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Kepler problem and chiral effective dynamics
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It is shown that by an appropriate canonical transformation, Kepler dynamics can be put in the form which
allows one to exhibit the structure of the symmetry transformations related to the superintegrability. They appear
to fit nicely into a general scheme of nonlinear realizations. In new coordinates, the Kepler dynamics results
from dimensional reduction of that describing low-energy mesons with spontaneously broken chiral symmetry.
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I. INTRODUCTION

The Kepler [1,2] problem may be viewed as one of the
pillars of Hamiltonian dynamics. It provides a good ap-
proximation for the dynamics of the solar system and other
planetary systems. From a theoretical point of view, it is
distinguished by the high degree of symmetry: it is not only
integrable in the Arnold-Liouville sense [3], but also maxi-
mally superintegrable—it admits the maximal number (five)
of functionally independent, globally defined integrals of mo-
tion. The rich symmetry structure makes the Kepler problem
an ideal laboratory to study the power and effectiveness of
group theoretical methods (for extensive discussion and bibli-
ography, see, for example, Refs. [2,4]).

The intriguing properties of Kepler dynamics were dis-
cussed in numerous papers starting from those of Fock [5] and
Bargmann [6], who revealed the structure of the symmetries
underlying the superintegrability of Kepler dynamics.

In the present paper, we discuss the global structure of
these symmetry transformations. We show that by a canon-
ical transformation, one can define new variables in terms
of which the symmetry generated by conserved quantities
takes the standard form of the nonlinear realization of the
SO(4) group linearizing on a rotation subgroup. The resulting
Lagrangian may be viewed as the dimensional reduction of the
effective Lagrangian describing pions as Goldstone bosons.

Let us conclude the introductory section by recalling in
some detail the original Kepler problem and its symmetries.
One considers a point particle of mass m moving in attractive
central potential inverse proportional to the distance from the
origin. The relevant Hamiltonian reads

H = �p2

2m
− k

r
, r ≡ |�x|, (1)
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with k > 0 being the coupling constant. The Hamiltonian
(1) does not explicitly depend on time, which implies time
translation symmetry and, via Noether theorem, energy con-
servation. Moreover, due to the rotational invariance, the
(orbital) angular momentum is conserved as well,

�L ≡ �x × �p, �̇L = 0. (2)

These symmetries and conservation laws are shared by all
central conservative potentials. However, due to the particular
form of r dependence, there are additional integrals of motion
in the Kepler problem. Namely, one can define the so-called
Runge-Lenz vector,

�A ≡ �p × �L − mk
�x
r
, (3)

which is also conserved,

�̇A = 0. (4)

�A obeys the following relations:

�A · �L = 0, (5)

�A2 = m2k2 + 2mE �L2, E = H. (6)

In summary, Kepler dynamics exhibits seven integrals of
motion, H, �L, and �A, obeying two constraints (5) and (6). As
a result, we obtain five functionally independent integrals of
motion yielding Kepler dynamics superintegrable.

The integrals H, �L, �A obey nice Poisson commutation
rules,

{Li, Lj} = εi jkLk, (7)

{Li, Aj} = εi jkAk, (8)

{Ai, Aj} = −2mHεi jkLk . (9)

On the energy hypersurfaces, (7)–(9) define the Lie alge-
bra structures: SO(4), e(3), SO(3, 1) for H < 0, H = 0, and
H> 0, respectively.
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II. KEPLER DYNAMICS FROM SO(4) COADJOINT ORBIT

The natural tool for describing the phase spaces of Hamil-
tonian systems exhibiting symmetry is provided by the notion
of coadjoint orbits of the symmetry group [3,7–12]. It is,
therefore, not surprising that due to its rich symmetry struc-
ture, the Kepler Hamiltonian system can be described in terms
of the coadjoint orbit of a certain group [SO(4, 2), as will be
described below]. Before entering the particular case of the
Kepler system, we briefly sketch, for the reader’s convenience,
the main points of the coadjoint orbit method (cf. Ref. [3]).
From the physical point of view, it provides the solution to
the following problem. Given a Lie group G, we want to con-
struct (and classify) the phase spaces (i.e., even-dimensional
manifolds equipped with nondegenerate Poisson brackets) on
which G acts as the group of canonical transformations (i.e.,
leaving the Poisson brackets invariant). It appears that under
the additional assumption of transitive action of G, the rele-
vant phase spaces are (up to some topological subtleties) the
coadjoint orbits of G. Let {Xi}n

i=1 be the set of generators of
the group G. Any element of the Lie algebra G of G can be
written as X = ∑n

i=1 ζ iXi, ζ i ∈ R.
Let {X̃ i}n

i=1 be the dual basis in the dual space G ′ :
〈X̃ i, Xj〉 = δi

j . Then, any X̃ ∈ G ′ can be written as X̃ =∑n
i=1 ζiX̃ i, ζi ∈ R. In G ′, one can define the natural (but de-

generate) Poisson structure,

{ζi, ζ j} = ci j
kζk, (10)

with ci j
k being the structure constants of G ([Xi, Xj] =

ici j
kXk). Let Adg(X ) be the adjoint action of G on G. The

coadjoint action of G on G ′ is defined by

〈Ad∗
g(X̃ ),Y 〉 = 〈X̃ , Adg(Y )〉, X̃ ∈ G ′, Y ∈ G. (11)

Now, the important points are as follows: (i) the Poisson
brackets (10) are invariant under the coadjoint action of G;
(ii) the Poisson brackets become nondegenerate on coadjoint
orbits of G in G ′; (iii) essentially, all phase spaces on which
G acts transitively as a group of canonical transformations are
coadjoint orbits.

In summary, the coadjoint orbits method allows us to con-
struct all Hamiltonian systems with a given transitively acting
group of canonical transformations. For example, in this way,
one can classify all elementary Hamiltonian systems obeying
the relativity principle, both in Galilei and Einstein forms.

In order to find the group-theoretical background of the
Kepler problem, one has to regularize it. In fact, the Kepler dy-
namics is not regular because the vector field generated by the
Hamiltonian (1) is not complete: for the orbits corresponding
to the vanishing angular momentum, the particle gets to the
attractive center in finite time with infinite velocity. Once the
regularization is performed, one finds that the full dynamical
group of the Kepler problem is SO(4,2) [12–19]. Therefore,
one should describe Kepler dynamics in terms of coadjoint
orbits.

The generic (co)adjoint orbit of SO(4,2) is 12 dimensional
[because SO(4,2) is a 15-dimensional group of rank three],
while we need six-dimensional phase space, which implies
that one has to consider nongeneric (singular orbit). We start
with dual space to the Lie algebra of SO(4,2). Denote its
coordinate functions by ζab = −ζab, a, b = 0, 1, 2, 3, 5, 6 (we

adopt the Todorov convention [20], omitting index 4). The
basic Poisson brackets read

{ζab, ζbc} = gadζbc + gbcζad − gacζbd − gbdζac, (12)

where gab = diag(+ − − − −+).
The singular six-dimensional orbit relevant in the present

context can be defined by the SO(4,2)-covariant equation [21],

ζa
cζcb = 0. (13)

Assuming Greek letters run from 1 to 5 (except 4) and putting

ζ0μ ≡ ωμ, ζ6μ ≡ zμ, (14)

one finds, from (13),

ωμωμ = zμzμ, (15)

ωμzμ = 0, (16)

ζ06 = ±√
ωμωμ = ±√

zμzμ, (17)

ζμν = 1

ζ06

(
ωμzν − ωνzμ

)
. (18)

Equations (14)–(18) provide the complete description of the
six-dimensional orbit of SO(4,2); in what follows, we will
choose the + sign in Eq. (17). It is interesting to view this
orbit as a group coset SO(4, 2)/Gζ , with Gζ being the stability
subgroup of some “canonical” point on the orbit under consid-
eration. It is not difficult to find such a point ζ and determine
Gζ on the infinitesimal level. However, the description of the
global structure of Gζ is more involved. Fortunately, a con-
venient choice of ζ and the global structure of Gζ have been
described in some detail by Onofri and Pauri [22]. Gζ appears
to be the semidirect product of two groups, the first being the
direct product of SO(2) and SO(2,1), while the second is the
five-dimensional Lie group of Euclidean topology. We refer to
[22], Eq. (66) and further, for more details.

The initial Poisson structure (12) now becomes nondegen-
erate and takes the form

{ωμ, ων} = − 1

ζ06
(ωμzν − ωνzμ), (19)

{zμ, zν} = − 1

ζ06
(ωμzν − ωνzμ), (20)

{ωμ, zν} = ζ06δμν. (21)

It can be shown [15,23] that there exist globally defined Dar-
boux canonical variables and the Hamiltonian expressible in
terms of the ζ06 coordinate function which describe the Kepler
problem; the actual form of the transformation from ωμ, zμ to
canonical ones (the so-called Bacry-Gyorgyi transformation)
is, however, quite complicated (cf. Eqs. (19) in Ref. [15]).
Nevertheless, one can conclude that SO(4,2) is the dynamical
group of the Kepler problem.

SO(4,2) is also the conformal symmetry group of
Minkowski spacetime. This strongly suggests that there exists
a connection between Kepler dynamics and conformal geom-
etry of Minkowski spacetime [24,25]. The six-dimensional
coadjoint orbit of SO(4,2), defined by Eq. (13), describes the
relativistic particle with vanishing mass and helicity [21]. The
Poincaré symmetry of such a particle can be easily extended to
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the conformal one and the generators of SO(4,2) are express-
ible in terms of ωμ and zμ. Moreover, for vanishing helicity
(and only in this case [26]), one can find the global Darboux
variables related in the natural way to the description of point
particles [21,26]. They read [21]

xi ≡ − ωi

ω5 + ζ06
= − ωi

ω5 + √
ωμωμ

, i = 1, 2, 3, (22)

pi ≡ z5

ζ06
ωi −

(
ω5

ζ06
+ 1

)
zi= z5√

ωμωμ

ωi−
(

ω5√
ωμωμ

+ 1

)
zi.

(23)

On the orbit under consideration, all coordinate functions ζab

can be expressed in terms of �x and �p:

ζi j = xi p j − x j pi, (24)

ζ0i = −| �p |xi, (25)

ζ56 = �x · �p, (26)

ζ05 = | �p |
2

(1 − �x 2), (27)

ζ06 = | �p |
2

(1 + �x 2), (28)

ζi5 = pi

2
(1 − �x 2) + (�x · �p)xi, (29)

ζi6 = pi

2
(1 + �x 2) − (�x · �p)xi. (30)

Some comments concerning Eqs. (24)–(30) are in order here.
It is well known that the Poincaré symmetry of massless
particles of a given helicity can be extended to the conformal
one. Therefore, the set of Darboux variables on the relevant
coadjoint orbit of the Poincaré group allows one to also
construct the additional dilatation and conformal generators.
The construction is further simplified by the fact that it is
sufficient to deal with the orbit corresponding to vanishing
helicity. In this way, we obtain the parametrization (24)–(30).
It is straightforward to check that it obeys the basic Poisson
brackets (12). Now, according to [15,23], the Hamiltonian of
the Kepler problem can be written in terms of ζab as follows:

H = − mk2

2ζ 2
06

(31)

or, using Eq. (28),

H = − 2mk2

�p 2(1 + �x 2)2
= −2mk2

H
, (32)

with

H = �p 2(1 + �x 2)2. (33)

Let us make a very simple but useful general remark. As-
sume that H is some Hamiltonian while H = f (H )—an
arbitrary function of it. Let [q(t ), p(t )] be any solution to
the Hamiltonian equations of motion for H , with E being
the corresponding total energy. Then, [q(ωt ), p(ωt )], with

ω ≡ dH
dH |H=E , is a solution to the Hamiltonian equations for

H. In other words, both sets of solutions are related by merely
rescaling time by a constant along the trajectory, energy-
dependent factor. This, in turn, implies that the trajectories,

viewed as the curves in phase space, coincide. Moreover,
all integrals of motion which do not depend explicitly on
time coincide as well. This is because, in the Hamiltonian
formalism, the dynamical variables depend only on the points
in phase space (i.e., on the points on trajectories); as a result,
an integral of motion is a function constant over any curve
in phase space representing trajectory. On the other hand, in
Lagrangian formulation, the dynamical variables are not only
the functions of points on configuration space, but also depend
on tangent vectors to trajectories.

Most questions concerning the Kepler dynamics can be
addressed by referring to the Hamiltonian (33). Due to the
Poisson commutation rule,

{ζμν, ζ06} = 0, μ, ν = 1, 2, 3, 5, (34)

we have six integrals of motion. Three of them,

ζi j = xi p j − x j pi (35)

or, in standard notation,

Li ≡ εi jkx j pk, (36)

are the components of angular momentum. The remaining
three,

Ai ≡ ζi5 = pi

2
(1 − �x 2) + (�x · �p )xi = pi

2
(1 + �x 2) + (�x × �L)i,

(37)
form the components of the counterpart of the Runge-Lenz
vector. Obviously, �L and �A (≡ {ζμν}) span, with respect to the
Poisson brackets, SO(4) Lie algebra. Moreover, due to the fact
that we are considering the (nongeneric) orbit, they obey the
additional relations

�A · �L = 0, (38)

�A 2 + �L 2 = 1
4 H. (39)

III. NONLINEAR REALIZATIONS
AND CHIRAL DYNAMICS

Let us note that all conserved quantities �L, �A are linear in
momenta. Therefore, viewed as the generators of canonical
symmetry transformations, they actually generate point trans-
formations. In order to analyze them in more detail, let us pass
to the Lagrangian formalism. The Lagrangian corresponding
to the Hamiltonian (33) reads

L = �̇x 2

4(1 + �x 2)2
. (40)

It exhibits, via the Noether theorem, the following point sym-
metries:

(a) rotations generated by G = δ�ϕ · �L,

δ�x = {�x, G} = δ�ϕ × �x; (41)

(b) nonlinear transformations generated by G = δ�a · �A,

δ�x = {�x, G} = 1
2 (1 − �x 2)δ�a + (�x · δ�a)�x. (42)

It is easy to see that the above nonlinear action of SO(4)
on the configuration space fits perfectly into the general
scheme of nonlinear realization [27,28]. In fact, locally,
SO(4) ∼ SU(2)×SU(2), while the rotation group is locally
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isomorphic to the diagonal subgroup [SU(2)×SU(2)]diag. The
action of SO(4) linearizes on the rotation subgroup and, as we
shall see, the components of �x are preferred (or Goldstone)
variables, in the terminology of Refs. [27,28].

To see this, let us note that the elements of SU(2)×SU(2)
may be represented as the pairs (U,W ) of SU(2) matrices U ,
W , while the diagonal subgroup consists of the pairs (U,U );
the relevant coset space may be viewed as the set of pairs
(V,V +). It is sufficient to consider the action of SU(2)×SU(2)
elements which do not belong to the diagonal subgroup. Fol-
lowing Ref. [27], we write

(U,U +) · (V,V +) = (V ′,V ′+) · (U ′,U ′), (43)

which yields

UV 2U = V ′2. (44)

Let us parametrize the elements V defining the coset manifold
as

V = 1√
1 + �x 2

σ0 + i · �x · �σ√
1 + �x 2

, (45)

with σ0 = 1 and �σ being Pauli matrices. Consider the in-
finitesimal transformations,

U = eiδ�a· �σ
2 � σ0 + i

2
δ�a · �σ . (46)

By inserting Eqs. (45) and (46) into (44), we find that the
transformation rule for �x coincides with that given by Eq. (42).

The Lagrangian (40) can also be obtained following the
prescription of Refs. [27,28]. In fact, the Cartan form re-
stricted to the coset manifold,

η = (V +,V )(dV, dV +) = (V +dV,V dV +), (47)

takes, in the parametrization (45), the following form:

η=i

[(
2d�x

1 + �x 2
+ 2�x × d�x

1 + �x 2

) �σ
2

,

(
− 2d�x

1 + �x 2
+ 2�x × d�x

1 + �x 2

) �σ
2

]
.

(48)

Taking into account that the generators corresponding to the
coset manifold can be chosen as ( �σ

2 ,− �σ
2 ), we conclude that

the invariant Lagrangian should be constructed as a function
of

�η
dt

= 2�̇x
1 + �x 2

(49)

invariant under the action of the diagonal subgroup, i.e.,
under rotations [27,28]. The simplest choice is L ∼ ( �η

dt )2,
which yields Eq. (40). The momentum components transform
linearly (with the coefficients depending on �x). Therefore,
according to [27,28], they are the so-called adjoint variables.
In fact, it is not difficult to show that the variables

πi ≡ ln(1 + �x 2)pi (50)

under the action of (U,U +) undergo the rotation determined
by the element U ′ ∈ SU(2) entering the right-hand side of
Eq. (43). Again, this fits nicely into the general scheme of
Refs. [27,28].

Let us note in passing that the dynamics we are con-
sidering is simply the dimensional reduction of the chiral

effective dynamics of the meson isotriplet. Had we replaced
in the Lagrangian (40) the variable �x by field variable �φ(xμ),
we would have obtained the effective Lagrangian describ-
ing the low-energy dynamics of pions within the so-called
Partially Conserved Axial Current (PCAC) scheme [29]. In
fact, in the limit of vanishing light quarks masses, the chiral
symmetry SU(2)L×SU(2)R emerges, which is assumed to
be spontaneously broken down to diagonal isovector SU(2)
symmetry with pions being the Goldstone degrees of free-
dom (our parametrization coincides with that used in [29],
Eq. (19.5.18); it is, however, well known that the on-shell
amplitudes are, under mild assumption, reparametrization in-
variant, so alternative parametrizations could be used as well).

One can also adopt the geometric point of view. Due
to SU(2)×SU(2)/[SU(2)×SU(2)]diag ∼ SO(4)/SO(3) ∼ S3, the Cartan
form

�η ∼ d�x
1 + �x 2

(51)

defines the SO(4) invariant metric on S3,

ds2 = �η 2. (52)

This is the starting point of the approach considered in [24].

IV. THE CANONICAL TRANSFORMATION

Up to now, we analyzed the properties of the dynamics
generated by the Hamiltonian H , (33). As we argued, this
provides us with complete information about the Hamiltonian
H defined by Eq. (32). On the other hand, the latter is the
Kepler Hamiltonian expressed in nonstandard canonical co-
ordinates. We could pass to the standard formulation by the
Bacry-Gyorgyi transformation [15,23]. However, it is advan-
tageous to consider the relevant transformation directly. It is
convenient to pass to the spherical coordinates (r, θ, ϕ). Then
the Hamiltonian H reads

H =
[

p2
r + 1

r2

(
p2

θ + p2
ϕ

sin2 θ

)](
1 + r2

)2
. (53)

The action variables are [30]

Iϕ ≡ 1

2π

∫ 2π

0
pϕ dϕ = pϕ ≡ L3, (54)

Iθ ≡ 1

π

∫ θmax

θmin

√
�L 2 − p2

ϕ

sin2 θ
dθ + pϕ = |�L|, (55)

Ir = 1

π

∫ rmax

rmin

√
E

(1 + r2)2
− �L 2

r2
dr

= 1

2

√
E − |�L| = 1

2

√
E − Iθ , (56)

which implies

H = 4(Ir + Iθ )2 (57)

or

H = − mk2

2(Ir + Iθ )2
. (58)
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The form of the Kepler Hamiltonian in terms of action vari-
ables coincides with the one obtained from the standard
approach [30]; this is a nontrivial conclusion because, for
superintegrable systems, the action-angle variables are not
defined uniquely. Therefore, the canonical transformation re-
lating standard canonical variables to those corresponding to
the Hamiltonian H given by Eq. (32) can be found by compos-
ing the transformations from both sets of variables to common
action-angle ones.

Let us first construct the angle variables for the Hamilto-
nian (33). The generating function for the relevant transfor-
mation reads

S(r, θ, ϕ; Ir, Iθ , Iϕ ) = Sr (r; Ir, Iθ ) + Sθ (θ ; Iθ , Iϕ )

+ Sϕ (ϕ; Iϕ ), (59)

Sr (r; Ir, Iθ ) =
∫ r

√
E

(1 + r2)2 − I2
θ

r2
dr, (60)

Sθ (θ ; Iθ , Iϕ ) =
∫ θ

√
�L2 − I2

ϕ

sin2 θ
dθ, (61)

Sϕ (ϕ; Iϕ ) =
∫ ϕ

pϕ dϕ = Iϕ · ϕ, (62)

and defines the angle variable through

αϕ = ∂S

∂Iϕ

= ∂Sθ

∂Iϕ

+ ϕ, (63)

αθ = ∂S

∂Iθ

= ∂Sr

∂Iθ

+ ∂Sθ

∂Iθ

, (64)

αr = ∂S

∂Ir
= ∂Sr

∂Ir
. (65)

Equations (59)–(65) yield

αϕ = ϕ + 1

2
arcsin

⎛
⎜⎝ I2

ϕ − I2
θ (1 − cos θ )

Iθ (1 − cos θ )
√
I2

θ − I2
ϕ

⎞
⎟⎠

+ 1

2
arcsin

⎛
⎜⎝ I2

ϕ − I2
θ (1 + cos θ )

Iθ (1 + cos θ )
√
I2

θ − I2
ϕ

⎞
⎟⎠, (66)

αθ = αr + 1

2
arcsin

(
2(Ir + Iθ )2 − I2

θ (1 + r2)

2(Ir + Iθ )
√
Ir (Ir + 2Iθ )

)

− 1

2
arcsin

(
2(Ir + Iθ )2r2 − I2

θ (1 + r2)

2r2(Ir + Iθ )
√
Ir (Ir + 2Iθ )

)

− arcsin

⎛
⎜⎝ Iθ cos θ√

I2
θ − I2

ϕ

⎞
⎟⎠, (67)

αr = arcsin

(
(Ir + Iθ )(r2 − 1)√
Ir (Ir + 2Iθ )(r2 + 1)

)
. (68)

This is the set of nested equations which can be solved for
r, θ , and ϕ sequentially, starting from Eq. (68); then, pϕ , pθ ,
and pr can be computed. In this way, we obtain the follow-

ing map: (αr, αθ , αϕ, Ir, Iθ , Iϕ ) → (r, θ, ϕ, pr, pθ , pϕ ). On
the other hand, denoting by (r, θ, ϕ, pr, pθ , pϕ ) the canonical
coordinates within the standard approach, we have

H = 1

2m

[
p2

r + 1

r 2

(
p2

θ + p2
ϕ

sin2 θ

)]
− k

r
. (69)

The transformation (r, θ, ϕ, pr, pθ , pϕ ) → (αr, αθ , αϕ, Ir,

Iθ , Iϕ ) can be found in many textbooks [30]. By composing
these two maps, we find the explicit form of the canonical
transformation,

(r, θ, ϕ, pr, pθ , pϕ ) → (r, θ, ϕ, pr, pθ , pϕ ). (70)

However, let us note that the inverse transformation cannot
be obtained explicitly. This is due to the fact that one of the
equations relating standard variables to the action-angle ones
is transcendental; essentially, it is the Kepler equation which,
in the standard approach, determines the time dependence of
the radial coordinate.

V. CONCLUSIONS

The dynamical group of the (regularized) Kepler problem
is SO(4,2). Therefore, the relevant dynamics can be described
within the Hamiltonian framework based on the notion of the
coadjoint orbit of SO(4,2). However, the phase space relevant
for the Kepler problem is six dimensional, while the generic
orbits of SO(4,2) are 12 dimensional. Consequently, the orbit
we have to consider is a nongeneric (singular) one. It appears
that such an orbit carries the dynamics of the relativistic
massless point particle with vanishing helicity. The SO(4,2)
symmetry of this dynamics is the standard conformal symme-
try. It appears that the generators of conformal symmetry may
be expressed in terms of properly constructed global (but only
for vanishing helicity) Darboux coordinates. In terms of these
variables, the Kepler dynamics acquires a very simple form.
The symmetry transformations generated by the conserved
quantities (the angular momentum and Runge-Lenz vector)
appear to be the point symmetries. Actually, we arrive at
the nonlinear realization of SO(4) linearizing on the SO(3)
subgroup. The relevant Lagrangian may be viewed as aris-
ing from dimensional reduction of the effective Lagrangian
describing low-energy meson scattering within the PCAC
scheme in the limit of vanishing masses of light quarks. The
price one has to pay for having this nice picture is that the
canonical transformation relating the old and new Darboux
coordinates is rather complicated. However, only one tran-
scendental equation is involved here, which is basically the
Kepler equation determining the time dependence of the radial
variable.

Let us note that the two-dimensional Kepler dynamics
has been considered from a similar perspective in Ref. [31].
There the action-angle variables have been used directly to
classify the nonlinear action of the symmetry group [SU(2) in
this case] according to the general scheme of Coleman et al.
[27,28].

Finally, it is worthwhile to mention that the relation be-
tween the free relativistic particle and the Kepler system has
also been studied in connection with the idea of “two-time
physics” [32,33].
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BOLONEK-LASOŃ, GONERA, AND KOSIŃSKI PHYSICAL REVIEW E 106, 064207 (2022)

ACKNOWLEDGMENTS

We are grateful to Professor Krzysztof Andrzejewski and Professor Paweł Maślanka for helpful discussion and useful
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[31] J. Gonera, P. Kosiński, and P. Michel, arXiv:2104.14416.
[32] I. Bars, C. Deliduman, and O. Andreev, Phys. Rev. D 58,

066004 (1998)
[33] I. Bars, Phys. Rev. D 58, 066006 (1998)

064207-6

https://doi.org/10.1007/BF01336904
https://doi.org/10.1007/BF01338811
https://doi.org/10.1002/cpa.3160230406
https://doi.org/10.1063/1.522907
https://doi.org/10.1007/BF02770496
https://doi.org/10.1007/BF01208375
https://doi.org/10.1007/BF01211755
https://doi.org/10.1007/s10569-021-10029-5
http://arxiv.org/abs/arXiv:2207.12756
https://doi.org/10.1063/1.1666012
https://doi.org/10.1007/BF03156764
https://doi.org/10.1063/1.1324652
https://doi.org/10.1016/j.geomphys.2016.03.030
https://doi.org/10.1103/PhysRev.177.2239
https://doi.org/10.1103/PhysRev.177.2247
http://arxiv.org/abs/arXiv:2104.14416
https://doi.org/10.1103/PhysRevD.58.066004
https://doi.org/10.1103/PhysRevD.58.066006

