self consistency, we also compute, by component, the currents
densities induced. Since

v±
z = 1

m± (p±
z − q±B0G(r)) (A8)

and

v±
θ = 1

m±

(
p±

θ

r
− q±B0

(
r

2
+ 1

r
K (r)

))
, (A9)

after integration we obtain j±θ (q) and j±z (q), so the full current
densities are given by

j±(r) = − 1

β± (γ ±
θ r eθ + γ ±

z ez )ρ±(r) . (A10)

Furthermore, we point out the relations

j±θ (q)

r j±z (q)
= γ ±

θ

γ ±
z

. (A11)

We now move to the full self-consistent equation. We remain
in Coulomb gauge (∇ · A = 0), so we have

�A = −μ0(j+ + j−), (A12)

and we end up with the self-consistent equation⎧⎨⎩
1
r

∂
∂r

(
1
r

∂
∂r K (r)

) = μ0

B0

[
γ +

θ

β+ ρ+(r) + γ −
θ

β− ρ−(r)
]

1
r

∂
∂r

(
r ∂

∂r G(r)
) = −μ0

B0

[
γ +

z

β+ ρ+(r) + γ −
z

β− ρ−(r)
] . (A13)

We recall that we are assuming no electric field, so we have to
impose electroneutrality

ρ+(r) + ρ−(r) = 0, (A14)

which implies⎧⎨⎩
1
r

∂
∂r

(
1
r

∂
∂r K (r)

) = μ0

B0

[
γ +

θ

β+ − γ −
θ

β−

]
ρ+(r)

1
r

∂
∂r

(
r ∂

∂r G(r)
) = −μ0

B0

[
γ +

z

β+ − γ −
z

β−

]
ρ+(r)

. (A15)

We end up with a form of equations that are formally iden-
tical to the ones found in the case of a single species with a
neutralizing background:{

1
r

∂
∂r

(
1
r

∂
∂r K (r)

) = κθe−a+r2−b+G(r)−c+K (r)

1
r

∂
∂r

(
r ∂

∂r G(r)
) = −κze−a+r2−b+G(r)−c+K (r)

, (A16)

where

κθ/z = μ0

B0

[
γ +

θ/z

β+ − γ −
θ/z

β−

]
q+

V + , (A17)

or with more details

κθ/z = μ0

B0

[
γ +

θ/z

β+ − γ −
θ/z

β−

]
q+N+

4π2R
∫ +∞

0 re−a+r2−b+G(r)−c+K (r)dr
.

(A18)
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