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A simple limiting factor in the intrinsic variable of the normal diffusive coupling is known to facilitate the
phenomenon of reviving of oscillation [Zou et al., Nat. Commun. 6, 7709 (2015)], where the limiting factor
destabilizes the stable steady states, thereby resulting in the manifestation of the stable oscillatory states. In
contrast, in this work we show that the same limiting factor can indeed facilitate the manifestation of the stable
steady states by destabilizing the stable oscillatory state. In particular, the limiting factor in the intrinsic variable
facilitates the genesis of a nontrivial amplitude death via a saddle-node infinite-period limit (SNIPER) bifurcation
and symmetry-breaking oscillation death via a saddle-node bifurcation among the coupled identical oscillators.
The limiting factor facilities the onset of symmetric oscillation death among the coupled nonidentical oscillators.
It is known that the nontrivial amplitude death state manifests via a subcritical pitchfork bifurcation in general.
Nevertheless, here we observe the transition to the nontrivial amplitude death via a SNIPER bifurcation. The
in-phase oscillatory state loses its stability via the SNIPER bifurcation, resulting in the manifestation of the
nontrivial amplitude death state, whereas the out-of-phase oscillatory state loses its stability via a homoclinic
bifurcation, resulting in an unstable oscillatory state. Multistabilities among the various dynamical states are
also observed. We have also deduced the evolution equation for the perturbation governing the stability of the
observed dynamical states and stability conditions for SNIPER and pitchfork bifurcations. The generic nature of
the effect of the limiting factor is also reinforced using two distinct nonlinear oscillators.

DOI: 10.1103/PhysRevE.106.064204

I. INTRODUCTION

Oscillation quenching is a fascinating emerging phe-
nomenon whereby the interaction between oscillatory units
ceases their oscillation to exist. Investigations on the cessation
of oscillation, several times reported as synchronization to
stable steady states, under various coupling configurations
have witnessed a considerable research activity in the broad
field of nonlinear dynamics and complex systems in the re-
cent literature [1–5]. In general, quenching of oscillation is
classified as amplitude death (AD), where a system of coupled
oscillators populate a fixed point (homogeneous steady state)
[1], and oscillation death (OD), where the coupled oscillators
populate different fixed points (heterogeneous steady states)
[6]. The phenomenon of oscillation quenching has been exten-
sively studied in view of its applications in diverse fields, and
substantial insights have been emerged on these distinct sce-
narios. Amplitude death and oscillation death has its relevance
in population ecology, electrochemical oscillators [7], neural
networks [2,8], and oscillations in the atmosphere and oceans
[9]. Indeed, recent studies have also shown that AD/OD has a
great importance in several areas, including oceanography [9],
lasers [10], and neuronal systems [8]. In addition, other types
of quenching scenarios, such as partial AD and nontrivial
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amplitude death (NAD), have also been shown to emerge
in coupled oscillators and complex networks. In the partial
AD, the oscillation of only a few variables of the coupled
oscillators is quenched, whereas the remaining variables re-
tain their sustained oscillatory state. Nontrivial amplitude
death is distinctly different from amplitude death. The former
refers to the stable nontrivial steady state, while the latter
refers to the stable trivial steady state.

In particular, it is known that AD generally onsets via either
a saddle-node bifurcation or a Hopf bifurcation, while the
NAD state manifests via a subcritical pitchfork bifurcation
[11–13]. Further, the heterogeneity in terms of the parameter
mismatch is conducive to AD while it is detrimental to NAD.
It is also evident from a recent review [12] that much less
progress has been made on NAD when compared to the lit-
erature on the classical AD, which has also been emphasized
in the review article. NAD was demonstrated in two cou-
pled Stuart-Landau oscillators, coupled directly via a diffusive
coupling and indirectly via a dynamic common environment
[14], in delay coupled networks [15]. Nonlinear couplings
often manifest a NAD state due to the genesis of a nontrivial
homogeneous steady state [2,8]. Indeed, it was demonstrated
that any choice of steady state can be stabilized, resulting in
NAD, by engineering the nonlinear couplings suitably [2].
Mean-field coupling was also shown to induce NAD states
effectively [11,13].

In contrast, the phenomenon of reviving of oscillation
involves revival of oscillation from the above-mentioned dis-
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tinct stable steady states, by destabilizing them in their own
stable parameter space, and by adopting various coupling
strategies but without altering the system dynamics. Revival
of oscillation has been achieved by employing gradient cou-
pling [16], processing delay [17], a diffusion self-feedback
factor [18], low-pass filters [19], and so on. Among these cou-
pling schemes, limiting the interaction in the normal diffusive
coupling by introducing a simple limiting factor has shown to
be an efficient technique to revoke the oscillation in a wide
variety of quenching scenarios and in a large class of complex
systems [18]. Since then, the effect of the simple limiting fac-
tor in the normal diffusive coupling on the emergent dynamics
has been a subject of interest for many researchers [13,20–22],
whose focus is on reviving oscillations under various dynam-
ical transitions and scenarios. In all these studies, the limiting
factor has been introduced in the intrinsic variable of the
diffusive coupling. In contrast, recently the onset of OD has
been shown in a system of two chemomechanical oscillators
and in coupled Hindmarsh-Rose systems by introducing the
limiting factor in the extrinsic variable along with a repulsive
coupling [23]. Initiatively, it is easy to recognize that this is
simply the inverse effect of the limiting factor in the intrinsic
variable by factoring it out.

In this work, in contrast to the effect of reviving of os-
cillation by the limiting factor in the intrinsic variable, we
show that the latter can indeed also lead to the manifesta-
tion of the phenomenon of quenching of oscillation, namely,
NAD and symmetry-breaking OD in the coupled identical
Stuart-Landau oscillators and symmetric OD in the coupled
nonidentical Stuart-Landau oscillators. Specifically, diffusive
coupling among the x variables is coupled repulsively to the
evolution equation of the dissimilar (conjugate) variables,
which breaks the rotational symmetry, along with a simple
limiting factor to elucidate our results. The bifurcation tran-
sitions are illustrated by depicting the bifurcation diagrams
obtained using XPPAUT software [24]. The transition to the
NAD state has been observed in the literature so far via a sub-
critical pitchfork bifurcation in general, as mentioned above.
However, here we have identified the transition from in-phase
oscillations to NAD via a saddle-node infinite-period limit
cycle (SNIPER) bifurcation and the coalescence of the saddle
and stable node, resulting in an infinite-period limit-cycle
solution, in the coupled identical Stuart-Landau oscillators as
a function of the repulsive coupling strength. The out-of-phase
oscillatory state loses its stability via a homoclinic bifurcation.
Multistability between in-phase (IPS) and out-of-phase (OPS)
oscillations, between NAD and OPS, and that between OPS
and symmetry-breaking OD are also observed. The dynamical
transitions are studied both as a function of the repulsive cou-
pling and the natural frequency of the oscillator. We deduce
the IPS, OPS, and NAD states along with their stability con-
dition. We also deduce the stability conditions for the SNIPER
and pitchfork bifurcations, which are found to agree well
with the simulation boundaries, using linear stability analysis.
Coupled nonidentical Stuart-Landau oscillators result in a rich
bifurcation diagram with quasiperiodic oscillation, periodic
oscillation, and steady state as a function of the repulsive
coupling strength. In addition to the SNIPER and the homo-
clinic bifurcations, a torus bifurcation mediates the transition
from the quasiperiodic oscillation to the periodic oscillation.

Multistability between two different quasiperiodic oscilla-
tions, periodic oscillations, and that between OD and periodic
oscillation is also observed. The dynamical transitions are
studied both as a function of the repulsive coupling and the
frequency disparity using a uniform distribution of natural
frequencies by varying the range of distribution. We also
extended our results to N-coupled identical and nonidentical
Stuart-Landau oscillators and two coupled FitzHugh-Nagumo
models in the Sec. VI and VII, respectively to corroborate
the generic nature of the effect of the limiting factor in the
employed coupling configuration.

The plan of the paper is as follows. In Sec. II we present
the model under consideration. In Sec. III we discuss the
emergent collective dynamical states obtained from numerical
integration of the coupled identical Stuart-Landau oscillators
(1). In Sec. IV we deduce the observed dynamical states and
the governing evolution equation for the perturbations that
determines the stability of the observed dynamical states. In
Sec. V we discuss the collective dynamical states exhibited
by the coupled nonidentical Stuart-Landau oscillators with
frequency mismatch. Finally, we summarize our results in
Sec. VI.

II. MODEL

We consider the paradigmatic model of Stuart-Landau
limit-cycle oscillators. Many nonlinear dynamical systems
near the Hopf bifurcation can be approximated as the Stuart-
Landau oscillator. Diffusive coupling among the x variables is
coupled repulsively to the evolution equation of the dissimilar
(conjugate) variables of the Stuart-Landau oscillators as

ż j = (1 + iω j − |z j |2)z j − iεRe(zk − az j ), (1)

where z j = x j + iy j for j, k = 1, 2 ( j �= k). x j and y j are the
state variables of the jth system. ω j is the natural frequency
of the jth oscillator. ε > 0 is the strength of the repulsive
coupling. Note that the coupling is only in the y j variable via
the xk variable. The limiting factor a ranging from 0 < a � 1
limits the interaction and diffusion of the x j and xk variables.
Note that the limiting factor also determines the nature of the
coupling. a = 1 corresponds to a normal diffusive coupling,
whereas a = 0 refers to a direct coupling scheme, bridging
the direct coupling and the normal diffusive interaction.

III. NUMERICAL RESULTS

The coupled Stuart-Landau oscillators (1) are numeri-
cally solved using the Runge-Kutta fourth-order integration
scheme with a time step of 0.01 to obtain the time series and
phase portraits of the observed dynamical states, including
the two-parameter phase diagrams. One-parameter bifurcation
diagrams are obtained using the XPPAUT software. To begin
with, we have depicted the time series (left column) and the
corresponding phase portraits (right column) of the coupled
identical Stuart-Landau oscillators for ω j = ω = 0.5 and the
limiting factor a = 0.5 in Fig. 1 for different values of the
repulsive coupling strength ε. In-phase oscillations exhibited
by the Stuart-Landau oscillators for ε = 0.5 are depicted in
Figs. 1(a) and 1(b), while the out-of-phase oscillations exhib-
ited by the Stuart-Landau oscillators for ε = 1.0 are depicted
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FIG. 1. Time series (left column) and the corresponding phase
portraits (right column) of the coupled identical Stuart-Landau os-
cillators for ω j = ω = 0.5 and the limiting factor a = 0.5: (a, b)
in-phase oscillations for ε = 0.5, (c, d) out-of-phase oscillations for
ε = 0.5, (e, f) nontrivial amplitude death for ε = 1.15, and (g, h)
oscillation death for ε = 3.0.

in Figs. 1(c) and 1(d). Note that both the in-phase and out-of-
phase oscillations coexist, resulting in the bistability between
them, in a large range of the coupling strength. Nontrivial
amplitude death is depicted in Figs. 1(e) and 1(f) for ε = 1.15,
which coexists with the out-of-phase oscillations in a certain
range of ε, after which the former survives as the only stable
state for further larger ε. The oscillation death state is depicted
in Figs. 1(g) and 1(h) for ε = 3.0.

We have depicted the one-parameter bifurcation diagrams
to understand the nature of the bifurcation transitions among
the observed dynamical states for different values of the lim-
iting factor a as a function of the repulsive coupling strength
ε in Fig. 2. The bifurcation diagram for the limiting factor

a = 1, depicted in Fig. 2(a), elucidates the coexisting in-phase
(lines connected by filled circles) and out-of-phase (lines con-
nected by filled squares) oscillations in the entire explored
range of coupling strength. However, rich bifurcations are
observed upon decreasing the value of the limiting factor.
There is a transition from the in-phase oscillatory state to the
nontrivial amplitude death (indicated by solid red line) via
a SNIPER bifurcation at ε = 0.816, which coexists with the
out-of-phase oscillatory state in the explored range of ε [see
Fig. 2(b)] depicted for a = 0.4. Unstable steady states are in-
dicated by dotted lines. Further, the NAD state is destabilized
at ε = 1.18, resulting in the OD state via a pitchfork (PF)
bifurcation, which remains stable in the range of ε ∈ (1.18, 4).
Furthermore, the OPS state loses its stability via a homoclinic
(Hc) bifurcation at ε = 1.9. Unstable oscillatory states are
indicated by open triangles.

Further decrease in the value of the limiting factor facili-
tates the emergence of the NAD state in a rather larger range
of the coupling strength as shown in Fig. 2(c) for a = 0.28. In
particular, the nontrivial amplitude death state coexists with
the out-of-phase oscillatory state in the range ε ∈ (0.71, 1.65],
while the former emerges as the only stable state for ε ∈
(1.65, 3.2), as the latter loses its stability via the homoclinic
bifurcation at ε = 1.65. It is to be noted that the OD state for
a = 0.28 onsets via a saddle-node (SN) bifurcation. Thus, it is
clearly evident that the limiting factor in the intrinsic variable
that destabilizes the stable steady states facilitating the revival
of oscillations in the normal diffusive coupling can also indeed
surprisingly lead to the counterintuitive effect of stabilizing
the nontrivial steady state via the SNIPER bifurcation, while
the diffusion among the x variables is repulsively coupled to
the evolution equation of the dissimilar (conjugate) variables.

One-parameter bifurcation diagrams as a function of ω for
two different values of the limiting factor a are depicted in
Fig. 3. The dynamical states and the bifurcation transitions
are similar to those observed in Figs. 2(b) and 2(c), except
that the bifurcation transitions are reversed in Figs. 3(a) and
3(b) as the value of ω is increased in the range ω ∈ (0, 3). It
is to be noted that the stable NAD state is observed only in
a narrow range of ε ∈ (0.93, 1.21) in Fig. 3(a) for a = 0.7,
whereas the spread of the NAD state is increased to the range
ε ∈ (0.98, 2) in Fig. 3(b) for a = 0.4. Hence, it is clear that
the limiting factor favors the onset of the NAD state and
its spread in a large range of the parameter space, in con-
trast to its effect of reviving oscillations in normal diffusive
coupling.

Two-parameter phase diagrams in the (ε, a) space are de-
picted in Fig. 4 to unravel the global dynamical transitions.
The pink (gray) shaded region, indicated as M1, corresponds
to the bistable region between the in-phase and out-of-phase
oscillatory states. The parameter space below the solid line
corresponds to the NAD state. The solid line is the SNIPER
bifurcation line across which the in-phase oscillation loses its
stability, resulting in the manifestation of the NAD state. The
dotted-dashed line corresponds to the homoclinic bifurcation
curve at which the out-of-phase oscillation loses its stability,
resulting in the monostable region of the NAD state for small
values of a in Fig. 4(a) for ω = 0.5 and in the entire explored
range of the parameters in Fig. 4(b) for ω = 1. The parameter
space between the solid and dotted-dashed lines, indicated as
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FIG. 2. One-parameter bifurcation diagrams of the coupled identical Stuart-Landau oscillators (1) as a function of the repulsive coupling
ε for different values of the limiting factor a. (a) a = 1, (b) a = 0.4, and (c) a = 0.28 for ω = 0.5. Stable in-phase (out-of-phase) oscillatory
states are represented by lines connected by filled circles (squares), while stable steady states (SS) are represented by solid red line. Unstable
oscillatory states (UO) are indicated by open triangles, while the unstable steady states (US) are represented by dotted lines. The in-phase
oscillatory state loses its stability via the SNIPER bifurcation, while the out-of-phase oscillatory state loses its stability via the homoclinic (Hc)
bifurcation.

M2, correspond to the bistable region between the out-of-
phase oscillatory state and the NAD state. The coupling is
the normal repulsive and diffusive coupling for a = 1, which
results only in the bistable region M1, as observed in the
one-parameter bifurcation diagram [see Fig. 2(a)].

Nevertheless, as the value of the limiting factor a is de-
creased, there is a transition from the M1 to M3 region via
the M2 region for the intermediate values of a [see Fig. 4(a)]
and then to the monostable OD state as a function of ε.
The parameter space indicated by M3 is the bistable region
between the OPS and OD states. The region enclosed by the
pitchfork bifurcation curve, represented by the dotted line,
and saddle-node bifurcation curve, the line connected by open
squares, corresponds to the OD state. The bistability between
the OD and NAD states, indicated by M4, is observed in
a narrow range of a for large values of ε. However, for a
large ω = 1, there is a transition from the M1 to M2 region
and then to the monostable NAD region, as observed in the
entire phase diagram in Fig. 4(b) in the range of the limiting
factor a ∈ (0, 1). It is also evident from the phase diagram
(see Fig. 4) that decreasing the value of the limiting factor
favors the NAD state in a rather larger region of the parameter
space, corroborating the results observed in the one-parameter
bifurcation diagrams (see Fig. 2). Thus, the effect of the lim-
iting factor in the intrinsic variable in our study is in complete
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FIG. 3. One-parameter bifurcation diagrams of the coupled iden-
tical Stuart-Landau oscillators (1) as a function of the ω for different
values of the limiting factor a: (a) a = 0.7 and (b) a = 0.4. The
repulsive coupling ε = 4. The dynamical states and their bifurcation
transitions are similar to those in Fig. 2.

contrast to that of normal diffusive coupling [17]. The limiting
factor facilitates the manifestation of the stable NAD state
from the stable oscillatory state in the employed coupling
configuration, whereas in the normal diffusive coupling it
facilitates the manifestation of the stable oscillatory state from
distinct stable steady states [13,18,20–22].

Two-parameter phase diagrams in the (ε, ω) parameter
space are depicted in Figs. 5(a) and 5(b) for a = 0.7 and
0.5, respectively, to understand the influence of the natural
frequency ω. The dynamical states and the multistable regions
along with the bifurcation curves are similar to those observed
in Fig. 4. For large values of ω, there is a transition from M1
to M2 and then to the NAD state, as observed in Fig. 4(b).
However, small values of ω favor the onset of the OD state,
thereby resulting the multistable state M3 and monostable
state OD. Consequently, there is a transition from M1 to M3
and then to the OD state as a function of ε in Figs. 5(a) and
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FIG. 4. Two-parameter phase diagrams in the (ε, a) parameter
space of the coupled identical Stuart-Landau oscillators for different
ω: (a) ω = 0.5 and (b) ω = 1. The parameter regions marked as M1
and M2 correspond to the bistable regions between the in-phase and
out-of-phase oscillatory states, and the out-of-phase oscillatory state
and the nontrivial amplitude death state, respectively. Coexistence
of oscillation death and out-of-phase oscillatory state are denoted
as M3, whereas the coexistence of oscillation death and nontrivial
amplitude death state are marked as M4. The dotted line and line
connected by open squares correspond to the pitchfork and saddle-
node bifurcations, respectively. The solid black line corresponds to
the SNIPER bifurcation curve, while the dotted-dashed black line
corresponds to the homoclinic bifurcation curve.
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curves are similar to those in Fig. 4.

5(b). It is again evident that decreasing the limiting factor
results in a more pronounced region of the NAD state, even
in the (ε, ω) parameter space [see Fig. 5(b)], corroborating
its counterintuitive effect in the employed coupling configura-
tion. We now analytically deduce the stability curves, namely,
the homoclinic and the SNIPER bifurcation curves, in the
following.

IV. COLLECTIVE DYNAMICAL STATES AND THEIR
STABILITY

The state variables in the in-phase synchronization mani-
fold, where x1 = x2 and y1 = y2, and those in the out-of-phase
synchronization manifold, characterized by x1 = −x2 and
y1 = −y2, can be deduced as

x�
1 = cos[

√
ω(K + ω)(t + C2)]√

C1e−2tλ + λ2[K−K cos (2
√

ω(K+ω)(t+C2 ))+2ω]+ω(2ω2+K2+3K )−Kλ sin (2
√

ω(K+ω)(t+C2 ))
2ωλ(λ2+ω(K+ω))

, (2a)

y�
1 =

√
K + ω sin (

√
ω(K + ω)(t + C2))√

ω
[
C1e−2tλ +

(
λ2[K−K cos (2

√
ω(K+ω)(t+C2 ))+2ω]+ω(2ω2+K2+3K )−Kλ sin (2

√
ω(K+ω)(t+C2 ))

2ωλ(λ2+ω(K+ω))

)] , (2b)

where K = ε(a − 1) for the symmetric subspace, K = ε(1 +
a) for the antisymmetric subspace, and C1 and C2 are the
integration constants. Note that (x�

1, y�
1) in Eq. (2) exhibit

periodic oscillation when K + ω > 0. For ω < ε(1 − a), the
solutions in Eq. (2) manifest as a nontrivial steady state. In the
asymptotic limit t → ∞, x�

1,2 and y�
1,2 tend to a constant value,

leading to the nontrivial steady state given by

x�
1 = x�

2 =
√

(εω(1 − a))
M1

+ M2,

y�
1 = y�

2 = 1

ω2

(
ωx�

1 + x�3
1 ε(a − 1)

)
, (3)

where

M1 = ε2(1 − a)2,

M2 =
√

[(2ω)2 − 4(ω4 + (a − 1)ω3)]M1 + ω2

2M1
. (4)

Now to analyze the stability of the symmetric (in-phase os-
cillatory state and the nontrivial amplitude death state) and
the antisymmetric (out-of-phase oscillation) states, we per-
turb the periodic solutions corresponding to the symmetric
state as

x1 = x�
1 + η1, y1 = y�

1 + η2, (5a)

x2 = x�
1 + ζ1, y2 = y�

1 + ζ2, (5b)

and those for the antisymmetric state as

x1 = x�
1 + η1, y1 = y�

1 + η2, (6a)

x2 = −x�
1 + ζ1, y2 = −y�

1 + ζ2, (6b)

where ηi, ζi, i = 1, 2 are the perturbations. By substituting
the above perturbations in the system equation (1) and by
linearizing, one can deduce the governing equation of motion
for the perturbations as

η̇1 = (
λ − 3x�2

1 − y�
1

)
η1 − (ω + 2x�

1y�
1)η2, (7a)

η̇2 = (
λ − x�2

1 − 3y�
1

)
η2 + (ω − 2x�

1y�
1)η1 − ε(ζ1 − aη1),

(7b)

ζ̇1 = (
λ − 3x�2

1 − y�
1

)
ζ1 − (ω + 2x�

1y�
1)ζ2, (7c)

ζ̇2 = (
λ − x�2

1 − 3y�
1

)
ζ2 + (ω − 2x�

1y�
1)ζ1 − ε(η1 − aζ1).

(7d)

One can determine the stability of the observed collective
dynamical states by solving the above system of evolution
equations for the perturbations corresponding to the dynam-
ical states as a function of the repulsive coupling strength
and the limiting factor. In particular, one can determine the
stable region of the nontrivial amplitude death state in the
parameter space by substituting the steady state (x∗

1, y∗
1 ) (3)

in the evolution equations for the perturbations and trace the
regions where the perturbations die out, which will lead to the
SNIPER bifurcation curve.

Nevertheless, the SNIPER and the pitchfork bifurcation
curves, in between which the NAD is stable, can be obtained
by deducing the stability condition for the NAD state through
the linear stability analysis. The Jacobian matrix of the
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perturbed system of equations, Eqs. (7), corresponding to the NAD state can be obtained as

J =

⎡
⎢⎢⎣

1 − 3x�2
1 − y�2

1 −ω − 2x�
1y�

1 0 0
ω − 2x�

1y�
1 + εa 1 − x�2

1 − 3y�2
1 −ε 0

0 0 1 − 3x�2
1 − y�2

1 −ω − 2x�
1y�

1
−ε 0 ω − 2x�

1y�
1 + εa 1 − x�2

1 − 3y�2
1

⎤
⎥⎥⎦. (8)

The corresponding eigenvalues for the above Jacobian matrix can be expressed as

λ1,2 = 1 − 2x�2
1 − 2y�2

1 ±
√(

x�2
1 + y�2

1

)2 − ω2 − ε(1 + a)(ω + 2x�
1y�

1), (9a)

λ3,4 = 1 − 2x�2
1 − 2y�2

1 ±
√(

x�2
1 + y�2

1

)2 − ω2 + ε[ω(1 − a) − 2(1 + a)x�
1y�

1]. (9b)

By substituting the NAD state [Eq. (3)] in the above eigen-
value equations, one can deduce the stability condition for the
SNIPER bifurcation curve as

a = ε − ω

ε
(10)

and the pitchfork bifurcation curve as

2a4ε3ω2 + a3ε2ω(4ω2 − 7εω − 2) + a2ε[2ω4 − 9εω3

− (2 + 9ε2)ω2 + 4εω + 4Q1] − a[2εω4

− 6ε2ω3 + (5ε2 − 2)εω2

+ 2(ε2 − 2Q1)ω + 5εQ1] + ε(ε2ω2 − εω3 + Q1) = 0,

(11)

where Q1 =
√

(a − 1)2ε2ω3((a − 1)ε + ω). These critical
curves corresponding to the SNIPER and the pitchfork bi-
furcation curves that enclose the stable NAD state and these
bifurcation curves are found to agree with the simulation
results in Figs. 4 and 5.

The stable region of in-phase and out-of-phase oscillations
can also be determined by investigating the asymptotic states
of the evolution equations for the perturbations correspond-
ing to the in-phase and out-of-phase oscillatory states, which
will also result in the SNIPER and homoclinic bifurcation
curves, respectively. One can also use the Floquet theorem to
determine the stability of the limit-cycle oscillations (in-phase
and out-of-phase oscillations). Integrating the above system
of equations, one can determine the Floquet multipliers from
the fundamental matrix [25]. The Floquet multipliers for in-
phase (out-of-phase) oscillation as a function of the repulsive
coupling strength ε for different values of the limiting factor
can also result in the SNIPER (homoclinic) bifurcation curve
in the (ε, a) parameter space. Note that in the symmetric mani-
fold in-phase oscillation loses its stability and manifests as the
nontrivial amplitude death state via the SNIPER bifurcation
curve, while in the antisymmetric manifold the out-of-phase
oscillation loses its stability via the homoclinic bifurcation.

The SNIPER and the homoclinic bifurcation curves in
Fig. 4 are also verified from the XPPAUT software, which are
found to agree very well with the stability curves obtained
from the evolution equation for the perturbations correspond-
ing to the distinct dynamical states.

V. COUPLED NONIDENTICAL OSCILLATOR DYNAMICS

In this section we introduce the parameter mismatch in
terms of nonidentical frequencies among the two coupled
Stuart-Landau oscillators in (1) and investigate the effect of
heterogeneity on the collective dynamics exhibited by the cou-
pled identical Stuart-Landau oscillators. We have depicted the
one-parameter bifurcation diagrams of the coupled noniden-
tical Stuart-Landau oscillators as a function of the repulsive
coupling for the frequency mismatch 	ω = 0.3 (ω1 = 1 and
ω2 = 1.3) in Figs. 6(a) and 6(b) for the values of the limiting
factor a = 1 and a = 0.6, respectively. As in Fig. 2, stable
(unstable) oscillatory states are depicted as filled (unfilled)
symbols, while stable (unstable) steady states are represented
by solid (dotted) lines. Two different torus bifurcations Tr1
and Tr2 mediate the transition from two different quasiperi-
odic oscillations QP1 and QP2 to two different oscillatory
states Os1 and Os2, respectively (see Fig. 6). We observe no
other dynamical states and transitions in the explored range
of the bifurcation diagram for the limiting factor a = 1 [see
Fig. 6(a)]. However, upon decreasing the value of the limiting
factor to a = 0.6, there is a transition from Os1 to the oscilla-
tion death (OD) state via the SNIPER bifurcation as a function
of ε in addition to the observed dynamical transition from
QP1 to Os1 [see Fig. 6(b)]. Further, Os2 loses its stability via
the homoclinic bifurcation as in the case of coupled identical
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Tr2

Tr1 SNIPER

Hc

QP1

QP2

Os1

Os2

QP1

QP2

Os1

Os2

OD

FIG. 6. One-parameter bifurcation diagrams as a function of the
repulsive coupling strength ε of the coupled Stuart-Landau oscil-
lators with the frequency mismatch 	ω = 0.3. The limiting factor
(a) a = 1 and (b) a = 0.6. The bifurcation diagrams are obtained
using the software XPPAUT. The lines connected with filled circles
and squares indicate the stable oscillatory states Os1 and Os2, re-
spectively. The empty circles and squares represent the quasiperiodic
states QP1 and QP2, respectively. The solid red and dashed black
lines, respectively, indicate the stable and unstable steady states.
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FIG. 7. Lyapunov spectrum in the range of ε ∈ (0, 1.5) corrobo-
rating the quasiperiodic attractors in Fig. 6(a).

Stuart-Landau oscillators. Thus it is evident that limiting the
intrinsic variable in the coupling facilitates the manifestation
of steady states, here oscillation death, in contrast to its effect
observed in Ref. [18]. It is also to be noted that the parameter
mismatch favors the onset of the heterogeneous steady states
rather than the nontrivial steady state.

The quasiperiodic nature of the two different quasiperiodic
oscillations QP1 and QP2 is indeed confirmed by the torus
bifurcations at Tr2 and Tr1 [see Fig. 6(a)]. Nevertheless, we
have also corroborated it using the Lyapunov spectrum de-
picted in Fig. 7, where the four Lyapunov exponents of the
two coupled nonidentical Stuart-Landau oscillators are plotted
as a function of the repulsive coupling ε ∈ (0, 1.5) for a = 1.
The values of the other parameters are the same as in Fig. 6(a).
λ1 = λ2 ≈ 0 corroborates the quasiperiodic nature of QP1 and
QP2. The Lyapunov spectrum shown in Figs. 7(a) and 7(b)
are obtained for two distinct initial conditions that are chosen
on the two distinct quasiperiodic attractors, which lose their
stability via the torus bifurcations Tr2 and Tr1 at ε = 1.05 and
1.3, respectively.

The representative time series (left column) and phase
portraits (right column) of the different coexisting dynamical
states observed in the bifurcation diagrams are depicted in
Figs. 8–11 for different ε. The values of the other param-
eters are the same as in Fig. 6(b). Solid and dashed lines
correspond to the dynamics of the first and second oscillators,
respectively. Time series and phase portraits of two different
coexisting quasiperiodic attractors are shown in Fig. 8 for
ε = 0.5. The coexisting limit cycles and the quasiperiodic
oscillations for ε = 0.95 are depicted in Fig. 9. Similarly,
coexisting two different limit-cycle oscillations are plotted
in Fig. 10 for ε = 1.2. The coexisting limit-cycle oscillation
and heterogeneous steady states are depicted in Fig. 11 for
ε = 2.5.

Two-parameter phase diagrams in the (ε, a) space are de-
picted in Figs. 12(a) and 12(b) for 	ω = 0.1 (ω1 = 1 and
ω2 = 1.1) and 0.3, respectively, to unravel the global bi-
furcation transitions. The unshaded region, indicated as R1,
corresponds to the region of coexisting quasiperiodic attrac-
tors QP1 and QP2. The gray shaded region between the
dashed lines indicated as R2 is the bistable region between
the QP1 and Os2 states. The region marked R3 lying between
the dashed and solid lines is the bistable region between the
Os1 and Os2 states. The region between the solid and dotted-
dashed lines, indicated as R4, corresponds to the bistable
region between the OD and Os2 states, while the region below

-1

 0

 1

 500  550

x 1
,x 2

t
-1

 0

 1

 500  550

(c)

-1

 0

 1

-1  0  1

y 1
,y
2

x1,x2

-1

 0

 1

-1  0  1

(d)

-1

 0

 1

 500  550

x 1
,x 2

t
-1

 0

 1

 500  550

(a)

-1

 0

 1

-1  0  1

y 1
,y
2

x1,x2

-1

 0

 1

-1  0  1

(b)

FIG. 8. Time series (left column) and phase portraits (right col-
umn) of the coupled Stuart-Landau oscillators with the frequency
mismatch 	ω = 0.3. The limiting factor a = 0.6 and the repulsive
coupling strength ε = 0.5.

the dotted-dashed line corresponds to the monostable hetero-
geneous steady state (OD). Note that dashed lines correspond
to the torus bifurcation curves Tr1 and Tr2 in the order of
their emergence, while the solid line is the SNIPER bifur-
cation line across which Os1 loses its stability, resulting in
the manifestation of the oscillation death state. The dotted-
dashed line corresponds to the homoclinic bifurcation line at
which the Os2 loses its stability, leading to the monostable
region of oscillation death state. All these bifurcation curves
are obtained using the XPPAUT software, which has also been
verified numerically. There is a transition from R1 to R3 via
R2 as a function of ε for larger values of the limiting factor
a. As the value of the limiting factor is decreased, one can
observe the transition to the oscillation death states, resulting

-1

 0

 1

 500  550

x 1
,x 2

t
-1

 0

 1

 500  550

(c)

-1

 0

 1

-1  0  1

y 1
,y
2

x1,x2

-1

 0

 1

-1  0  1

(d)

-1

 0

 1

 500  550

x 1
,x 2

t
-1

 0

 1

 500  550

(a)

-1

 0

 1

-1  0  1

y 1
,y
2

x1,x2

-1

 0

 1

-1  0  1

(b)

FIG. 9. Time series (left column) and phase portraits (right col-
umn) of the coupled Stuart-Landau oscillators with the frequency
mismatch 	ω = 0.3. The limiting factor a = 0.6 and the repulsive
coupling strength ε = 0.95.
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FIG. 10. Time series (left column) and phase portraits (right
column) of the coupled Stuart-Landau oscillators with frequency
mismatch 	ω = 0.3. The limiting factor a = 0.6 and the repulsive
coupling strength ε = 1.2.

in the bistable region R4 in addition to the above dynamical
transitions. Increase in the frequency mismatch facilitates the
quasiperiodic attractors QP1 and QP2 in a larger parameter
space while reducing the bistable region R3.

Two-parameter phase diagrams in the (ε,	ω) space are
depicted in Figs. 13(a) and 13(b) for a = 0.7 and 0.5, re-
spectively, to elucidate the role of frequency disparity on
the observed dynamical states. The bifurcation transitions
and the bistable regions are similar to those observed in
Fig. 12. In the entire explored range of 	ω, there is a tran-
sition from R1 to the OD state via R2, R3, and R4 in both
Figs. 13(a) and 13(b). However, it is evident that spread of the
OD state increased to a large extent even for a small decrease
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FIG. 11. Time series (left column) and phase portraits (right col-
umn) of the coupled Stuart-Landau oscillators with the frequency
mismatch 	ω = 0.3. The limiting factor a = 0.6 and the repulsive
coupling strength ε = 2.5.
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FIG. 12. Two-parameter phase diagram in the (ε, a) parame-
ter space of the coupled Stuart-Landau oscillators with frequency
mismatch 	ω = 0.1 and 0.3. Unshaded region, indicated as R1,
corresponds to the region of coexisting quasiperiodic attractors QP1
and QP2. The gray shaded region between the dashed lines (torus
bifurcation curve) indicated as R2 is the bistable region between
QP1 and Os2 states. The region marked as R3 lying between the
dashed and solid (SNIPER bifurcation curve) lines is the bistable
region between the Os1 and Os2 states. The region, indicated as R4,
between the solid and dotted-dashed (homoclinic bifurcation curve)
lines correspond to the bistable region between OD and Os2 states,
while the region below the dotted-dashed line corresponds to the
monostable heterogeneous steady state (OD). The bifurcation curves
are obtained using the XPPAUT software. Shaded regions correspond
to the numerical results.

in the limiting factor a [see Fig. 13(b)]. Further, it is also
evident that the frequency disparity favors the onset of the OD
state rather than the NAD state, as already pointed out.

VI. COUPLED FITZHUGH-NAGUMO OSCILLATORS

In order to elucidate the robustness of the effect of the
limiting factor in the employed coupling, where the x vari-
ables are coupled repulsively to the dissimilar variables,
we consider the two coupled paradigmatic model of the
FitzHugh-Nagumo oscillator, whose evolution equation is
represented as

β ẋi = xi − xi
3/3 − yi,

ẏi = xi + α − ε(x j − axi ), (12)
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 0.25

 0.5
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FIG. 13. Two-parameter phase diagrams in the (ε, 	ω) parame-
ter space of the coupled Stuart-Landau oscillators for (a) a = 0.7 and
(b) 0.5. The dynamical states and the bifurcation curves are similar
to those observed in Fig. 12.
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FIG. 14. Two-parameter phase diagram in (ε, a) parameter space
of the coupled FitzHugh-Nagumo model, Eq. (12), for α = 0.5 and
β = 0.05. The pink (gray) shaded region is the IPS state, while the
region below the dotted-dashed line, SNIPER bifurcation curve, is
the NAD state.

where i, j = 1, 2(i �= j). xi and yi are the activator and
inhibitor variables, α is a threshold parameter, and β charac-
terizes the timescale of separation. a is the limiting factor. The
FitzHugh-Nagumo model is a mathematical description of the
qualitative features of the nervous impulse conduction in
the neural cell [26]. We have fixed α = 0.5 and β = 0.05. The
two-parameter phase diagram of the two coupled FitzHugh-
Nagumo oscillator in the (ε, a) parameter space is depicted
in Fig. 14. For a = 1, only IPS is observed in the entire
explored range of the repulsive coupling strength ε ∈ (0, 5).
Nevertheless, it is evident that decreasing a leads to the onset
of the NAD state and also favors the spread of the NAD state
to a large range of the parameter space (see Fig. 14), thereby
corroborating the counterintuitive effect of stabilizing the non-
trivial steady state via the SNIPER bifurcation, indicated by
dotted-dashed line, generalizing the results observed in the
main part of the manuscript.

VII. ENSEMBLE OF GLOBALLY COUPLED
STUART-LANDAU OSCILLATORS

We consider N globally coupled Stuart-Landau oscillators
to further illustrate the generic nature of the effect of the lim-
iting factor facilitating the onset of the NAD state in coupled
identical oscillators and the OD state in coupled oscillators
with heterogeneity. The evolution equation for the N globally
coupled Stuart-Landau oscillators is represented as

ż j = (1 + iω j − |z j |2)z j − i
ε

N

N∑
k=0

Re(zk − az j ), (13)

where z j = x j + iy j and j, k = 1, 2, . . . , N . The parameters
are the same as in the two coupled Stuart-Landau oscillators
presented in the main part of the manuscript. Two-parameter
phase diagrams are depicted in (ε, a) space for ω = 1 in
Fig. 15(a) and in (ε, ω) space for a = 0.5 in Fig. 15(b) to cor-
roborate the generic nature of the effect of the limiting factor
as a function of the repulsive coupling strength ε in an ensem-
ble of coupled nonlinear oscillators. The observed dynamical
states and their bifurcation transitions for N = 100 globally
coupled Stuart-Landau oscillators strongly resemble those ob-
served in Fig. 4 for two coupled Stuart-Landau oscillators
in both (ε, a) and (ε, ω) parameter spaces, corroborating the
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FIG. 15. Two-parameter phase diagrams of N = 100 globally
coupled identical Stuart-Landau oscillators, Eq. (13) in (a) (ε, a) pa-
rameter space for ω = 1, and (b) (ε, ω) parameter space for a = 0.5.
The dynamical states and their bifurcation transitions are similar to
those observed in Fig. 4.

counterintuitive effect of the limiting factor in inducing the
NAD and symmetry-breaking OD states, when the x variables
are coupled repulsively to the dissimilar variables, which is
known to facilitate the revival of oscillation from the quenched
states in the case of normal diffusive coupling.

Two-parameter phase diagrams are depicted in the (ε, a)
space for 	ω = 0.3 in Fig. 16(a) and in the (ε,	ω) space
for a = 0.5 in Fig. 16(b) to illustrate the interplay of the
frequency heterogeneity and the limiting factor. We have dis-
tributed the frequency between ω and ω + 	ω uniformly to
all the oscillators. Here, we have fixed ω = 1. The transition
from two distinct quasiperiodic oscillations, indicated as R1,
to the OD state is observed in both phase diagrams. For
a = 1, only the quasiperiodic orbits are observed in the entire
explored range of the repulsive coupling strength ε ∈ (0, 5).
Nevertheless, decreasing the limiting factor is found to facili-
tate the onset of the symmetric OD state and the spread of the
latter to a large region of the parameter space [see Fig. 16(a)]
even in N = 100 globally coupled Stuart-Landau oscillators
with frequency disparity. Further, there is a transition from R1
to the OD state in the entire phase diagram in the (ε,	ω)
parameter space in Fig. 16(b). Again, the effect of the lim-
iting factor a and the frequency mismatch in an ensemble
of globally coupled Stuart-Landau oscillators is similar to
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FIG. 16. (a) Two-parameter phase diagram of N = 100 globally
coupled nonidentical Stuart-Landau oscillators in (ε, a) parame-
ter space for 	ω = 0.3, and (b) two-parameter phase diagram in
(ε, 	ω) parameter space for a = 0.5. The parameter space marked
as R1 corresponds to the bistable region of two distinct quasiperiodic
oscillatory states.
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those observed for the case of two coupled Stuart-Landau
oscillators, thereby corroborating the robustness and generic
nature of the effect of the limiting factor.

VIII. SUMMARY AND CONCLUSIONS

We have considered two-coupled Stuart-Landau limit cycle
oscillators by coupling x variables to the evolution equa-
tion among the dissimilar variables with a repulsive link
and a simple limiting factor. We find that the limiting factor
in the intrinsic variable that limits the interaction between
the coupled oscillators indeed facilitates the manifestation
of stable steady states from the stable oscillatory state. In
contrast, the limiting factor in the intrinsic variable of the
normal diffusive coupling is known to destabilize the stable
steady states, thereby facilitating the manifestation of the
stable oscillatory state [18]. In particular, the limiting factor
in the intrinsic variable facilitates the onset of the nontrivial
amplitude death among the coupled identical oscillators via
the SNIPER bifurcation by destabilizing the in-phase oscil-
latory state. In contrast, the nontrivial amplitude death has
been shown to emerge via a subcritical pitchfork bifurcation in
general in the literature. Furthermore, the symmetry-breaking
OD state manifests via a saddle-node bifurcation. The out-of-
phase oscillatory state loses its stability via the homoclinic
bifurcation. Only in-phase and out-of-phase oscillatory states
coexist for large values of the limiting factor. Nevertheless,
below a critical value of the limiting factor there is a transition
from the in-phase oscillatory state to the nontrivial amplitude
death (and oscillation death) state via the out-of-phase oscil-
latory state in a large range of the limiting factor. There are
regions of bistability among the observed collective dynam-
ical states. Decreasing values of the limiting factor facilitate
the emergence of the nontrivial amplitude death state in a
large range of the repulsive coupling strength. The dynamical
transitions are investigated both as a function of the repulsive
coupling strength and the natural frequency. We have deduced
the evolution equation for the perturbations governing the
stability of the observed dynamical states. We have also de-
duced the stability conditions for the SNIPER and pitchfork
bifurcations using linear stability analysis, which are found to
agree well with the simulation boundaries using the XPPAUT

software.

In the case of coupled nonidentical Stuart-Landau oscil-
lators with frequency mismatch, there is a transition from
quasiperiodic oscillation to the oscillation death state via
periodic oscillations. The quasiperiodic oscillations QP1 and
QP2 lose their stability via subsequent of torus bifurcations,
resulting in periodic oscillations as a function of the coupling
strength. The periodic oscillations Os1 and Os2 lose their
stability via the SNIPER and homoclinic bifurcations, respec-
tively, for further larger coupling strengths. The oscillation
death state onsets via SNIPER bifurcation. The bifurcation
curves corresponding to the nonidentical Stuart-Landau oscil-
lators are obtained using the XPPAUT software and have also
been verified numerically. The dynamical transitions are in-
vestigated both as a function of the repulsive coupling strength
and the distribution of natural frequency. Thus, it is clearly
evident that the limiting factor in the intrinsic variable that
destabilizes the stable steady states facilitating the revival of
oscillations in the normal diffusive coupling can also indeed
lead to the counterintuitive effect of stabilizing the nontriv-
ial steady state and oscillation death state via the SNIPER
bifurcation, while the systems are repulsively coupled to the
evolution equation of the dissimilar (conjugate) variables.
The generic nature of the effect of the limiting factor in the
employed coupling configuration is also validated using N
coupled Stuart-Landau oscillators and two coupled FitzHugh-
Nagumo oscillators. We strongly believe that the results of this
manuscript will lead to further research activities in exploring
the emergence of various other types of quenched states and
their bifurcation transitions in several other complex systems
in the presence of the limiting factor in the intrinsic variable,
generalizing its versatile nature beyond its current limits.
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