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Exact analytical soliton solutions play an important role in soliton fields. Soliton solutions were obtained with
some special constraints on the nonlinear parameters in nonlinear coupled systems, but they usually do not hold
in real physical systems. We successfully release all usual constrain conditions on nonlinear parameters for exact
analytical vector soliton solutions in N-component coupled nonlinear Schrödinger equations. The exact soliton
solutions and their existence condition are given explicitly. Applications of these results are discussed in several
present experimental parameter regimes. The results would motivate experiments to observe more novel vector
solitons in nonlinear optical fibers, Bose-Einstein condensates, and other nonlinear coupled systems.
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I. INTRODUCTION

Analytical soliton solutions can describe the dynamics of
localized waves in many nonlinear systems well, and some of
them have even been used to direct experimental observations
[1–7]. Analytical solutions usually contain exact solutions
and approximate solutions. Exact analytical soliton solutions
have been paid much more attention due to their beauty and
convenience for uncovering underlying physics [8–13]. Un-
fortunately, exact analytical solutions are usually limited to
integrable cases [14], which can be derived by the Bäcklund
transformation [15,16], inverse scattering method [17], and
Hirota bilinear method [18]. However, those methods usu-
ally fail to derive analytic solutions for nonintegrable cases.
For nonintegrable cases, many methods have been proposed
to derive approximate analytic solutions, such as the pertur-
bation method [19], multi-scale expansion method [20,21],
and Lagrangian variational method [22–27]. The Lagrangian
variational method is a well-known method for deriving ap-
proximate soliton solutions [22], whose precision usually
depends on trial functions. Some exact soliton solutions can
still be derived by the method with proper trial functions
[28,29]. This provides possibilities to derive exact soliton
solutions for nonintegrable cases and even more general cases.

N-component coupled nonlinear Schrödinger equa-
tions play an important role in soliton fields due to their
simplicity and wide applications [30–33]. They admit scalar
solitons (N = 1) and vector solitons (N > 1). The exact
scalar bright and dark soliton solutions were first derived by
the methods for integrable cases (noting that N = 1 cases
are always integrable), and then they were also obtained by
the Lagrangian variational method [28,29]. However, there
are many nonlinear parameters when N > 1, which makes
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the coupled systems usually no longer integrable. Most
vector soliton solutions were obtained with some special
constraints on these nonlinear parameters, e.g., the Manakov
model, with all of them being equal [14]. Many efforts have
been made to develop variational methods to address the
cases for which the special constraint conditions are violated
[34–39]. However, exact soliton solutions are still lacking
for the general N-component coupled model, partly because
the form of the trial functions affects the precision of the
approximation.

In this paper, we derive exact soliton solutions for the
general N-component coupled model with arbitrary nonlinear
parameters. We suggest that the soliton width in each compo-
nent should be introduced independently first, although they
are usually equal. The proper trial functions and modified La-
grangian variational method enable us to obtain exact soliton
solutions and clarify their existence condition. These exact
analytic soliton solutions motivate experiments to look for
more novel vector solitons.

This paper is organized as follows. In Sec. II, we give
the exact soliton solutions and their existence condition ex-
plicitly based on our proper trial functions and the modified
Lagrangian variational method. As an example, we show two-
and three-component vector soliton solutions and their exis-
tence region in Sec. III. We discuss the stability and collision
characters of two-component solitons in Sec. IV. Applications
of these results are discussed in Bose-Einstein condensates
with present experimental parameter regimes in Sec. V.
Finally, our conclusions are given in Sec. VI.

II. THE EXACT VECTOR SOLITON SOLUTIONS
AND LAGRANGIAN METHOD

Coupled nonlinear Schrödinger equations have been
used to describe nonlinear wave dynamics in many dif-
ferent physical systems [32,40,41], such as Bose–Einstein

2470-0045/2022/106(6)/064206(10) 064206-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9755-6950
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.064206&domain=pdf&date_stamp=2022-12-14
https://doi.org/10.1103/PhysRevE.106.064206


NING MAO AND LI-CHEN ZHAO PHYSICAL REVIEW E 106, 064206 (2022)

condensates [41] and nonlinear optical fibers [30,42]. We con-
sider general N-component coupled nonlinear Schrödinger
equations (NLSEs) with arbitrary nonlinear parameters,
which can be written as

i∂t� =
⎛
⎝−1

2
∂xx +

N∑
j=1

gi j |ψ j |2
⎞
⎠�, (1)

where � = (ψ1, · · · , ψi, · · · , ψN )T and where ψ j stands
for the wave function of the jth component. x is the distri-
bution axis for wave function, and its domain is (−∞,+∞).
The nonlinear parameter gi j is the intra-species interaction in
one component (interspecies interaction between two com-
ponents) for i = j (i �= j), and gi j = g ji. When all these
nonlinear parameters are equal, the model becomes the well-
known Manakov model [14]. The soliton solutions of the
Manakov model have motivated many experiments to observe
dark-dark (DD) solitons [43,44], dark-bright (DB) solitons
[3], etc. Considering that real experiments usually do not sat-
isfy integrable conditions [3,4] and that even five-component
Bose-Einstein condensates have been prepared in experiments
[45–48], we wish to find exact analytic solutions for more
general conditions.

The Lagrangian variational method is a well-known
method for deriving approximate solutions, whose precision
usually depends on trial functions. The Gaussian profile is

usually used for localized wave packets due to its simplic-
ity and easy calculation. However, this form usually fails to
obtain exact solutions in nonlinear systems. It was further
suggested that the sech- (tanh-)type ansatz could be more
accurate than the Gaussian ansatz [34]. For bright or dark
solitons in the ith component, we introduce the trial wave
function as

ψiD = (
i
√

a2
i − f 2

i (t ) + fi(t ) tanh{wi(t )[x − b(t )]})eiθi (t ),

ψiB = fi(t )sech{wi(t )[x − b(t )]}ei{ξi (t )+[x−b(t )]φi (t )}, (2)

where ψiD (ψiB) denotes the wave function of the dark (bright)
soliton, fi and wi describe the amplitude and width of the
dark (bright) soliton, respectively, ai is the background of the
dark component, the central position of the soliton is b(t ), θi,

and ξi are the time-dependent phases of the dark and bright
components, respectively, and φi is related to the velocity of
the bright soliton.

We introduce the Lagrangian density as L =∑N
i=1 [ i

2 (ψ̃i
∗
∂t ψ̃i − ψ̃i∂t ψ̃i

∗
)(1 − a2

i

|ψ̃i|2 δD,i ) − 1
2 |∂xψ̃i|2 −∑N

j=1
gi j

2 (|ψ̃ j |2 − a2
jδD, j )(|ψ̃i|2 − a2

i δD,i )], where

δD,i =
⎧⎨
⎩

0, ψ̃i denotes bright soliton,

1, ψ̃i denotes dark soliton,

L =
N∑
i

{[
2 f 2

i (t )φi(t )
b′(t )

wi(t )
− 2 f 2

i (t )
ξ ′

i (t )

wi(t )
− 1

3
f 2
i (t )wi(t ) − f 2

i (t )
φ2

i (t )

wi(t )
− 2

3
gii

f 4
i (t )

wi(t )

]
δ̃D,i +

{
− 2 fi(t )

√
a2

i − f 2
i (t )b′(t )

+ 2a2
i arcsin

[
fi(t )

ai

]
b′(t ) − 2

3
f 2
i (t )wi(t ) − 2

3
gii

f 4
i (t )

wi(t )

}
δD,i −

N∑
j( j �=i)

gi j f 2
i (t ) f 2

j (t )Gi j

}
, (δ̃D,i = |δD,i − 1|), (3)

to obtain Euler-Lagrangian equations. In particular, the terms
1 − a2

i /|ψ̃i|2δD,i and |ψ̃i|2 − a2
i δD,i were introduced in the

Lagrangian density for dark solitons [29]. Notably, the modi-
fied L corresponds to dynamical equation i∂t ψ̃i = − 1

2∂xxψ̃i +
[
∑N

j=1 gi j (|ψ̃ j |2 − a2
jδD, j )]ψ̃i (i = 1, · · ·, N ). This is differ-

ent from Eq. (1), but the solutions of the two dynamical
equations can be transformed to each other by the phase factor
ψi/ψ̃i = eiθi (t ), where θi(t ) = −∑N

j=1 gi ja2
j tδD, j . We obtain

the Lagrangian (L) by substituting Eq. (2) into L and inte-
grating over space from −∞ to +∞, which can be simplified
as Eq. (3).

Specifically, the soliton width parameter wi is set to
be different for different components, which is in contrast
to the previous trial functions for vector solitons [34–39].
In most previous studies, the trial functions were cho-
sen as the Gaussian (sech- or tanh-type) ansatz for the
unequal (equal) width parameter setting [34–39], partly be-
cause the Gaussian ansatz with different widths is much
easier to calculate than the sech (tanh) type. This makes
the Lagrangian variational results only give an approx-
imate solution for the vector model [34–39]. However,
one encounters the problem that it is difficult to accom-
modate the factor Gi j = ∫ +∞

−∞ ( ± sech2{wi(t )[x − b(t )]})( ±

sech2{w j (t )[x − b(t )]})dx, and the sign − (+) corresponds
to the dark (bright) component. We take these width pa-
rameters independently when deriving the Euler-Lagrangian
equations. After obtaining the equations of motion by the
Euler-Lagrangian formula, we finally calculate Gi j ,

∂Gi j

∂wi
, and

∂Gi j

∂w j
by setting wi = w j = w (see details in Appendix A).

These operations bring us more constraint conditions on soli-
ton parameters and finally enable us to obtain exact analytical
soliton solutions.

Based on all simplified Euler-Lagrangian equations, we
have the essential constraint equations of fi and w as

⎛
⎜⎜⎜⎜⎜⎝

g11 · · · g1 j · · · g1N 1
...

...
...

...

gi1 · · · gi j · · · giN 1
...

...
...

...

gN1 · · · gN j · · · gNN 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

± f 2
1

...

± f 2
i

...

± f 2
N

w2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (4)

The sign − (+) corresponds to the dark (bright) compo-
nent. The other parameters can be obtained as b(t ) = vt ,
φi = v, ξi(t ) = 1

2 (w2 + v2)t + θi(t ), and the soliton velocity
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FIG. 1. Phase diagram for different vector solitons in nonlinear
parameter space. (a) and (b) represent the cases of g12 < 0 and g12 >

0, respectively. The green dashed lines are the boundary lines for
different vector soliton regions. The cyan lines denote the condition
for spin solitons. The yellow dot denotes the usual integrable case.
The blue regions represent that the vector solitons can evolve stably
against weak white noises, and red regions mean that the vector
solitons are not stable (details in Sec. IV). Our variational method
greatly extends the existence region for exact vector soliton solutions.

v = w

√
a2

i − f 2
i / fi. The constraint equation on backgrounds

of dark components is ai/a j = fi/ f j . In this way, we obtain
many exact analytic vector soliton solutions when the non-
linear parameters can be arbitrary. Different types of vector
solitons usually exist in different regions in nonlinear param-
eter space. Their existence regions can also be clarified by the
constraint conditions on soliton parameters. The above equa-
tions can be simplified as g(± f 2

1 ± f 2
2 · · · ± f 2

N ) + w2 = 0 for
integrable cases (gi j = g), which can be used to derive all
previously reported vector soliton solutions [13,49–59]. We
choose two- and three-component systems as examples to
show the variational results explicitly based on vector soliton
experiments in Refs. [3–6].

III. THE EXACT SOLUTION OF TWO-
AND THREE-COMPONENT VECTOR SOLITON

A. Two-component coupled system

For two-component systems (N = 2), the condition for
vector soliton solutions can be derived from Eq. (4), which
is simplified as

α2 f 2
2 = g11 − g12

g22 − g12
α1 f 2

1 , w2 = g2
12 − g11g22

g22 − g12
α1 f 2

1 , (5)

where αi = ±1 and where the sign − (+) is chosen for the
dark (bright) soliton. Then, we clarify the existence regimes
for different vector solitons by analyzing the soliton parame-
ters of Eq. (5). The phase diagram for different vector solitons
is summarized in Fig. 1 (g12 �= 0), in which (a) and (b) show
the results for the g12 < 0 and g12 > 0 cases, respectively.
When g12 = 0, the model decouples into two scalar models.
Our variational method extends the existence region of ex-
act vector soliton solutions from the “yellow dot” (Manakov
model) to the whole parameter plane. The vector solitons can
still be classified into four families, similar to the integrable
model [13,49–52]. However, there are many additional con-
straints on the soliton parameters and nonlinear parameters,
which are absent for integrable models [13,49–52].

For bright-bright (BB) solitons, Eq. (5) gives the conditions
g11−g12

g22−g12
> 0 and g2

12−g11g22

g22−g12
> 0 on nonlinear parameters. Then,

the region for the BB soliton can be given in Fig 1. The
region for DD solitons can be given in a similar way. We note
that there is an additional constraint on the background am-
plitudes for the DD soliton (a2/a1 = f2/ f1) in nonintegrable
cases. Namely, density dip’s depth is closely related with dark
soliton’s background density. This is in sharp contrast to the
Manakov model, for which there is no constraint on the ratio
of background amplitudes for DD solitons [50,51].

For dark-bright (DB) or bright-dark (BD) solitons, the re-
gions for them are shown in Fig. 1. The DB and BD solitons
are defined by the total density of the two components, which
admits a dip (for DB) or hump (for BD). In particular, the total
density can be uniform when 2g12 = g11 + g22, and the vector
soliton in this case becomes the spin soliton [60] (denoted by
cyan lines in Fig. 1). Note that the amplitude of the bright
soliton can be larger than the dark soliton’s background am-
plitude; i.e., BD soliton can exist even though the nonlinear
interactions are all repulsive (all nonlinear parameters are
positive). This characteristic is absent for the Manakov case
[13], for which only DB soliton exists for repulsive interac-
tions. Similarly, DB soliton can still exist with the nonlinear
interactions all attractive (all nonlinear parameters are nega-
tive) for nonintegrable cases. Our DB soliton solution with
zero velocity can be reduced to the ones given in Ref. [61].
The exact BB and BD (DD and DB) soliton solutions cannot
coexist in the given nonlinear parameters for the nonintegrable
cases (see Fig. 1), in contrast to the integrable case [13,49–
52].

Our variational results can be reduced to a previously
known exact soliton solution in the two-component model
[13,49–52,60]. The general exact vector soliton solutions of
two-component cases are provided explicitly in Appendix B,
which partly overlap with the ones given by the periodic
wave expansion method [62,63]. We emphasize that our vari-
ational method here can be extended more conveniently to
arbitrary N-component cases. Experiments have been per-
formed on three-component systems and even five-component
Bose-Einstein condensates [4,31,45–48], but the exact ana-
lytic soliton solutions for them are still absent. These results
motivate us to derive soliton solutions explicitly for more
components cases. Next, we apply our variational result to
three-component systems.

B. Three-component coupled system

The exact soliton solution of three-component systems has
been widely studied for integrable models [53–57]. Our vari-
ational result greatly widens the existence region of vector
soliton solutions, which is very meaningful for soliton exper-
iments [4]. The essential conditions for soliton solutions can
be given as

α2 f 2
2 = P123

P213
α1 f 2

1 , α3 f 2
3 = P132

P213
α1 f 2

1 , w2 = Q

P213
α1 f 2

1 , (6)

where Q = 2g12g13g23 − g2
12g33 − g2

13g22 − g11(g2
23 −

g22g33), Plmn = g2
ln − gllgnn + glm(gnn − gln) + gmn(gll −

gln), (l, m, n = 1, 2, 3), and αi = ±1 (i = 1, 2, 3). The exact
soliton solutions can be given from Eq. (4) with N = 3, whose
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TABLE I. Parameter conditions of different soliton solutions for
the three-component coupled systems; “+” and “−” denote the pa-
rameters being positive and negative, respectively.

Soliton type Parameter region

P123/P213 P132/P213 Q/P213

BBB + + +
DBB − − −
DDB + − −
DDD + + −

explicit expressions are given in Appendix B. The vector
soliton can be classified into four families, and their existence
conditions are summarized in Table I. We cannot give
explicit conditions of existence for different soliton solutions,
as done in the two-component cases, since there are many
more nonlinear parameters in the three-component cases. To
show the physical meaning of the conditions in Table I, we
discuss the existence conditions of different vector solitons
with setting g12 = 1, g13 = 2, and g23 = 3. With the repulsive
interspecies interaction, the exact bright-bright-bright (BBB)
soliton solution can still exist when g11 < 0, g22 < 1/g11, and
g33 < (−12 + 9g11 + 4g22)/(−1 + g11g22). By further tuning
the intra-interactions, we can obtain the existence region for
dark-bright-bright (DBB), dark-dark-bright (DDB), and
dark-dark-dark (DDD) solitons. Recently, the numerical
method for obtaining the stationary vector solitons in
N-component NLSEs was reported in Ref. [64], which could
be also used to find soliton profiles predicted by our analytic
soliton solutions.

IV. THE STABILITY AND COLLISION CHARACTERS
OF VECTOR SOLITONS

The stability of these vector solitons can be investigated
by numerical simulations. As an example, we discuss the
stability of them in the two-component case. We perform
numerical simulations from the initial conditions given by
the above exact analytical solutions with adding weak white
noises [64–66]. The results are shown in Fig. 1. The blue
regions represent that the vector solitons can evolve stably
against weak white noises, and red regions means that the
vector solitons are not stable. These characters are supported
by our numerous numerical simulations. For examples, the
evolution of a BB soliton in the blue region are shown in
Figs. 2(a1) and (a2), and the result for a BD soliton in the blue
region is shown in Figs. 2(b1) and (b2). It is seen that these
solitons can be stable over 300 time units. We show the DD
and BB soliton in red regions in Figs. 3(a1), (a2), (b1), and
(b2), respectively. It is seen that they are not stable and they
can split with radiations, which is similar to the ones reported
in nonintegrable conditions [67].

Then we can numerically investigate the collision behavior
of stable vector solitons, for which the initial states can be
given by linear superposition of the above soliton solutions.
Our numerical simulations indicate that their collisions can be
elastic and inelastic, which are related to the relative phase,
relative velocity, and nonlinear parameters. For inelastic col-
lision cases, solitons’s velocities or profiles can change, and

FIG. 2. (a1) and (a2): The numerical evolution of a BB soli-
ton. (b1) and (b2): The numerical evolution of a BD soliton. 3%
random noises are added to initial states given by related exact
soliton solutions. It is seen that these solitons can be stable over
300 time units. The parameters are g11 = −1.5, g12 = −1, g22 =
−2, f1 = 1, f2 =

√
2

2 ,w = √
2, v = 0 for (a1) and (a2). For (b1)

and (b2), the parameters are g11 = 2.9, g12 = 1, g22 = −0.5, f1 =
1, f2 = 1.13, w = 1.28, a1 = 1, v = 0.

there can be obvious radiation after collision. For example,
the collision of BB solitons are shown in Figs. 4(a1) and (a2).
We can see that the density can redistribute between the two
bright solitons, which is similar to the ones in the Manakov
model [56,68,69]. But the velocity of solitons can change
greatly after collision, in contrast to the Manakov model. The
collision of two BD solitons are shown in Figs. 4(b1) and (b2).

FIG. 3. (a1) and (a2): The numerical evolution of a DD soli-
ton. (b1) and (b2): The numerical evolution of a BB soliton. 3%
random noises are added to the initial states. It is seen that they
are not stable and they can split with radiations. The parame-
ter settings are: g11 = 1, g12 = −1, g22 = 2, f1 = 1, f2 =

√
6

3 , w =√
3

3 , a1 = 1, a2 =
√

6
3 , v = 0 for (a1) and (a2); g11 = −1, g12 =

1, g22 = −1.3, f1 = 1, f2 = 0.93, w = 0.36, v = 0 for (b1) and
(b2).
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FIG. 4. (a1) and (a2): The collision of two BB solitons. We can
see that the density can redistribute between the two bright solitons,
and the velocity of solitons can change greatly after collision. The
initial states are ψ1 = f1sech[w(x + 15)] exp[iv(x + 15) − iφ] +
f1sech[w(x − 15)] exp[−iv(x − 15) + iφ], ψ2 = f2sech[w(x +
15)] exp[iv(x + 15)] + f2sech[w(x − 15)] exp[−iv(x − 15)], where
g11 = −2, g12 = −1, g22 = −1.5, f1 = 1, f2 = √

2, w = 2, v =
0.5, φ = 1. (b1) and (b2): The collision of two BD solitons. It is
seen that the dark solitons oscillate with obvious radiations, and
bright solitons just oscillate after collision. The initial states are ψ1 =
{i√1 − f 2

1 + f1 tanh[w(x + 15)]}{i√1 − f 2
1 − f1 tanh[w(x − 15)]},

ψ2 = f2sech[w(x + 15)] exp[iv(x + 15)] + f2sech[w(x −
15)] exp[−iv(x − 15)], where g11 = 2.9, g12 = 1, g22 = −0.5, f1 =
0.9, f2 = 1.01, w = 1.15, v = 0.557.

It is seen that the dark solitons oscillate with obvious radi-
ation, and bright solitons just oscillate after collision. These
collision characters are much more complicated than the ones
in integrable cases, which still need further research.

V. APPLICATIONS IN EXPERIMENTS

We first discuss the applications of our solutions in a
two-component Bose-Einstein condensate of 87Rb [3,70]
with hyperfine states |1,−1〉 and |2, 0〉 (denoted by ψ1

and ψ2). The scatting lengths are a11 = 100.86a0, a12 =
98.98a0, and a22 = 94.57a0, where a0 = 5.29 × 10−11 m is
the Bohr radius. The nonlinear parameters in our rescaling
model satisfy g11 : g12 : g22 = 1 : 0.981 : 0.938, and g11 =
0.0114. The dynamical equations in the mean-field approx-
imation become nonintegrable. The theoretical analysis of
the experimental results is usually performed based on an
integrable model, ignoring the small differences between the
nonlinear parameters [3]. This is partly because exact an-
alytical solutions are very rare with the parameters in real
experiments. We discuss the properties of vector solitons
based on our variational results with the real nonlinear param-
eters and identical atom density 5.8 × 1013cm−3 [3]. Because
of asymmetry interaction parameters, as g11 − g12 > 0, g22 −
g12 < 0, g2

12 − g11g22 > 0, the solution predicts that dark soli-
tons exist only in the ψ1 component [α1 = −1, α2 = 1 from
Eq. (5)] and that they cannot exchange with the second com-
ponent, in contrast to the prediction of the integrable model.

The sound speed is predicted to be 0.766 mm/s by our soliton
solutions, which is smaller than the sound velocity 1 mm/s
given by the integrable results [3]. Moreover, the constraint
conditions on nonlinear parameters predict that there is no
exact analytical DD soliton solution in this case but that the
DD soliton solution can be given approximately by the inte-
grable model. These characteristics may inspire experiments
to check these differences.

There are many theoretical works in three-component
systems [53–57]. DDB and DBB solitons were realized exper-
imentally in [4,71]. They obtained the approximate solution of
DDB and DBB solitons by a multiscale expansion method.
With taking the nonlinear parameter setting in [4,71] and
ignoring the spin exchange effects, we predict that only exact
DDD soliton solutions exist from Table I, but exact DDB and
DBB solitons can not be given by the above variational results.
We further test the stability of our DDD soliton numerically
with taking weak spin exchange effects in the experiments.
Our results indicate that the DDD solitons can exist stably
even with white noises, which could inspire experiments to
observe them.

VI. CONCLUSION

Our work successfully releases all usual constrain condi-
tions on nonlinear parameters for exact analytical vector soli-
ton solutions in N-component coupled nonlinear Schrödinger
equations, which have played important roles in soliton fields.
Our explicit soliton solutions and their existence condition
could motivate experiments to observe vector solitons in
Bose-Einstein condensates [4–6,31] and nonlinear optical
fibers [30,42], especially when the nonlinear parameters devi-
ate from the usual integrable conditions. They could provide
an important supplement for the experimental observation of
vector solitons, which are usually around integrable condi-
tions [3–6]. The general vector soliton solutions are helpful
to discuss the soliton dispersion relation and soliton transport
for more general cases [60]. Our attempt will stimulate more
efforts to derive exact soliton solutions of other nonlinear
models [72–74], which can describe real nonlinear systems
better.
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APPENDIX A: THE DERIVATION OF N-COMPONENT
VECTOR SOLITON SOLUTIONS

We consider a general N-component coupled nonlinear
Schrödinger equation, which can be written as

i∂t� =
⎛
⎝−1

2
∂xx +

N∑
j=1

gi j |ψ j |2
⎞
⎠�, (A1)

where � = (ψ1 · · · , ψi, · · · ψN )T . The nonlinear parameters
gi js are usually equal for exact soliton solutions.
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We would like to derive exact soliton solutions for
arbitrary nonlinear parameters by the Lagrangian
variational method. We introduce the Lagrangian density

as, L = ∑N
i=1 [ i

2 (ψ̃i
∗
∂t ψ̃i − ψ̃i∂t ψ̃i

∗
)(1 − a2

i

|ψ̃i|2 δD,i ) −
1
2 |∂xψ̃i|2 −∑N

j=1
gi j

2 (|ψ̃ j |2 − a2
jδD, j )(|ψ̃i|2 − a2

i δD,i )] to
obtain Euler-Lagrangian equations, where

δD,i =
{

0, ψ̃i denotes bright soliton,

1, ψ̃i denotes dark soliton.

In particular, the terms 1 − a2
i

|ψ̃i|2 δD,i and |ψ̃i|2 − a2
i δD,i were

introduced in the Lagrangian density for dark soliton [29,75],
mainly because a dark soliton is a density dip with a striking
phase jump, in sharp contrast to a bright soliton. Notably, the
modified L corresponds to the following dynamical equations:

i∂t �̃ =
⎡
⎣−1

2
∂xx +

N∑
j=1

gi j
(|ψ̃ j |2 − a2

jδD, j
)⎤⎦�̃, (A2)

where �̃ = (ψ̃1 · · · , ψ̃i, · · · ψ̃N )T . This is different from
Eq. (A1), but the solutions of the two dynamical equations can
be transformed to each other by the phase factor ψi/ψ̃i =
eiθi (t ), where θi(t ) = −∑N

j=1 gi ja2
j tδD, j . After testing many

different trial functions with the Lagrangian method and the
direct numerical simulations, we find that the ideal trial wave
function of the ith component should be written as

ψ̃iD = i
√

a2
i − f 2

i (t ) + fi(t ) tanh{wi(t )[x − b(t )]},
ψ̃iB = fi(t )sech{wi(t )[x − b(t )]}ei{ξi (t )+[x−b(t )]φi (t )}, (A3)

where ψ̃iD (ψ̃iB) denotes the wave function of dark (bright)
soliton. fi and wi describe the amplitude and width of dark
(bright) soliton, respectively. ai is the background of dark
soliton components, and b(t ) denotes the soliton center’s po-
sition. ξi is the time-dependent phase of the bright soliton
component, and φi is related to the velocity of the bright
soliton. Specifically, we take these width parameters indepen-
dently when deriving the Euler-Lagrangian equations. After
obtaining the equations of motion by the Euler-Lagrangian
formula, we finally calculate Gi j ,

∂Gi j

∂wi
, and ∂Gi j

∂w j
by setting

wi = w j = w. These operations are in sharp contrast to the
previously used ansatz form, which brings us more constrain
conditions on soliton parameters, and finally enables us to
obtain exact analytical soliton solutions. This is our main
point for developing variational methods.

The Lagrangian (L) can be obtained by substituting
Eq. (A3) into L and integrating over space from −∞ to +∞,
which is

L =
N∑
i

{[
2 f 2

i (t )φi(t )
b′(t )

wi(t )
− 2 f 2

i (t )
ξ ′

i (t )

wi(t )
− 1

3
f 2
i (t )wi(t ) − f 2

i (t )
φ2

i (t )

wi(t )
− 2

3
gii

f 4
i (t )

wi(t )

]
δ̃D,i +

{
− 2 fi(t )

√
a2

i − f 2
i (t )b′(t )

+2a2
i arcsin

[
fi(t )

ai

]
b′(t ) − 2

3
f 2
i (t )wi(t ) − 2

3
gii

f 4
i (t )

wi(t )

}
δD,i −

N∑
j( j �=i)

gi j f 2
i (t ) f 2

j (t )Gi j

⎫⎬
⎭, (δ̃D,i = |δD,i − 1|). (A4)

The Gi j denotes
∫ +∞
−∞ ( ± sech2{wi(t )[x − b(t )]})( ± sech2{w j (t )[x − b(t )]})dx, where the sign − (+) corresponds to dark

(bright) component. The integral is hard to be calculated with different width parameters. We will deal with this problem after
deriving the Euler-Lagrangian equations.

We obtain the Euler-Lagrangian equations from d
dt [ ∂L

∂α′(t ) ] = ∂L
∂α(t ) , where α(t ) denotes the variational parameters

fi(t ),wi(t ),w j (t ), φi(t ), ξi(t ), and b(t ), respectively. If the ith component admits a dark soliton, the nontrivial equations can
be written as

α(t ) = fi(t ), 2gii f 2
i + 3

2 gi j f 2
j wiGi j + w2

i − 3 fiwib′(t )√
a2

i − f 2
i

= 0, (A5)

α(t ) = wi(t ), −gii f 2
i + 3

2 gi j f 2
j w

2
i

∂Gi j

∂wi
+ w2

i = 0. (A6)

If the ith component admits a bright soliton, the nontrivial equations can be written as

α(t ) = φi(t ), φi(t ) = b′(t ) (A7)

α(t ) = fi(t ), 4gii f 2
i + 3gi j f 2

j wiGi j + w2
i − 3b′(t )2 + 6ξ ′

i (t ) = 0, (A8)

α(t ) = wi(t ), −2gii f 2
i + 3gi j f 2

j w
2
i

∂Gi j

∂wi
+ w2

i + 3b′(t )2 − 6ξ ′
i (t ) = 0. (A9)
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We further get the constrain conditions on the amplitude fi and wi for the N-component soliton from Eqs. (A6), (A8), and
(A9), which are simplified as⎡
⎣g11 f 2

1 +
N∑

j=2

(
3

2
g1 j f 2

j w1G1 j + 3

2
g1 j f 2

j w
2
1
∂G1 j

∂w1

)
+ w2

1

⎤
⎦δ̃D,1 +

(
− g11 f 2

1 +
N∑

j=2

3

2
g1 j f 2

j w
2
1
∂G1 j

∂w1
+ w2

1

)
δD,1 = 0,

...
...

...⎡
⎣gii f 2

i +
N∑

j �=i

(
3

2
gi j f 2

j w1Gi j + 3

2
gi j f 2

j w
2
i

∂Gi j

∂w2
i

)
+ w2

i

⎤
⎦δ̃D,i +

(
− gii f 2

i +
N∑

j �=i

3

2
gi j f 2

j w
2
i

∂Gi j

∂wi
+ w2

i

)
δD,i = 0,

...
...

...⎡
⎣N−1∑

j=1

(
3

2
gN j f 2

j wN GN j + 3

2
gN j f 2

j w
2
N

∂GN j

∂wN

)
+ gNN f 2

N + w2
N

⎤
⎦δ̃D,N +

⎛
⎝N−1∑

j=1

3

2
gN j f 2

j w
2
N

∂GN j

∂wN
− gNN f 2

N + w2
N

⎞
⎠δD,N = 0.

(A10)

The ∂Gi j

∂wi
is −2

∫ +∞
−∞ { ± [x − b(t )]sech2{wi(t )[x − b(t )]} tanh{wi(t )[x − b(t )]}}( ± sech2{w j (t )[x − b(t )]})dx, for which the

sign −(+) corresponds to the dark (bright) component. After obtaining the above Euler-Lagrangian equations, it is very critical
to deal with the integral factors Gi j and ∂Gi j

∂wi
.

It is indeed hard to analytically calculate the integral factors with different width parameters. Interestingly, we find that it
is reasonable to calculate them with setting wi = w j = w, which enables us to obtain exact analytical soliton solutions. For
example, we show the results for one case in which the ith ( jth) component admits a dark (bright) soliton. The related integral
results can be given as follows:

Gi j =
∫ +∞

−∞
(−sech2{wi(t )[x − b(t )]})(sech2{w j (t )[x − b(t )]})dx

∣∣
wi=w j

= − 4

3w
,

∂Gi j

∂wi
= − 2

∫ +∞

−∞
{−[x − b(t )]sech2{wi(t )[x − b(t )]} tanh{wi(t )[x − b(t )]}}(sech2{w j (t )[x − b(t )]})dx|wi=w j = 2

3w2
,

∂Gi j

∂w j
= − 2

∫ +∞

−∞
(sech2{wi(t )[x − b(t )]}){−[x − b(t )]sech2{w j (t )[x − b(t )]} tanh{w j (t )[x − b(t )]}}dx|wi=w j = 2

3w2
.

The other cases for Gi j and ∂Gi j

∂wi
can be calculated in similar ways.

Finally, the constraint conditions on fi,w can be simplified as

⎛
⎜⎜⎜⎜⎜⎝

g11 · · · g1 j · · · g1N 1
...

...
...

...

gi1 · · · gi j · · · giN 1
...

...
...

...

gN1 · · · gN j · · · gNN 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

± f 2
1

...

± f 2
i

...

± f 2
N

w2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (A11)

The other parameters can be obtained as b(t ) = vt , φi =
v, ξi(t ) = 1

2 (w2 + v2)t + θi(t ), and the soliton velocity v =
w

√
a2

i − f 2
i / fi from other Euler-Lagrangian equations. The

constraint equation on backgrounds of dark components is
ai/a j = fi/ f j . It is emphasized that all width parameters be-
come identical one w in the expressions for soliton solutions.
The exact soliton solutions for N-component coupled nonlin-
ear Schrödinger equations with arbitrary nonlinear parameters
can be given by solving the constraint conditions. The expres-
sion of soliton solutions in any ith component for Eq. (A1)
can be given as

ψiD = {
i
√

a2
i − f 2

i + fi tanh[w(x − vt )]
}
eiθi (t ),

ψiB = fisech[w(x − vt )]ei[ 1
2 (w2+v2 )t+(x−vt )v+θi (t )]. (A12)

Different types of vector solitons usually exist in different
regions in nonlinear parameter spaces. Their existence regions
can be also clarified by the constrain conditions on soliton
parameters.

APPENDIX B: THE EXPLICIT EXPRESSIONS OF VECTOR
SOLITONS IN TWO- AND THREE-COMPONENT SYSTEM

1. The solutions of two-component soliton

The vector solitons for two-component systems can be still
classified in four families, similar to the integrable model.
We would like to present the explicit expressions for them as
follows:
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(i) The exact solution of bright-bright soliton is

ψ1B = f1sech[w(x − vt )]ei[ 1
2 (w2+v2 )t+(x−vt )v],

ψ2B = f2sech[w(x − vt )]ei[ 1
2 (w2+v2 )t+(x−vt )v], (B1)

where f2 =
√

g11−g12

g22−g12
f1, w =

√
g2

12−g11g22

g22−g12
f1.

(ii) The exact solution for dark-bright (DB) or bright-dark
(BD) soliton is

ψ1D = {
i
√

a2
1 − f 2

1 + f1 tanh[w(x − vt )]
}
e−ig11a2

1t ,

ψ2B = f2sech[w(x − vt )]ei[ 1
2 (w2+v2 )t+(x−vt )v]−ig21a2

1t , (B2)

where f2 =
√

g11−g12

g12−g22
f1, w =

√
g2

12−g11g22

g12−g22
f1, and v =√

g2
12−g11g22

g12−g22

√
a2

1 − f 2
1 . The difference between DB and BD is

defined by total density of the two components, which admits
a dip (for DB) or hump (for BD). Especially, the total density
can be uniform when 2g12 = g11 + g22, the vector soliton in
this case will become the spin soliton.

(iii) The exact solution of dark-dark soliton is

ψ1D = {
i
√

a2
1 − f 2

1 + f1 tanh[w(x − vt )]
}
e−ig11a2

1t−ig12a2
2t ,

ψ2D = {
i
√

a2
2 − f 2

2 + f2 tanh[w(x − vt )]
}
e−ig21a2

1t−ig22a2
2t ,

(B3)

where f2 =
√

g11−g12

g22−g12
f1, w =

√
g2

12−g11g22

g12−g22
f1, v =

√
g2

12−g11g22

g12−g22√
a2

1 − f 2
1 and a2

a1
= f2

f1
.

2. The solutions of three-component soliton

We would like to present the explicit expressions for vec-
tor soliton solutions in three-component coupled systems as
follows.

(i) The exact solution of bright-bright-bright soliton is

ψ1B = f1sech[w(x − vt )]ei[ 1
2 (w2+v2 )t+(x−vt )v],

ψ2B = f2sech[w(x − vt )]ei[ 1
2 (w2+v2 )t+(x−vt )v],

ψ3B = f3sech[w(x − vt )]ei[ 1
2 (w2+v2 )t+(x−vt )v], (B4)

where f2 = √
A1 f1, f3 = √

A2 f1, and w = √
A3 f1. The pa-

rameters A1, A2, and A3 are as follows:

A1 = g2
13 − g11g33 + g12(g33 − g13) + g23(g11 − g13)

g2
23 − g22g33 + g12(g33 − g23) + g13(g22 − g23)

,

A2 = g2
12 − g11g22 + g13(g22 − g12) + g23(g11 − g12)

g2
23 − g22g33 + g12(g33 − g23) + g13(g22 − g23)

,

A3 = 2g12g13g23 − g2
13g22 − g2

12g33 − g11(g2
23 − g22g33)

g2
23 − g22g33 + g12(g33 − g23) + g13(g22 − g23)

.

They hold for all vector soltions in three-component models.
(ii) The exact solution of dark-bright-bright soliton is

ψ1D = {
i
√

a2
1 − f 2

1 + f1 tanh[w(x − vt )]
}
e−ig11a2

1t ,

ψ2B = f2sech[w(x − vt )]ei[ 1
2 (w2+v2 )t+(x−vt )v]−ig21a2

1t ,

ψ3B = f3sech[w(x − vt )]ei[ 1
2 (w2+v2 )t+(x−vt )v]−ig31a2

1t , (B5)

where f2 = √−A1 f1, f3 = √−A2 f1, w = √−A3 f1, and v =
w
f1

√
a2

1 − f 2
1 .

(iii) The exact solution of dark-dark-bright soliton is

ψ1D = {
i
√

a2
1 − f 2

1 + f1 tanh[w(x − vt )]
}
e−ig11a2

1t−ig12a2
2t ,

ψ2D = {
i
√

a2
2 − f 2

2 + f2 tanh[w(x − vt )]
}
e−ig21a2

1t−ig22a2
2t ,

ψ3B = f3sech[w(x − vt )]ei[ 1
2 (w2+v2 )t+(x−vt )v]−ig31a2

1t−ig32a2
2t ,

(B6)

where f2 = √
A1 f1, f3 = √−A2 f1, w = √−A3 f1, v =

w
f1

√
a2

1 − f 2
1 , and a2

a1
= f2

f1
.

(iv) The exact solution of dark-dark-dark soliton is

ψ1D={i√a2
1 − f 2

1 + f1 tanh[w(x − vt )]
}
e−ig11a2

1t−ig12a2
2t−ig13a2

3t ,

ψ2D={i√a2
2 − f 2

2 + f2 tanh[w(x − vt )]
}
e−ig21a2

1t−ig22a2
2t−ig23a2

3t ,

ψ3D={i√a2
3 − f 2

3 + f3 tanh[w(x − vt )]
}
e−ig31a2

1t−ig32a2
2t−ig33a2

3t ,

(B7)

where f2 = √
A1 f1, f3 = √

A2 f1, w = √−A3 f1, v =
w
f1

√
a2

1 − f 2
1 , and a1 : a2 : a3 = f1 : f2 : f3.
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