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Quantum tunneling in ultra-near-integrable systems
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We study the tunneling tail of eigenfunctions of the quantum map using arbitrary precision arithmetic and
find that nonmonotonic decaying tails accompanied by step structures appear even when the corresponding
classical system is extremely close to the integrable limit. Using the integrable basis constructed with the Baker-
Campbell-Hausdorff (BCH) formula, we clarify that the observed structure emerges due to the coupling with
excited states via the quantum resonance mechanism. Further calculations reveal that the step structure gives
stretched exponential decay as a function of the inverse Planck constant, which is not expected to appear in
normal tunneling processes.
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I. INTRODUCTION

The quantum system whose corresponding classical phase
space is composed of regular and chaotic components is
far less understood than ideally chaotic systems. Such sys-
tems are referred to as mixed systems, and it is known
that invariant sets with different origins coexist in a sin-
gle classical phase space. Theoretical tools to analyze the
corresponding quantum systems and rigorous results are lim-
ited, reflecting the complexity of classical dynamics in mixed
phase space [1]. Nonetheless, it is believed that the quan-
tum mechanics with mixed classical phase space is strongly
affected by the underlying classical dynamics and has a fin-
gerprint on their eigenstates and time evolution of quantum
states.

Under this circumstance, the semiclassical eigenfunction
hypothesis (SEH) has been a lighthouse for such a not yet
fully explored issue [2]. The conjecture claims that eigenfunc-
tions for mixed systems are localized exclusively on invariant
(regular or chaotic) regions in the semiclassical limit, and
the density of each state is in proportion to the phase space
area. There is numerous support for the conjecture, provided
by directly observing the eigenfunctions for mixed systems
[3–5]. The validity could also be verified by studying the level
statistics [6,7]. Not only numerical studies but also rigorous
analyses supporting the hypothesis have been made [8–11],
although the systems under consideration are specific since
the phase space is sharply divided.

The SEH concerns the eigenstates in the semiclassical
limit. However, numerical observations tell us that an individ-
ual quantum state has its support on the associated invariant
component even with finite energies or a finite Planck con-
stant h̄. The phase space structure whose size is smaller than
the Planck cell is smeared out in the corresponding quan-
tum state. This fact is consistent with the observation that
the leading-order semiclassical or WKB (Wentzel-Kramers-
Brillouin) approximation works well even in the low-energy

region. The structures reproducible in semiclassical waves are
then in the same order of the Planck constant scale.

The idea of SEH is carried over when one wants to
understand the features of tunneling components in wave
functions. The mechanism called chaos-assisted tunneling
(CAT) [12–14] or resonance-assisted tunneling (RAT) [15,16]
assumes the existence of chaotic regions or nonlinear reso-
nances in size comparable to the Planck cell. These scenarios
do not predict, from their nature, anything anomalous when
the system is so close to the integrable limit that none of the
visible structures inherent in nonintegrability exist, compared
to the size of the Planck cell, in the classical phase space. For
the large Planck constant regime, the direct tunneling [17] or
instanton tunneling [18] process dominates, and thus a simple
exponential decaying behavior without any specific structures
is observed there.

The present report aims to see the validity of the hypoth-
esis that any anomaly in tunneling components, if it exists,
necessarily originates from some visible invariant structures
in phase space. This will be done by calculating tunneling tails
of the ultra-near-integrable system in which any visible nonin-
tegrable structures comparable to the size of the Planck cell do
not appear in the phase space. We have to stick with this issue
because the expansion with respect to the Planck constant,
on which the SEH is based, is incapable of capturing expo-
nentially small quantities. This can be readily understood by
expanding the function exp(−1/h̄) with respect to h̄, leading
to the series whose expansion coefficients are all zero. Hence,
exponentially small effects such as quantum tunneling may
slip through ordinary semiclassical arguments, so they are in
principle outside the scope of the SEH. Pseudo-differential
operator techniques are often used to derive rigorous results
on the SEH [8–11]. Also, the microlocal analysis does not
consider exponentially small corrections in their arguments
[19]. On the other hand, it is not surprising to find exponen-
tially small effects not linked to the support of eigenfunctions
in the semiclassical limit.
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Our strategy in this paper is to take a system sufficiently
close to the integrable limit, realizing a classical phase space
in which none of the structures inherent from nonintegrabil-
ity are visible compared to the size of the Planck cell. The
SEH predicts that nothing happens in quantum states in such
a system, just resulting in almost the same wave function
profile obtained in the integrable limit. The same would be
true for tunneling components because chaos-assisted tunnel-
ing (CAT) [12–14] and resonance-assisted tunneling (RAT)
[15,16] assume chaotic regions and nonlinear resonances in
the size of the Planck cell.

As we demonstrate below, it happens that tunneling tails do
not simply decay exponentially, even in the absence of visible
nonintegrable structures. This is achieved just by adding a
slight modulation to a simple potential function, keeping real
phase space almost unchanged. Note that the emergence of
nonmonotonic structures in eigenfunctions does not contradict
the SEH for the reason mentioned above. An important mes-
sage of the result is that one cannot simply infer the nature of
tunneling only from the classical phase space in the real plane.

We will also emphasize that the mechanism creating non-
monotonic tunneling tails explained below is not specific in
the ultra-near-integrable system studied here, but it works
in more generic near-integrable situations as well [20]. The
present finding, in turn, prompts the reconsideration of the
roles of visible classical phase space structures such as chaotic
regions and nonlinear resonances. In particular, the origin of
persistently enhanced tunneling, widely observed in nonin-
tegrable systems [15,16,20–24], would become particularly
important.

The outline of this paper is as follows: Section II provides
the setting for the classical and quantum map. In Sec. III we
introduce a potential function and display the phase space
profile for the classical map we will focus here. Since we pre-
pare an ultra-near-integrable situation, any structures inherent
in nonintegrability are not visible, and KAM (Kolmogorov-
Arnold-Moser) curves fully cover the phase space. Section IV
presents the results of numerical calculation using arbitrary
precision arithmetic to show that quantum eigenstates ex-
hibit nontrivial decaying profiles in deep tunneling regions.
Section V is devoted to clarifying the mechanism generating
nontrivial tunneling tails. We will examine the feature of
eigenfunctions in the BCH basis and develop a perturbation
argument. In Sec. VI we present some other examples show-
ing similar behaviors and seek a condition for the potential
function to create nonmonotonic tunneling tails, particularly
focusing on the behavior of the rotation number in the KAM
region. Section VII provides a summary and outlook.

II. CLASSICAL AND QUANTUM MAP

A. Classical map

We use the periodically kicked rotor whose Hamiltonian is
given by

H (p, q, t ) = T (p) + τV (q)
∑

n

δ(t − nτ ), (1)

where τ plays the role of the period of perturbation, and the
kicking strength. The functions T (p) and V (q) are kinetic

and potential functions, respectively. The angular frequency
is given as � = 2π/τ .

The classical time evolution from nth to (n + 1)-th kick is
expressed as

f :

(
q
p

)
�→

(
q + τT ′(p)

p − τV ′[q + τT ′(p)]

)
. (2)

The prime stands for the derivative with respect to the ar-
gument. In the limit of τ → 0, the classical map f tends
to a continuous time flow system generated by the one-
dimensional Hamiltonian H(p, q) = T (p) + V (q).

B. Quantum map

Time evolution of the corresponding quantum system is
driven by the unitary operator,

Û = exp
(
− iτ

h̄
V (q̂)

)
exp

(
− iτ

h̄
T ( p̂)

)
, (3)

which is often referred to as the quantum map.
In the following, we focus our attention on the quasi-

eigenstates of the quantum map (3). The eigenvalue equa-
tion is given as

Û |�n〉 = un|�n〉 with un = exp

(
− iτ

h̄
En

)
, (4)

where |�n〉 and En are the quasi-eigenstate and quasi-
eigenenergy, respectively. The eigenvalues are located on the
unit circle reflecting time periodicity of Hamiltonian (1). We
here assign the quantum number of quasi-eigenstates in the as-
cending order of the eigenvalues for the Hamiltonian H(q, p).

III. CLASSICAL PHASE SPACE AND INTEGRABLE
APPROXIMATION

Below we consider the case with the kinetic term T (p) =
p2/2 and take the following potential function:

V (q) = q2

2
− 2 cos

(
q

λ

)
, (5)

where the λ is a parameter specifying the length of modulation
to the harmonic term. A similar potential function was used in
Ref. [25], but the error function was further added there.

For τ � 1, the kicked-rotor system becomes close to the
one-dimensional continuous Hamiltonian H(p, q), and the
phase space is almost covered by KAM curves, as displayed in
Fig. 1. When the parameter λ is small, for example, λ = 1.2,
KAM circles are slightly deformed due to the presence of
the modulation term in the potential V (q). As the value of
λ gets large, the degree of modulation gradually becomes
milder.

Since the system is sufficiently close to the integrable limit
H(p, q), the integrable approximation works quite well. Here
we employed the integrable approximation constructed from
the BCH formula. The BCH formula is known to provide,
in general, a formal power series solution Z for the equation
eX eY = eZ , where the operators X and Y are noncommutative.
The dynamics generated by the classical map (2) is well
approximated by the truncated classical BCH Hamiltonian
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FIG. 1. Phase space profile of the classical map (2) with τ = 0.05, and the phase space flow generated by the truncated classical BCH
Hamiltonian H (M )

cBCH with M = 3. The parameter in the potential function (5) is set as (a) λ = 1.2, (b) λ = 2.0, and (c) λ = 3.0, respectively.
The plot (d) is a magnification of the plot (a). The black box at the upper-right corner represents the Planck cell with h̄ = 1. Note that KAM
curves for the classical map (2) are perfectly approximated by the flow of the integrable Hamiltonian, so two curves are indistinguishable.

introduced in the Appendix,

H (M )
cBCH =

M∑
j=1

τ j−1Hj . (6)

As seen in Fig. 1(d), the KAM curves generated by the
classical map (2) are indistinguishable from the equi-energy
curves for the truncated classical BCH Hamiltonian H (M )

cBCH,
even though the modulation is applied to the potential. The
equi-energy curves for H (M )

cBCH are deformed for smaller λ

cases. Notice, however, that the system is still completely
integrable.

Even though the phase space profile looks similar to the
harmonic oscillator KAM circles, there is a crucial difference
in the nature of KAM curves. To explain this, we introduce
the rotation number calculated as

R = lim
N→∞

1

2πN

N∑
n=1

(θn − θn−1), (7)

where θn := arctan(pn/qn). As shown in Fig. 2, the rotation
number takes multiple extrema due to the presence of the
second term in the potential (5). With the increase of λ, the
distance between consecutive extrema grows, and the varia-
tion range of the rotation number is reduced.

FIG. 2. (a) Rotation number R calculated using the formula (7).
(b) The derivative dR/d|q0|. The parameter values are taken as τ =
0.05 and λ = 1.2. The rotation number is numerically evaluated by
fixing the initial momentum as p0 = 0.

The existence of extrema is important since it implies the
violation of the so-called twist condition. Recall that the twist
condition is crucial to prove the so-called KAM theorem
[1,26], and shearless KAM curves appear when the rotation
number has extrema and so the twist condition is broken.
In the vicinity of the shearless KAM curve, it is known
that complicated structures emerge [27]. In particular, it has
been reported that twin resonant chains appear on both sides
of shearless KAM curves, and the breakup mechanism of
the shearless KAM curve has been studied in several ways
[27–32]. Since the perturbation strength is sufficiently small
in the present case, any structures, such as Poincaré-Birkhoff
chains and stochastic layers around separatrix, inherent in the
nonintegrability of the system, are not visible in the phase
space. In particular, compared to the size of the Planck cell,
which will be taken in our subsequent analyses for the quan-
tum map, any anomaly is not found even though shearless
KAM curves are present.

Although analytic invariant circles exist in the real plane,
it is conjectured that the natural boundary of the conjugating
function, which transforms the original dynamics to the ro-
tation on a circle, appears somewhere in the complex plane
[33–38]. It might be possible that shearless KAM curves
make the KAM curves in the complex plane fragile or even
break, whereas complex orbits are directly related to quantum
tunneling [39].

IV. TUNNELING TAILS FOR EIGENSTATES

As mentioned in the introduction, the SEH predicts that
eigenfunctions for our system should be simply localized on
KAM curves because any structures originating from nonin-
tegrability are not detected compared to the size of the Planck
cell under consideration.

Even for the tunneling region, one might merely expect a
simple exponential decay since the KAM curves of the map
(2) are so close to the equi-energy curves for the classical
BCH Hamiltonian H (M )

cBCH, as seen in Fig. 1. A scenario based
on the integrable approximation of KAM curves should ex-
actly apply to the current situation [17], and the classical BCH
Hamiltonian H (M )

cBCH could be a perfect candidate to achieve
this strategy.
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FIG. 3. Ground-state eigenfunctions for the quantum map (4) with τ = 0.05 and h̄ = 1, and those for the truncated quantum BCH
Hamiltonian H (M )

qBCH with M = 3. The parameter in the potential function (5) is set as (a) λ = 1.2, (b) λ = 2.0, and (c) λ = 3.0. respectively,
Panel (d) is a magnification of the plateau region in the plot (a). Three different grid lengths dQ are used to validate the numerical calculation.

Contrary to such an expectation, as found in Fig. 3, the
eigenfunctions |〈q|�0〉|2 do not exhibit monotonic decaying
tails but characteristic step structures, whereas the eigenstate
of the BCH Hamiltonian |〈q|J (M )

0 〉|2 exhibits a simple mono-
tonic decaying profile as it should be. Here the state |J (M )

0 〉
denotes the ground state eigenfunction of the truncated quan-
tum BCH Hamiltonian introduced in the Appendix,

Ĥ (M )
qBCH =

M∑
j=1

(
τ

ih̄

) j−1

Ĥj . (8)

Note that the difference of the truncation order M in the
quantum BCH series does not give rise to any noticeable
difference.

In Fig. 3 we present only the ground-state profile, but the
step structure, although not shown here, similarly emerges in
excited states. With the increase of λ, the distance between
consecutive extrema of the rotation number grows, and the
variation range of the rotation number is reduced. The step
structure shrinks accordingly, as observed in Figs. 3(a)–(c).

Since the step structure observed here appears in a deep
tunneling region, the validity of numerical calculations should
be checked carefully. We have used the Advanpix Multipreci-
sion Computing Toolbox for MATLAB [40], which provides
arbitrary-precision arithmetic to raise the precision arbitrar-
ily as far as the computational time is allowed. We have
verified the stability against the change of the position on
which boundary conditions are imposed and the number of
grids employed in calculations. Figure 3(d) illustrates that
the results are reasonable not only for the order of mag-
nitude but also for oscillatory patterns observed on each
plateau.

Anomalous tunneling tails can be seen in the Husimi rep-
resentation. Figure 4 depicts the ground-state eigenfunction in
the Husimi representation in the logarithmic scale. Compared
to the case for the quantum BCH Hamiltonian, the eigenfunc-
tion for the quantum map spread over a much broader region
in the coordinate direction, while no difference is seen as the
SEH predicts when plotted in the normal scale. Note, on the
other hand, that the broadening does not occur in the momen-
tum direction. Correspondingly, the step structure does not
appear in the momentum direction, just showing monotonic

decaying tails (not shown here). This must be because the
modulation is applied only in the coordinate direction.

V. ORIGIN OF THE STEP STRUCTURE

A. Quantum resonance

Below we clarify the origin of the step structure shown
in Fig. 2(a). For this purpose, we present the ground-state
eigenfunction |�0〉 under the quantum BCH basis |J (M )

n 〉. As

noticed in Fig. 3, the quantum BCH grand state |〈q|J (M )
0 〉|

2

almost completely approximates |〈q|�0〉|
2

up to the first
plateau. This suggests that the quantum BCH basis could
be used as an optimal reference to capture signatures of the
eigenstate for the quantum map.

Figure 5(a) displays the ground state under the the quantum
BCH basis |J (M )

n 〉 in log scale, where the truncation order in
the BCH series is taken as M = 3, 5, and 7, respectively. As
the order M becomes large, the BCH basis better approxi-
mates eigenstates of the quantum map, resulting in a sharp
drop in the vicinity of the ground state energy. After the initial
drop, the curves decay overall exponentially, except for small
spikes indicated by the arrows in the plot.

These spikes can be reproduced in the perturbation calcu-
lation, which is achieved by splitting the unitary operator of
the quantum map as

Û = Û (M )
BCH + 	Û (M ), (9)

FIG. 4. Ground-state eigenfunctions in the Husimi reprsentation
(log scale) for (a) the quantum map (4), and for (b) the truncated
quantum BCH Hamiltonian H (M )

qBCH with M = 3. The parameters are
set as τ = 0.05, λ = 1.2, and h̄ = 1.
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FIG. 5. (a) Ground-state eigenfunction with τ = 0.05, λ = 1.2,
and h̄ = 1 under the the quantum BCH basis |J (M )

n 〉. The colors of
curves distinguish the truncation order in the BCH expansion (8).
The arrows highlight the position of spikes. (b) Comparison with the
perturbation calculation (blue). The set of the parameters is the same
as the one used in the plot (a). For the exact calculation (red), the
case with M = 7 is used.

where

Û (M )
BCH = exp

(
− iτ

h̄
Ĥ (M )

qBCH

)
, (10)

and perform the first-order perturbation calculation to yield〈
J (M )

0

∣∣�0
〉

	

⎧⎪⎨
⎪⎩

1, (n = j),

−
〈
J (M )

n

∣∣	Û (M )
∣∣J (M )

j

〉
exp

( − iτ
h̄ E (M )

k

) − exp
( − iτ

h̄ E (M )
j

) , (n 
= j),

(11)

where E (M )
j denotes the quasi-eigenvalue of the BCH unitary

operator,

Û (M )
BCH

∣∣J (M )
j

〉 = exp

(
− iτ

h̄
E (M )

j

)∣∣J (M )
j

〉
. (12)

As shown in Fig. 5(b), although the perturbation calcula-
tion deviates from the exact data, qualitative profiles such as
exponential decay with small spikes are overall reproduced.
In particular, the positions of the spike coincide with those
obtained in the exact eigenstate calculation. The discrepancy
between the perturbative and the exact calculation comes from

the fact that the truncated BCH approximation with M = 7
does not yet reach an optimal truncation order and not gain
enough accuracy [20], even though the eigenstates of Ĥ (M )

qBCH
in the q-representation look well convergent [see Fig. 6(d)].

We now demonstrate that the coupling with the states creat-
ing spikes in the plot of |〈J (M )

n |�0〉|2 is responsible for creating
the step structure found in the plot of |〈q|�0〉|2 (see Fig. 3). To
this end, we expand the ground state as [20]

〈q|�0〉 =
∑

n

Con(M )
n (q), (13)

where

Con(M )
n (q) := 〈

q
∣∣J (M )

n

〉〈
J (M )

n

∣∣�0
〉
. (14)

Figure 6 displays the state obtained by∑
n′:spikes

Con(M )
n′ (q), (15)

where the summation n′ is taken only over the states responsi-
ble for creating spikes in Fig. 5. The plots clearly show that the
coupling with the states associated with the spikes in the plot

of |〈J (M )
n |�0〉|

2
generates the step structure. For larger values

of λ, the contributions from the coupling with exited states,
which are always present, are hidden by the most dominant
mode 〈q|J (M )

0 〉〈J (M )
0 |�0〉, and thus the steps do not come up.

Note that the dominant mode is referred to as the instanton
contribution or the direct tunneling in the literature [17,18].

The eigenvalues associated with the spikes can be read off
directly from Fig. 5(a) and also admit a simple interpretation
in the perturbation analysis. From the expression (11), the
component 〈J (M )

n |�0〉 exhibits a large value when the reso-
nance condition

τ

h̄
E (M )

n = τ

h̄
E (M )

0 + 2πm, m ∈ N (16)

is satisfied. Since the energy associated with the periodic kick
is given by Eex := 2π h̄/τ , the resonance condition is rewritten
as

E (M )
n = E (M )

0 + mEex. m ∈ N. (17)

As stated, the location generated by the perturbation calcula-
tion coincides with the one observed in the direct calculation.

FIG. 6. Ground-state eigenfunctions (black curves) for the quantum map (4) with τ = 0.05 and h̄ = 1. The parameter in the potential
function (5) is set as (a) λ = 1.2, (b) λ = 2.0, and (c) λ = 3.0, respectively. In each panel the state expressed by (15) is superposed. The
difference of colors in the state (15) shows the contribution labeled by the index n′, as indicated in each inset. The plot (d) confirms that the
difference of the truncation order in the quantum BCH series does not give rise to any noticeable difference in the q representation.
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Hence, we can conclude that the step structure is created as a
result of the resonance condition (17).

We can confirm numerically that it is indeed the case.
For λ = 1.2, we have the ground state eigenvalue E (M )

0 =
−1.24 . . . , and the energy associated with the first peak is
E (M )

125 = 125.10 . . . , which gives the energy difference E (M )
125 −

E (M )
0 	 126.33 . . . , whereas the energy associated with the

periodic kick is Eex 	 125.7 . . . . Therefore, it turns out that
the spike appears due to the predicted quantum mechanical
resonance.

Since invariant manifolds supporting the exited states as-
sociated spikes in Fig. 5 tend to those for the harmonic
oscillator as actions or energies get larger, the profile is noth-
ing special although we may expect that the excited states
also might have the step structure in a further deep tunneling
region.

B. Planck constant dependence of the step structure

We recall that the mechanism generating anomaly in the
tunneling tail is the same as the one discovered in Ref. [20],
in which the staircase structure of tunneling splitting as a
function of 1/h̄ has been identified as the anomalously strong
enhancement of tunneling probability. The origin of the en-
hancement thus observed has closely been investigated for the
system in a nearly integrable regime. It was found there that

the component |〈J (M )
n |�0〉|

2
has a peak at the energy satisfying

the same quantum resonance condition (17). Although the
distribution profile of the matrix element seen in Ref. [20]
differs from the one observed here, the mechanism leading
to the enhancement of tunneling probability is the same. In
particular, the persistent enhancement of the tunneling proba-
bility, which manifests exactly in the staircase structure in the
tunneling splitting vs 1/h̄ plot, can be explained by the quan-
tum resonance phenomenon, not by the spikes associated with
classical nonlinear resonances. Here the persistent enhance-
ment is referred to as a phenomenon in which the anomalous
enhancement of splitting compared to the integrable limit is
persistently maintained even with the change of 1/h̄. In order
to see the persistent enhancement, the system studied in this
paper can be regarded as a simpler or more ideal model than
the system with complicated classical phase space employed
in Ref. [20].

Reflecting that the step structure manifests as a result of the
quantum resonance as above, the location of steps is expected
to move as a function of the Planck constant h̄. To verify this,
we plot in Fig. 7(a) the ground state with different h̄, which
certainly validates the prediction.

If the step structure was linked to a certain classical
invariant object, it should have kept the same position even if
h̄ is changed. Thus, the result tells us that the enhancement of
tunneling probability brought by the step structure is a purely
quantum phenomenon, meaning that its origin might not be
traced back to any classical structures in the real phase space.
This result appears to pose a significant challenge since
any scenarios proposed so far for understanding quantum
tunneling in nonintegrable systems assume that certain
classical invariant structures, such as KAM curves, nonlinear
resonances, and chaotic regions, play the role
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FIG. 7. (a) Ground-state eigenfunctions for the quantum map (4)
with different values of the Planck constant, fixing other parameters
as τ = 0.05 and h̄ = 1. (b) Behavior of the value of the ground state
eigenfunction at a fixed position (q = 11) plotted as a function of
1/h̄.

[12–17,22,24,41–43]. Since they are classical objects, any
quantum counterparts linked to these structures should not
move as a function of the Planck constant. Recall that the
SEH shares the same spirit.

The observation of the wave function amplitude at a certain
fixed position reveals a highly nontrivial h̄-dependence. As
illustrated in Fig. 7(b), the wave function amplitude decays
in a stepwise way. What is remarkable is that the regions
not obeying simple exponential law emerge. With increase
of ln (1/h̄), the amplitude ln(ln(|〈q|�0〉|2)) increases linearly
with slope 1, and then the slope deviates from 1, implying
that the stretched exponential decay occurs. The slope again
returns to 1 and then the next stretched exponential region fol-
lows. Notice that stretched exponential regions appear when
the observation point keeps hitting a plateau region of the
wave function. It should be mentioned that similar behav-
ior has also been found in tunneling splitting vs 1/h̄ plot
[20], in which the nonexponential region appears caused by
the quantum resonance between the librational and rotational
states, that is, the coupling across the separatrix in the phase
space. In contrast, the quantum resonance within librational
states controls the step structure in the present case. Remem-
ber that both types of couplings could never be mimicked
by complex paths associated with integrable approximation
[17,41].

VI. STEP STRUCTURE: OTHER POTENTIAL CASES

In this section we explore under which condition tunneling
tail accompanied by steps appears. One feature of the system
under consideration is, as shown in Fig. 2, that the rotation
number does not change monotonically as a function of the
radius of the KAM curves and shearless KAM curves appear
as a result. Shearless KAM curves could be a source of com-
plexity in phase space, as mentioned in Sec. III. However, the
existence of shearless KAM curves is not a sufficient con-
dition for nontrivial tunneling tails because the phase space
flow generated by the classical BCH Hamiltonian also takes
extrema in the rotation number.
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FIG. 8. Ground-state eigenfunctions for the potential (a) V1(q), (b) V2(q), and (c) V3(q), respectively. The parameters are chosen as (a) α =
4000 and λ = 1.2, (b) A = 1/2, a = 15 and b = 5, and (c) α = 4000, A = 1/2, a = 15 and b = 5, respectively. (d) Ground-state eigenfunction
for the standard map, V (q) = −K cos q with τ = 1.0 and K = 0.05. The behaviors of the rotation number R are shown below each plot for the
ground-state eigenfunction.

We here demonstrate that even the systems with similar
or milder conditions yield nonmonotonic tunneling tails. We
consider the following potentials:

V1(q) = −α exp

(
−q2

α

)
+ cos

(q

λ

)
, (18a)

V2(q) = q2

2
+ Aq exp

[
− (q − a)2

b

]
, (18b)

V3(q) = −α exp(−q2/α) + A exp

[
− (q − a)2

b

]

+ A exp

[
− (q + a)2

b

]
. (18c)

Here a, b, α, and A are all parameters. In the cases of the
potentials V1(q) and V2(q), the rotation number R has extrema
as in the case of the potential V (q) studied in the previous
sections [see Figs. 8(e) and 8(f)]. In contrast, the rotation
number R has no extrema in the case of the potential V3(q),
as shown in Fig. 8(g). Therefore, shearless KAM curves do
not appear in the corresponding phase space. Instead, the
derivative dR/d|q| of the rotation number has extrema in the
case of V3(q). The reason for focusing the extrema of dR/d|q|
originates from our expectation that not only shearless KAM
curves but also even weaker deformation must give rise to a
significant effect on the nature of complex invariant structures.
This view is based on a general observation that slight defor-
mation of KAM curves in the real plane will be amplified in
the complex plane, or even KAM curves are broken.

Figures 8(a), 8(b), and 8(c) plot the ground-state eigen-
functions in log scale. As is seen, nonmonotonic tails with

steps emerge in a similar way as in the case of V (q). In par-
ticular, even without shearless KAM curves, the tunneling tail
exhibits steps and deviates from the tunneling curve obtained
from the quantum BCH eigenfunction.

It should also be noted that the steps appear regularly
in all the cases, even though the rotation number R varies
rather irregularly. This suggests that the same mechanism, the
enhancement induced by the quantum resonance, lies behind
the formation of the observed steps.

Although the nonmonotonic tail does not appear in the
standard map with sufficiently small kicking strength K , as
shown in Fig. 8(d), it is reasonable to expect that the mech-
anism originating from the quantum resonance revealed here
must be hidden even in such a case. This is because, as em-
phasized above, a nearly integrable situation follows the same
mechanism [20]. The quantum-resonance-induced enhance-
ment of tunneling probability could thus be a mechanism
widely observed in periodically driven systems.

VII. CONCLUSION AND OUTLOOKS

The ultra-high-precision calculation reveals that nonmono-
tonic tunneling tails, accompanied by regular step structures,
appear in tunneling tails of eigenfunctions even though the
corresponding classical phase space leaves no visible traces
of nonintegrability (compare Fig. 1 and Fig. 3). The appear-
ance of the step structure can be simply explained by the
quantum resonance due to periodic driving (see Fig. 6). It
is by no means surprising to find tunneling tails not linked
to any classical phase structure whose size is comparable
to the Planck cell because exponentially small effects are
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beyond the argument leading to the SEH, or conventional
pictures built based on the semiclassical theory, such as mi-
crolocal analyses. However, it is unclear yet under which
condition a nonmonotonic step structure comes up in tun-
neling tails. As shown in Fig. 3, the step structure gradually
disappears with the decrease of λ, which weakens the de-
gree of deformation of KAM curves in the classical phase
space.

We should emphasize that the observed signature cannot
be reduced to any of the scenarios, such as CAT or RAT,
proposed so far to characterize dynamical tunneling for two
reasons: First, known scenarios assume that for a large h̄
regime classical invariant structures with sub-Planck scale
are all smeared out and direct tunneling or tunneling ap-
proximated only by a single instanton path appear, and then
as the Planck cell resolves small classical structures another
type of tunneling starts to dominate. On the other hand, the
staircase structures found here emerge in the direct tunnel-
ing region, where the RAT scenario is not yet supposed to
work.

Second, the step structure moves as one varies the Planck
constant (see Fig. 7). In other words, the step structure is
not apparently be linked to any specific classical invariant
structure. If one wishes to explain the continuous shift of
the step structure based on the RAT framework, one has to
find the associated nonlinear resonances successively with
the change of the Planck constant. Before that, however,
one should take into account not only nonlinear resonances,
but also stochastic layers between tiny Poincaré-Birkhoff
chains, resonant tori, shearless KAM curves and structures
around them, etc., since all these are exponentially small in
the ultra-near-integrable situation and so could equally con-
tribute. We do not exclude the possibility of the contribution
from exponentially small nonlinear resonances to exponen-
tially small tunneling tails, but the issue could be more
involved compared to the situation in which the RAT theory
applies.

It would be a challenge to tackle the issue involving two
nontrivial singular limits, τ → 0 (integrable limit) and h̄ → 0
(semiclassical limit). Our paper concerns the situation where
the τ → 0 limit is taken keeping h̄ fixed, whereas the RAT
theory assumes the opposite order. As mentioned in the intro-
duction, exponentially small quantities slip through ordinary
perturbation expansions with respect to τ or h̄ since they are
divergent series in general. To our knowledge, such an issue
has never been explored, and known scenarios have not gone
into this regime.

The step structure here emerges in an extremely deep tun-
neling region in the case of an ultra-near-integrable system.
However, the observed phenomenon should not be taken to
be a phenomenon limited in such a specially designed sys-
tem. This is because the same mechanism is hidden also in
typical near-integrable situations. In Ref. [20] the staircase
structure has been identified in the plot of tunneling splittings
as a function of 1/h̄, which is obtained by removing and
suppressing various couplings associated with visible classi-

cal nonlinear resonances. The component |〈J (M )
n |�0〉|

2
has a

peak at the energy satisfying the same quantum resonance
condition (17). Although the distribution profile of the matrix

element found in Ref. [20] differs from the one observed here,
the mechanism leading to the enhancement of tunneling prob-
ability is common. In particular, the persistent enhancement
of the tunneling probability, which manifests itself precisely
in the staircase structure in the tunneling splitting vs 1/h̄
plot, can be explained by the quantum resonance, not by the
spikes associated with classical nonlinear resonances. In this
sense, the quantum resonance is a major source controlling
the feature of tunneling in nonintegrable systems. The role of
nonlinear resonances and chaotic regions should therefore be
reexamined from this perspective [15,16,20–24,41,42,44,45].

To proceed further, there are two crucial questions to be
answered: The first one is to explain the h̄-dependent step
structure (see Fig. 7) in terms of the underlying classical dy-
namics. Obviously, any correspondence with classical phase
space structures does not exist, so it appears to be a purely
quantum effect that defies any explanation based on the cor-
responding classical mechanics. However, the possibility of
providing a classical interpretation still remains because we
have not so far taken into account the classical dynamics
in the complex plane. As is clarified in Refs. [46–50], an
aspect of dynamics in the complex plane is entirely different,
particularly in the system with mixed phase space.

As rigorously proved in the polynomial map [46–49] and
numerically confirmed in the map with transcendental func-
tions [51–53], the dynamics in the complex plane exhibit
ergodicity and the orbits can reach anywhere in the phase
space, even when the real phase space is disjointed into dif-
ferent ergodic components by dynamical barriers.

To create the coupling with a highly excited state in
quantum mechanics, the classical dynamics has to own the
property such that any orbit near the KAM curve, associated
with the ground state, for example, can come close to any
other KAM curves, which support highly excited states. We
could explain the h̄-dependent behavior of coupled excited
states based on such a property [54]: the torus satisfying the
Bohr-Sommerfeld quantization condition is selected among
all possible tori accessed from the KAM curve associated with
the ground state.

The second issue is to seek the origin of the stretched
exponential scaling of h̄ in the tunneling component. As seen
in Fig. 7(b), the tunneling decay does not necessarily obey
an exponential law, as generally predicted within the semi-
classical or WKB arguments. It is highly nontrivial to explain
the absence of simple exponential law because the standard
leading-order semiclassical calculation predicts only a simple
exponential behavior even if one employs complex orbits. It
was shown in [55–57] that exponentially many complex orbits
contribute to the tunneling transition, which might lead to
some unknown cooperative effects. Another possibility would
be the breakdown of semiclassical approximation due to the
exponential proliferation of complex orbits. To the authors’
knowledge, such an anomalous h̄ dependence appears only in
nonintegrable systems.

Also, recall that one observes the stretched exponential
dependence when the transition cannot be reduced to or ap-
proximated by any type of integrable tunneling. The present
paper observes the stretched exponential behavior in the tran-
sition between librational KAM curves (see Fig. 9). A similar
anomaly was found in the tunneling transition across the
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FIG. 9. Illustration of two types of classical forbidden processes
in the ultra-near-integrable systems. The tunneling penetration across
the separatrix (dotted curve) was identified in Ref. [20], whereas the
transition between concentric librational KAM curves (solid curve)
has been found in the present paper. Complexified KAM curves
constructed from integrable approximations cannot bridge classical
disjointed invariant manifolds in both cases.

separatrix [20]. Complex manifolds constructed by integrable
approximation cannot bridge different KAM curves and de-
scribe the transition across the separatrix.
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APPENDIX: INTEGRABLE APPROXIMATIONS
IN TERMS OF THE BAKER-CAMPBELL-

HAUSDORFF FORMULA

In this Appendix, we provide integrable approximation of
the classical and quantum map using the Baker-Campbell-
Hausdorff formula.

1. Integrable approximation of quantum map

For the kicked-rotor Hamiltonian (2), the formal solution
can be expressed as

zn = exp(τDV ) exp(τDT )zn−1, (A1)

where

DT := {·, T } = ∂·
∂q

∂T

∂ p
− ∂·

∂ p

∂T

∂q
, (A2)

DV := {·,V } = ∂·
∂q

∂V

∂ p
− ∂·

∂ p

∂V

∂q
, (A3)

and zn = (qn, pn) denotes the nth iterates of the map (2). Since
the operators DT and DV do not commute with each other, the
solution (A1) is rewritten again formally as

exp(−τDV ) exp(−τDT ) = exp(−τDHBCH ) (A4)

using the BCH formula. Here

DHBCH := {·, DHBCH} = ∂·
∂q

∂DHBCH

∂ p
− ∂·

∂ p

∂DHBCH

∂q
, (A5)

with

HBCH = H1 + τH2 + τ 2H3 + τ 3H4 + · · · . (A6)

The first few terms are

H1 = V + T, H2 = 1
2 {V, T }, H3 = 1

12 {V − T, {V, T }}, · · ·
(A7)

For τ � 1, we may expect that the dynamics generated by
Hamiltonian HBCH well traces the classical dynamics of the
kicked-rotor system, so we introduce the truncated classical
BCH Hamiltonian,

H (M )
cBCH =

M∑
j=1

τ j−1Hj, (A8)

for the approximation of the classical map (2). Note that the
utility of this classical BCH Hamiltonian in the semiclassical
approximation of quantum dynamics has been reported [25].

2. Integrable approximation of quantum map

Since the operators V (q̂) and T ( p̂) are not commutative,
the same strategy to obtain the approximation of the quantum
map works. For the unitary operator Û , the BCH formula
yields a formal relation,

exp

(
− iτ

h̄
V (q̂)

)
exp

(
− iτ

h̄
T ( p̂)

)
= exp

(
− iτ

h̄
ĤBCH

)
,

(A9)

where

ĤBCH = Ĥ1 +
(

τ

ih̄

)
Ĥ2 +

(
τ

ih̄

)2

Ĥ3 + · · · . (A10)

Explicit expressions for Ĥn (n ∈ N ) are given just by replac-
ing the Poisson bracket in (A7) by the commutator. We then
introduce the truncated quantum BCH Hamiltonian as

Ĥ (M )
qBCH =

M∑
j=1

(
τ

ih̄

) j−1

Ĥj, (A11)

and consider the eigenvalue equation,

Ĥ (M )
qBCH

∣∣J (M )
n

〉 = E (M )
n

∣∣J (M )
n

〉
, (A12)

where E (M )
n and |J (M )

n 〉 denote eigenvalues and the associated
eigenfunctions, respectively.

Since V (q̂) and T ( p̂) are Hermitian operators, one can
easily show that the even terms in the expansion (A11) are
Hermitian and the odd terms are skew-Hermitian. Hence, the
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truncated quantum BCH Hamiltonian Ĥ (M )
qBCH turns out to be a

Hermitian operator, leading to real eigenvalues E (M )
n .

We should also note that

Ĥ (M )
qBCH = Ĥ (M )

cBCH + O(h̄). (A13)

In the case of T (p) = p2/2, we can write an explicit form as

Ĥ (M )
qBCH = p̂2

2
+ V + τ

2

(
iV ′ p̂ − ih̄

2
V ′′

)

+ τ 2

12

[
p̂2V ′′ + (V ′)2 − ih̄V (3) p̂ − 1

4
h̄2V (4)

]
+ · · · ,

which cast into the form of the expansion with respect to h̄ as

Ĥ (M )
qBCH =

{
p̂2

2
+ V + τ

2
V ′ p̂ + τ 2

12
[V ′′ p̂2 + (V ′)2] + · · ·

}

+ h̄

(
−1

4
iτV ′′ − 1

12
iτ 2V (3) p̂ + · · ·

)

+ h̄2

(
− 1

48
τ 2V (4) + · · ·

)
+ · · · . (A14)

Notice that the first terms without h̄ multiplications rep-
resent the classical BCH Hamiltonian. The quantum BCH
Hamiltonian can therefore be regarded as a h̄ correction to
the classical BCH Hamiltonian.
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