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Enhancement factor in the regime of semi-Poisson statistics in a singular microwave cavity
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We investigated properties of a singular billiard, that is, a quantum billiard which contains a pointlike
(zero-range) perturbation. A singular billiard was simulated experimentally by a rectangular microwave flat
resonator coupled to microwave power via wire antennas which act as singular scatterers. The departure from
regularity was quantitatively estimated by the short-range plasma model in which the parameter η takes the values
1 and 2 for the Poisson and semi-Poisson statistics, respectively. We show that in the regime of semi-Poisson
statistics the experimental power spectrum and the second nearest-neighbor-spacing distribution P(2, s) are in
good agreement with their theoretical predictions. Furthermore, the measurement of the two-port scattering
matrix allowed us to evaluate experimentally the enhancement factor F (γ tot ) in the regime of the semi-Poisson
statistics as a function of the total absorption factor γ tot . The experimental results were compared with the
analytical formula for F (γ tot ) evaluated in this article. The agreement between the experiment and theory is
good.
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I. INTRODUCTION

The phenomena of quantum chaos [1–3] have been inten-
sively investigated during the past decades. The characteristic
feature of quantum manifestations of classical chaos are
strong state correlations and level repulsion in energy spectra.
The statistical properties of the energy eigenvalues belong-
ing to a complex quantum system can be modeled by the
ensembles of random matrices. The random matrix theory
(RMT) predicts three main universality classes with the sym-
metry indices β = 1, 2, and 4 for orthogonal, unitary, and
symplectic symmetries, respectively, depending on the sym-
metries of Hamiltonians [4]. The RMT approach was initially
developed to study complex scattering properties in nuclear
physics [5]. By now it has been verified in plenty of ex-
perimental, numerical, and theoretical studies and applied to
many areas, mainly, e.g., in nuclear regarding the interactions
between particles [6,7], condensed matter [8], microwave flat
billiards [9–22], and networks [19,23–29]. Appropriately the
energy-level spectrum experiences all degrees of repulsion
typical for full random matrices, passing from Poissonian
to Gaussian orthogonal ensemble (GOE) and sequentially
through the Gaussian unitary ensemble (GUE) and Gaussian
symplectic ensemble (GSE) [23,30,31]. One should point out
that atoms in strong microwave fields [32–44] are also often
used in simulations of complex quantum systems with time
reversal symmetry. On the contrary, the integrable quantum
systems exhibit uncorrelated energy eigenvalues, where de-
generacies are not prohibited [45], and are described by the
Poisson distribution.

While the transition from the integrable to nonintegrable
system takes place, the degree of spectra correlation increases.
In a series of papers Bogomolny et al. [46–50] proposed a
plasma model for the semi-Poisson spectral statistics display-
ing level repulsion without long-range spectral rigidity, i.e.,

statistics being intermediate between the RMT and Poisson
distributions. In the context of short- and long-range corre-
lations the semi-Poisson systems were studied theoretically
in Refs. [47,51] and experimentally using rectangular cavities
containing pointlike perturbations [52].

The most common measure of spectral regularity is the
nearest-neighbor-spacing distribution (NNSD) P(s). It indi-
cates the degree of level repulsion and hence is utilized to
analyze the short-range fluctuation properties. For regular
systems with uncorrelated spectra there is no level repul-
sion and the NNSD is described by the Poisson distribution
PPoisson(s) = e−s. However, for the semi-Poisson statistics
and systems described by the RMT the probability density
to find two closely spaced neighboring eigenvalues is given
by P(s) ∼ sβ [50]. It is important to underline that both
systems are also paired with exponential decays of the nearest-
neighbor-spacing distributions: the semi-Poisson in a form
e−(β+1)s and the RMT as e−cβ s2

, where cβ depends on the
symmetry class of the considered system. In this article we
will analyze a semi-Poisson system with the symmetry index
β = 1.

The purpose of this work is to analyze quantitatively the
behavior of an integrable system perturbed by two pointlike
scatterers. Such a system is simulated by a microwave rect-
angular flat billiard containing two pointlike antennas. We
show that in the frequency range ν = 8–13.5 GHz the system
behaves like the semi-Poisson one. In this frequency range
we experimentally evaluated the elastic enhancement factor
(EEF) F (γ tot ), which characterizes scattering processes in
the system [53] and is expressed in terms of the two-port
scattering matrix Ŝ [54–58]

Ŝ =
[

Saa Sab

Sba Sbb

]
. (1)
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The elastic enhancement factor measures the excess of
elastic processes described by the diagonal elements Saa over
the inelastic ones described by the off-diagonal element Sab

of the scattering matrix Ŝ. The enhancement factor depends
on the symmetry class and the total absorption factor γ tot of
the system and has been investigated in many chaotic systems,
e.g., microwave billiards and networks [9,10,59–64]. In this
article we study the EEF for the semi-Poisson system in this
way filling the gap between the studies performed for regular
and chaotic systems. The experimental EEF is compared with
the results of an analytical formula for the EEF in the regime
of the semi-Poisson statistics proved in this article.

II. EXPERIMENT

The semi-Poisson system was experimentally realized us-
ing a rectangular microwave resonator simulating a quantum
billiard; see a schematic view in Fig. 1(a). Billiards are ad-
equate systems for studying quantum chaos as the degree of
chaoticity of their classical dynamics depends only on their
shape [65,66]. Moreover, properties of quantum billiards can
be studied experimentally using flat or cylindrical microwave
resonators [11–13,15]. Such systems offer also the simplest
realization of a singular billiard—a quantum billiard which
contains a pointlike (zero-range) perturbation [67]. A singular
billiard was simulated experimentally by a rectangular mi-
crowave flat resonator coupled to microwave power via wire
antennas which act as singular scatterers [52]. The rectangular
cavity was manufactured from brass of the adjustable length
L1 = 36.5–41.5 cm and fixed width L2 = 20.2 cm. The height
of the cavity d = 8 mm corresponds to the cutoff frequency
νmax = c/2d � 18.7 GHz, with c denoting the speed of light
in the vacuum. Below the cutoff frequency only the trans-
verse magnetic modes T M0 exist inside the cavity and the
Helmholtz equation describing the electromagnetic field in the
microwave resonator and the two-dimensional Schrödinger
equation for the quantum billiard of the corresponding shape
with Dirichlet boundary conditions at the side walls of the
resonator are mathematically equivalent. That is why the
microwave flat resonators enable one to investigate the two-
dimensional quantum billiards with respect to a transient
region between regular and chaotic dynamics. The top plate of
the resonator contains five randomly distributed holes marked
from 1 to 5. The measurement of the two-port scattering
matrix Ŝ was realized by introducing two microwave antennas
into the cavity. They perform the role of M = 2 scattering
channels. We used 3 mm long antennas with the diameter of
the wire 0.9 mm in order to minimize the destructive influence
on cavity modes. The two-port scattering matrix Ŝ was deter-
mined experimentally in the frequency window 8–13.5 GHz
using the vector network analyzer Agilent E8364B, which
was connected to the microwave cavity via two antennas [see
Fig. 1(a)]. In Fig. 1(b) we show an example of the transmis-
sion measurement |S15(ν)| between the antennas positioned at
the holes 1 and 5 for the frequency range 8 � ν � 13.5 GHz.
In order to measure the spectra for different realizations of
the cavity the longer side L1 of the cavity was increased in 25
steps of 2 mm from 36.5 to 41.5 cm. The cumulative number
of eigenstates increases with the frequency as N (ν) ∼ Bν2,
where B = (Aπ )/c2 and A is the area of resonator. In our

FIG. 1. (a) Rectangular microwave cavity of the fixed width
L2 = 20.2 cm and length L1 = 36.5–41.5 cm, which was changed
in 25 steps of 0.2 cm length in order to create different realiza-
tions of the cavity. Two microwave antennas introduced inside the
resonator (holes 1, 2, 3, 4, 5) allowed one to connect the system to
the vector network analyzer (VNA) Agilent E8364B through flexible
microwave cables HP 85133-616 and HP 85133-617. The two-port
scattering matrix Ŝ of reflected and transmitted spectra was measured
in the frequency range [8–13.5] GHz. (b) An example of the trans-
mission measurement |S15(ν )| between the antennas positioned at the
holes 1 and 5 for the frequency range 8 � ν � 13.5 GHz.

previous studies devoted to long-range correlations in the
rectangular cavity containing pointlike perturbations [52], the
cavity with the same width L2 = 20.2 cm but larger length
L1 = 45.9–46.7 cm was applied. However, in this realization
of a singular microwave billiard we used a shorter cavity,
with smaller area, to lower the density of eigenstates and to
simplify the analysis of the spectra of the cavity.

III. EXPERIMENTAL RESULTS

A. Spectral statistics

For the analysis of the spectral statistics, each set of or-
dered eigenvalues (energy levels) must be converted to a set
of normalized spacing, i.e., each sequence must be unfolded
in order to eliminate specific properties of the system. The
procedure of unfolding is carried out by replacing the reso-
nance frequencies νi by the smooth part of the integrated level
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density that is given by Weyl’s formula [65]

εi = N (νi ). (2)

This yields dimensionless eigenvalues εi with mean value
unity, 〈s〉 = 1, of the spacing si = εi+1 − εi between adja-
cent levels. Weyl’s formula corresponds to the polynomial
of the second degree that depends on the area and perimeter
of the resonator [65]. The nearest-neighbor-spacing distribu-
tion is the most common measure of spectral regularity of
the quantum system which gives information on short-range
correlations. The analytical results for the NNSD for regular
systems PPoisson(s) and displaying the semi-Poisson statistics
PsP(s) are given by the following formulas [47,50,68]:

PPoisson(s) = e−s, (3)

PsP(s) = 4s e−2s. (4)

The transition between the Poisson and semi-Poisson dis-
tributions can be characterized by the parameter η [69],

P(s, η) = ηηsη−1e−ηs

�(η)
, s � 0, η ∈ [1,+∞], (5)

where �(z) = ∫ ∞
0 dt t z−1e−t is the gamma function. The case

with η = 1 corresponds to the Poisson distribution, while for
η = 2 we deal with the semi-Poisson statistics.

For analyzing of the short- and long-range correlation
functions 9224 resonance frequencies for different configu-
rations of the cavity were identified from the measurements
of the scattering matrix Ŝ. In Fig. 2(a) we show the nearest-
neighbor-spacing distribution P(s) (histogram) obtained for
ν = 8–13.5 GHz. The experimental NNSD is compared to the
Poisson (green dotted line), semi-Poisson (red full line), and
GOE (blue dash-dotted line) theoretical distributions. The fit
of the formula (5) (black full circles) to the experimental data
yields the parameter η = 1.972 ± 0.049, which is very close
to the semi-Poisson distribution, for which η = 2. The inset
in Fig. 2(a) shows the integrated level spacing distribution
I (s). Also in this case the experimental data (black squares)
are close to the theoretical prediction for the semi-Poisson
distribution (red full line).

The behavior of a singular microwave billiard was ad-
ditionally tested using the second nearest-neighbor-spacing
distribution P(2, s) and a long-range correlation function—
the power spectrum 〈PP(k)〉.

The second nearest-neighbor-spacing distribution PsP(2, s)
in a regime of the semi-Poisson statistics [47] is given by

PsP(2, s) = 8
3 s3e−2s. (6)

In Fig. 2(c) we show the experimental second nearest-
neighbor-spacing distribution P(2, s) (histogram) obtained for
a singular cavity in a frequency range 8–13.5 GHz. The
experimental results are compared to the theoretical distri-
bution (6) (violet full line). The agreement between them is
very good. Just for comparison in Fig. 2(c) we show also the
Poisson (green dotted line), semi-Poisson (red full line), and
GOE (blue dash-dotted line) nearest-neighbor-spacing distri-
butions, which, as expected, are completely different from the
second nearest-neighbor-spacing distribution P(2, s) obtained
for the singular microwave billiard.

FIG. 2. Nearest-neighbor-spacing distribution P(s) (histogram)
obtained in the frequency range ν = 8–13.5 GHz [panel (a)]. The
experimental NNSD is compared to the Poisson (green dotted line),
semi-Poisson (red full line), and GOE (blue dash-dotted line) the-
oretical distributions. The fit of the formula (5) (black full circles)
to the experimental data yields the parameter η = 1.972 ± 0.049,
which is very close to the semi-Poisson distribution, for which η = 2.
In the inset we show the integrated level spacing distribution I (s).
The experimental data (black squares) are compared to the theo-
retical prediction for the semi-Poisson distribution (red full line).
Figure (c) shows the experimental second nearest-neighbor-spacing
distribution P(2, s) (histogram) obtained for a singular cavity in a
frequency range 8–13.5 GHz. The experimental results are compared
to the theoretical distribution (6) (violet full line). For comparison in
(c) we show also the Poisson (green dotted line), semi-Poisson (red
full line), and GOE (blue dash-dotted line) nearest-neighbor-spacing
distributions.

Another statistical measure which can be used for test-
ing the semi-Poisson statistics is a long-range correlation
function—the power spectrum of the deviation of the qth
nearest-neighbor spacing from its mean value q, δq = εq+1 −
ε1 − q [70,71]. The power spectrum for a sequence of N levels
is given in terms of the Fourier transform from “time” q to k,
s(k) = |δ̃k|2, with

δ̃k = 1√
N

N−1∑
q=0

δq exp

(
−2π ikq

N

)
. (7)
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FIG. 3. Experimental power spectrum 〈s(k)〉 obtained in the fre-
quency range ν = 8–13.5 GHz (black squares) is compared with the
theoretical one 〈ssP(k)〉 predicted for the semi-Poisson statistics (red
full line). The corresponding results for Poisson and GOE statistics
are shown as green dotted and blue dash-dotted lines, respectively.

It was demonstrated in Refs. [70,71] that the power spec-
trum can be expressed as follows:

〈s(k)〉 = 1

4π2

[
K (k/N ) − 1

(k/N )2
+ K (1 − k/N ) − 1

(1 − k/N )2

]

+ 1

4 sin2(πk/N )
+ 
, (8)

where 
 = −1/12 for the Gaussian ensembles and 
 = 0 for
Poissonian random numbers. The spectral form factor K (τ ),

KPoisson(τ ) = 1, (9)

KsP(τ ) = 2 + π2τ 2

4 + π2τ 2
, (10)

KGOE(τ ) = 2τ − τ ln(1 + 2τ ). (11)

For k̃ = k/N 	 1 the power spectrum exhibits a power law
dependence 〈s(k̃)〉 ∝ (k̃)−α . For regular systems α = 2 and
for chaotic ones α = 1 independent of whether time-reversal
invariance is preserved or not. The power spectrum was stud-
ied numerically in Refs. [69,72–75] and experimentally in
microwave billiards [52,76] and networks [25,30].

In Fig. 3 we compare the experimental power spectrum
〈s(k)〉 obtained in the frequency range ν = 8–13.5 GHz (black
squares) with the theoretical one 〈ssP(k)〉 predicted for the
semi-Poisson statistics (red full line). The corresponding re-
sults for Poisson and GOE statistics are shown as green dotted
and blue dash-dotted lines, respectively. Also here a close
agreement of the experimental data with the theoretical pre-
diction for the semi-Poisson statistics is observed.

In conclusion, taking into account our experimental results
obtained for the NNSD P(s), the second nearest-neighbor-
spacing distribution P(2, s), and the power spectrum 〈s(k)〉,
the spectral properties of the rectangular microwave billiards
in the frequency range ν = 8–13.5 GHz are well described

by the short-range plasma model which leads to the so-called
semi-Poisson statistics.

B. Elastic enhancement factor

The elastic enhancement factor F (γ tot ) of the two-port
scattering matrix Ŝ is defined by the following relation-
ship [58,60]:

F (γ tot ) =
√

var(Saa)var(Sbb)

var(Sab)
, (12)

where var(Sab) ≡ 〈|Sab|2〉 − |〈Sab〉|2 is the variance of matrix
element Sab.

For GOE systems in RMT 2 � F (γ tot ) � 3 and for
large γ tot the enhancement factor should saturate to
F (γ tot ) = 2 [10,58,60,77]. For Poissonian uncorrelated levels
F (γ tot ) = 3.

The elastic enhancement factor F (γ tot ) in the regime of
the semi-Poisson statistics, corresponding to the frequency
range ν = 8–13.5 GHz, was evaluated using 0.025 GHz slid-
ing window for 150 different realizations of the cavity length
and antennas positions. In order to remove significant fluctu-
ations of the EEF, the experimental points were averaged in
(ν − δν/2, ν + δν/2) window, where δν = 0.5 GHz. The to-
tal absorption factor γ tot of the cavity depends on microwave
frequency. In the presence of two open channels (antennas)
with the transmission coefficients Ta and Tb, corresponding
to an openness ξ = Ta + Tb and internal absorption γ , the
total absorption width of the resonances is given by γ tot =
2π�/
 = Ta + Tb + γ , where � and 
 are the width of
resonances and the mean level spacing [58,60]. The measure-
ments of the diagonal elements Saa and Sbb of the two-port
scattering matrix Ŝ showed that the transmission coefficients
Ti = 1 − |〈Sii〉|2, where i = a, b, are the same. It was found
out that the change of the microwave frequency ν from 8 to
13.5 GHz caused the increase of the total absorption factor
γ tot from 1.5 to 4. Figure 4(a) shows the experimental results
obtained for the elastic enhancement factor F (γ tot ) (black
circles). The error bars indicate the standard deviations. In
order to show the dependence of F (γ tot ) on both ν and γ tot the
upper and lower axes in Fig. 4(a) are labeled by the frequency
ν and the total absorption factor γ tot, respectively. The two
broken lines F (γ tot ) = 3, F (γ tot ) = 2.5 show the limits for
the semi-Poisson statistics, which correspond respectively to
very small and very large γ tot.

Until now there have been no theoretical predictions for
the elastic enhancement factor F sP(γ tot ) in the regime of the
semi-Poisson statistics. Therefore, in this article we present an
analytical formula for F sP(γ tot ) which allows us to compare
the experimental results with the theoretical ones.

The elastic enhancement factor for the symmetry index
β = 1 [60] is defined as

F (γ tot ) = 2 + δ1,β=1 −
∫ ∞

0
ds e−sb2,β=1

(
s

γ tot

)
, (13)

where δi, j is the Kronecker delta. The form factor b2,β=1(τ ) is
related to the spectral form factor K (τ ) defined by Eqs. (10)
and (11) through the relationship

b2,β=1(τ ) = 1 − K (τ ). (14)
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FIG. 4. (a) Experimental elastic enhancement factor F (γ tot )
(black circles). The error bars indicate the standard deviations. The
experimental results are compared with the theoretical ones (red full
line). To show the dependence of F (γ tot ) on both ν and γ tot the
upper and lower axes are labeled by the frequency ν and the total
absorption factor γtot , respectively. The two broken lines F (γ tot ) = 3,
F (γ tot ) = 2.5 show the limits for the semi-Poisson statistics which
correspond respectively to very small and very large γ tot . (b) The
theoretically predicted dependence of the elastic enhancement factor
F sP(γ tot ) (red full line) on the total absorption factor γ tot . The green
rectangle shows the frequency range ν = 8–13.5 GHz considered
in this article. The broken line F (γ tot ) = 2.5 marks the limit for
the semi-Poisson statistics which corresponds to very large γ tot .
The elastic enhancement factor F GOE(γ tot ) predicted for GOE sys-
tems [60] is shown using the blue dash-dotted line.

In particular, for the semi-Poisson statistics [50]

bsP
2,β=1(τ ) = 1 − KsP(τ ) = 2

4 + π2τ 2
. (15)

In the limiting cases of very small or very large γ tot,
bsP

2,β=1(∞) = 0 and bsP
2,β=1(0) = 1

2 , respectively, one obtains

F sP(γ tot ) =
{

3 at γ tot 	 1,
5
2 at γ tot � 1.

(16)

The evaluation of the elastic enhancement factor F sP(γ tot )
using the formulas (13) and (15) yields

F sP(γ tot ) = 3 − γ tot

π

[
ci

(
2γ tot

π

)
sin

(
2γ tot

π

)

− si

(
2γ tot

π

)
cos

(
2γ tot

π

)]
, (17)

where si(x) = − ∫ ∞
x

sin(t )
t dt and ci(x) = − ∫ ∞

x
cos(t )

t dt are the
sine and cosine integrals. The integral in Eq. (13) was formally
performed using the formula 3.354.1 in Ref. [78].

In Fig. 4(a) we compare the experimental results with the
theoretical ones predicted by the formula (17) (red full line).
Both experimental and theoretical results are in good agree-
ment.

In Fig. 4(b) we show the theoretically predicted depen-
dence of the elastic enhancement factor F sP(γ tot ) on the total
absorption factor γ tot (red full line). It diminishes gradually
from the value 3 at very weak γ tot to 2.5 at very large total
absorption. The green rectangle shows the frequency range
ν = 8–13.5 GHz considered in this analysis. The broken line
F (γ tot ) = 2.5 marks the limit for the semi-Poisson statistics,
which corresponds to very large γ tot. Just for comparison
in Fig. 4(b) we also show the elastic enhancement factor
F GOE(γ tot ) predicted for GOE systems [60] (blue dash-dotted
line). On the contrary to F sP(γ tot ) the elastic enhancement
factor F GOE(γ tot ) approaches the value 2 for very large
γ tot [60].

IV. CONCLUSIONS

We evaluated experimentally the elastic enhancement fac-
tor F (γ tot ) in the regime of the semi-Poisson statistics as a
function of the total absorption factor γ tot. In order to compare
the experimental results with the theoretical ones we derived
the analytical formula for F sP(γ tot ) in this regime. We demon-
strated that the agreement between the experiment and theory
is good.
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[15] Y. Hlushchuk, A. Błędowski, N. Savytskyy, and L. Sirko,

Phys. Scr. 64, 192 (2001).

064208-5

https://doi.org/10.2307/1970079
https://doi.org/10.1063/1.1703863
https://doi.org/10.1103/RevModPhys.53.385
https://doi.org/10.1063/1.1704008
https://doi.org/10.1103/RevModPhys.81.539
https://doi.org/10.1103/PhysRevLett.118.012501
https://doi.org/10.1103/PhysRevB.93.041424
https://doi.org/10.1103/PhysRevE.81.036205
https://doi.org/10.1103/PhysRevE.73.046208
https://doi.org/10.1103/PhysRevLett.64.2215
https://doi.org/10.1103/PhysRevLett.67.785
https://doi.org/10.1103/PhysRevLett.78.2940
https://doi.org/10.1103/PhysRevE.61.366
https://doi.org/10.1238/Physica.Regular.064a00192


MAŁGORZATA BIAŁOUS AND LESZEK SIRKO PHYSICAL REVIEW E 106, 064208 (2022)

[16] Y. Hlushchuk, L. Sirko, U. Kuhl, M. Barth, and H.-J.
Stöckmann, Phys. Rev. E 63, 046208 (2001).

[17] N. Savytskyy, O. Hul, and L. Sirko, Phys. Rev. E 70, 056209
(2004).

[18] S. Hemmady, X. Zheng, E. Ott, T. M. Antonsen, and S. M.
Anlage, Phys. Rev. Lett. 94, 014102 (2005).

[19] O. Hul, N. Savytskyy, O. Tymoshchuk, S. Bauch, and L. Sirko,
Phys. Rev. E 72, 066212 (2005).

[20] B. Dietz and A. Richter, Chaos 25, 097601 (2015).
[21] M. Białous, B. Dietz, and L. Sirko, Phys. Rev. E 100, 012210

(2019).
[22] B. Dietz, T. Klaus, M. Miski-Oglu, A. Richter, and M.

Wunderle, Phys. Rev. Lett. 123, 174101 (2019).
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