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Unidirectional segregation of bright-bright soliton through a parity-time-symmetric potential
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We study the dynamics of two-component vector solitons, namely, bright-bright (BB) solitons interacting
with parity-time (PT )-symmetric potentials. We employ direct numerical simulations to demonstrate the
unidirectional segregation of the BB soliton. Using a modified perturbed dynamical variational Lagrangian
approximation, we develop an analytical model to verify the results obtained from numerical calculations.
Simplified variational equations of motion suggest that the splitting of BB solitons can be explained by
considering the effective force between the two components.

DOI: 10.1103/PhysRevE.106.064202

I. INTRODUCTION

Unidirectional flow is an important topic in physical re-
search from fundamental and applied perspectives. It has
been used in many fields of applied physics, such as
electromagnetic waves [1,2], phonon waves [3–5], and meta-
materials [6,7]. In nonlinear wave theory, controlling the
flow direction of solitons has profound applications owing
to the appealing features that solitons provide for opti-
cal data transfer and processing [8–11]. The scattering
of bright solitons described by the nonlinear Schrödinger
equations (NLSEs) with a reflectionless potential has been ex-
tensively studied [12–14]. In addition, the unidirectional flow
of one-component bright solitons through a specific combina-
tion of asymmetric potential wells has been demonstrated in
Ref. [15]. Moreover, such a flow of solitons was found to oc-
cur in solitons scattered through parity-time (PT )-symmetric
potentials [16–19].

PT -symmetric potentials [20,21] in quantum mechanics
are complex potentials that exhibit a purely real spectrum
of energies [22–26]. For example, a one-dimensional Hamil-
tonian is PT symmetric when the corresponding potential
fulfils the condition V (x) = V ∗(−x), where x is the spatial
coordinate and the asterisk denotes a complex conjugation.
In this case, the real part of the potential must be an even
function of position x, whereas the imaginary part must be
an odd function.

For a two-component bright-bright (BB) soliton [27–29]
interacting with asymmetric double wells or barriers, the
flow direction of each component could be controlled sepa-
rately [30,31]. In this case, we may obtain a unidirectional
flow for both components or split the BB soliton into its con-
stituents as desired, allowing more flexibility for manipulating
such systems. Therefore, it is important to search for different
schemes by which it is possible to achieve unidirectional seg-
regation and splitting of vector solitons, such as BB solitons.
The treatment of the unidirectional segregation of BB solitons
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using PT -symmetric potential is the subject of our present
paper.

Here, we performed numerical simulations and a the-
oretical analysis to study BB soliton scattering through a
PT -symmetric potential. We showed from numerical results
that unidirectional segregation can be obtained using a re-
flectionless potential type, the so-called Rosen-Morse (RM)
potential [32]. We also provided analytical and numerical
proofs of the unidirectional segregation with the delta func-
tion in the real and imaginary parts of the PT -symmetric
potential. Furthermore, we performed analytical calculations
using a modified perturbed dynamical variational Lagrangian
approximation method [33]. The outcome of the variational
calculations [34–36] provides insight into the physics behind
the splitting of the two components and determines the upper
limit of the coupling strength constant for breaking the BB
soliton into its components.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the proposed theoretical model. In
Sec. III, we numerically prove the BB soliton unidirectional
segregation when passing through a PT -symmetric potential,
where the barrier has been modeled using the RM potentials.
Section IV presents a comparison between the variational
approach and numerical simulation using delta-function po-
tentials for the real and imaginary parts of the PT -symmetric
potential. Finally, in Sec. V, we summarize our findings.

II. PROBLEM FORMULATION

The normalized nonlinear Schrödinger equation for bright-
bright vector solitons with a PT -symmetric potential is given
by

i
∂

∂t
u + 1

2

∂2

∂x2
u + [|u|2 + g|v|2]u + U (x)u = 0,

i
∂

∂t
v + 1

2

∂2

∂x2
v + [g|u|2 + |v|2]v + U (x)v = 0, (1)

where u ≡ u(x, t ) and v ≡ v(x, t ) are the wave functions for
the bright-bright vector soliton components. The coupling
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FIG. 1. Density plot of a two-component BB soliton (a) interact-
ing with a PT -symmetric potential (b). The BB soliton parameters
are ξ1 = −18, ξ2 = −21, v1 = v2 = v0 = 0.24. The potential param-
eters are V0 = 4, W0 = 2. Here, we set β = −1 in Eq. (3).

strength between the two components is controlled by g, that
is, for g = 0, the system is completely decoupled and two
bright solitons are obtained. The potential in the above equa-
tions takes the form

U (x) = V (x) + iW (x), (2)

for both components, where V (x) and W (x) are the even and
odd functions, respectively.

In Sec. III, we begin our analysis by numerically proving
the unidirectional segregation of the BB soliton, where we set

V (x) = V0 sech2(αx), W (x) = β W0 x sech2(αx). (3)

The constants V0 and W0 are real-valued constants that cor-
respond to the depth or amplitude of the real and imaginary
parts of the potential, respectively. The real part in Eq. (2)
represents a class of reflectionless potentials known as the
Rosen-Morse potential, where α, the inverse width, is usually
equal to

√|V0| to maintain the reflectionless property. The
constant β in Eqs. (3) and (4) reflects the potential around
x = 0 by setting β = ±1.

In Sec. IV, we chose

V (x) = V0δ(x), W (x) = β W0[δ(x − L) − δ(x + L)], (4)

to obtain analytical expressions using variational calculations.
The PT -symmetry requirement is satisfied for both the po-
tentials, as shown in Eqs. (3) and (4) [16].

To study the unidirectional segregation and splitting of the
BB vector soliton, the potential is fixed at the center, the BB
vector soliton is launched from both sides, and the scattered
region is thus observed. Our analysis follows an equivalent
plot, where we fix the BB vector soliton launching point and
rotate the PT -symmetric potential around x = 0 by switching
β from +1 to −1 (see Figs. 1 and 2).

III. NUMERICAL RESULTS USING RM POTENTIALS

We numerically studied the interaction between the BB
soliton and the potential described by Eq. (3). It has been
shown that solitons scattered by this potential display a sharp
transition in transport coefficients at a specific critical incident
center-of-mass speed of the soliton [16,37,38]. Therefore, it
is natural to start the analysis using this potential to prove
the unidirectional segregation phenomenon of the BB soliton.
However, the product of hyperbolic secants with different
widths cannot be integrated into an analytical form. There-

FIG. 2. Density plot of two-component BB soliton (a) scattering
by a PT -symmetric potential, (b). We obtain unidirectional segrega-
tion using the same parameters as in Fig. 1 but with β = 1.

fore, we selected different potential functions in Sec. IV for
the variational and numerical calculations. In the absence of
the potential term, Eq. (1) has an analytical solution of the
following form,

u(x, 0) = A sech

[
x − ξ1

a

]
e−iv1x,

v(x, 0) = A sech

[
x − ξ2

a

]
e−iv2x, (5)

where ξ1,2 and v1,2 represent the soliton location and velocity,
respectively. The soliton amplitude is set to A = 1√

2
and width

a = √
2. The initial positions of the two solitons are chosen

far from the potential location, such that there is no interaction
between them at t = 0. In our analysis, we fixed the launching
point of the vector soliton and rotated the potential, Eq. (3),
around x = 0 such that when β = 1 (β = −1) it is equivalent
to a BB vector soliton coming from the left (right). We set
the BB soliton in motion with the initial center-of-mass ve-
locity v1 = v2 toward the potential region. The results range
from total reflection (R), transmission (T ), trapping (L), or a
combination of these states, depending on the interaction be-
tween the BB vector soliton and the potential. The reflectance,
transmittance, and trapping coefficients are defined as
follows,

R1,2 = 1

N

∫ −δ

−∞
|ψ1,2(x, t )|2dx,

L1,2 = 1

N

∫ δ

−δ

|ψ1,2(x, t )|2dx,

T1,2 = 1

N

∫ ∞

δ

|ψ1,2(x, t )|2dx, (6)

where ψ1,2(x, t ) represents the first u(x, t ) and second v(x, t )
components. The three coefficients must satisfy the conser-
vation law R + T + L = 1. The constant δ represents the
position of the measurement of reflectance or transmission,
set at a value slightly greater than the position of the potential
boundary, and N = ∫ ∞

−∞[|u(x, t )|2 + |v(x, t )|2]dx is the nor-
malization of the BB vector soliton.

In Fig. 1 we launched the BB vector soliton with initial po-
sitions ξ1 = −18 and ξ2 = −21, where the initial velocity was
equal to v1 = v2 = v0 = 0.24. The two components undergo
internal oscillation, where we set the interaction coupling
g = 0.05. The potential barrier parameters are V0 = 4, W0 = 2
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FIG. 3. Transport coefficients obtained from the numerical so-
lution of the coupled NLSEs, Eq. (1), using the potential, Eq. (3)
with β = −1. (a) [(b)] represents the first (second) component u(x, t )
[v(x, t )]. For the velocity range, both components transmitted over
the potential.

with β = −1. In this case, the BB soliton encounters the
gain term caused by the imaginary part of the PT -symmetric
potential. This results in an increase in its velocity until both
components are transmitted over the potential. As shown in
Fig. 3, this is indeed the case for a wide range of velocities.

In Fig. 2, we rotate the potential around x = 0 by set-
ting β = 1. In this case, the BB soliton first encounters the
damping term, which reduces its velocity. Figure 4 shows
unidirectional propagation may be obtained for both com-
ponents when v0 < 0.17. In addition, for a wide range of
velocities, 0.17 < v0 < 0.25, the unidirectional segregation
and splitting of the two components was obtained. For v0 >

0.25, the damping effect caused by the imaginary part of
the PT -symmetric potential is not large enough to pre-
vent the two components from being transmitted over the
potential.

IV. VARIATIONAL APPROACH VERSUS NUMERICAL
COMPUTATION USING DELTA FUNCTION POTENTIALS

A. Lagrangian density and ansatz

In this section, we study the interaction between the vector
soliton and PT -symmetric potential. The potential term takes
the form shown in Eq. (4). The real and imaginary parts in the
potential term, in addition to the assumption |V0|, |W0| � 1,
allow us to treat the potential as a small perturbation ef-
fect. Therefore, we can use a modified perturbed dynamic
variational Lagrangian approximation. We recast Eq. (1) as

FIG. 4. Transport coefficients obtained from the numerical so-
lution of the coupled NLSEs, Eq. (1), using the potential, Eq. (3)
with β = 1. (a) [(b)] represents the first (second) component u(x, t )
[v(x, t )]. Depending on the incident velocity, we have a total re-
flection of both components, unidirectional segregation, or total
transmission.

follows,

i
∂

∂t
u + 1

2

∂2

∂x2
u + [|u|2 + g|v|2]u = εRu,

i
∂

∂t
v + 1

2

∂2

∂x2
v + [g|u|2 + |v|2]v = εRv, (7)

where

Ru ≡ −[V (x) + iW (x)]u(x, t ),

Rv ≡ −[V (x) + iW (x)]v(x, t ). (8)

In the absence of the perturbation effect, i.e., ε = 0, the
Lagrangian density associated with Eq. (7) is

L = i

2

[
u∗ ∂u

∂t
− u

∂u∗

∂t

]
− 1

2

∣∣∣∣∂u

∂x

∣∣∣∣
2

+ 1

2
|u|4

+ i

2

[
v∗ ∂v

∂t
− v

∂v∗

∂t

]
− 1

2

∣∣∣∣∂v

∂x

∣∣∣∣
2

+ 1

2
|v|4

+ g|u|2|v|2. (9)

The use of a perturbation technique in the variational
method results in modifying the standard Euler-Lagrange
method. To determine the equations of motion that govern the
behavior of the variational parameters, we use the following
modified Euler-Lagrange equation [33]

∂L

∂a j
− d

dt

(
∂L

∂ ȧ j

)
= 2 Re

{∫ ∞

−∞

(
R∗

u

∂u

∂a j
+ R∗

v

∂v

∂a j

)
dx

}
.

(10)
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FIG. 5. Density plot of a two-component BB soliton scattering
by a PT -symmetric potential, Eq. (4) with β = −1. The solid
lines represent the numerical calculations for the two components,
whereas the dashed lines represent the variational calculations. The
potential parameters are V0 = −0.1, W0 = −0.08. The locations of
the two components are ξ1 = −20, ξ2 = −24 with v0 = 0.33. The
coupling strength, g = 0.05.

Here, L = ∫ ∞
−∞ Ldx, where L denotes the Lagrangian den-

sity in Eq. (9). The variable a j represents the variational
parameters, where ȧ j ≡ da/dt and Re{ } denote the real part
of the expression in brackets. We employ the following ansatz
as the variational BB soliton solution to the coupled NLSEs,
Eq. (7),

u(x, t ) = A sech

(
x + ξ1

a

)
exp{i[φ + c1(x + ξ1)

+ b(x + ξ1)2]},

v(x, t ) = A sech

(
x + ξ2

a

)
exp{i[φ + c2(x + ξ2)

+ b(x + ξ2)2]}. (11)

The variational parameters A(t ), a(t ), φ(t ), and b(t ) describe
the amplitude, width, phase, and chirp of the two components,
respectively. The location and velocity of the two components
are represented by ξ1(t ), ξ2(t ), c1(t ), and c2(t ), respectively.
We may link the amplitude to the width and reduce the number
of variational parameters by one when we use the normaliza-
tion condition,∫ ∞

−∞
dx|u(x, t )|2 =

∫ ∞

−∞
dx|v(x, t )|2 = 2A2a = N. (12)

To obtain a system of ordinary differential equa-
tions (ODEs) that describe the evolution of the variational
parameters in time, we substitute Eq. (11) into the Lagrangian
density, Eq. (9), and integrate over space from −∞ to +∞.
As a result, we obtain the Lagrangian as a function of the

FIG. 6. Density plot of a two-component BB soliton scatter-
ing by a PT -symmetric potential, Eq. (4) with β = 1. The solid
lines represent the numerical calculations for the two components,
whereas the dashed lines represent the variational calculations. The
potential and BB soliton parameters are similar to Fig. 5.

variational parameters as

L = − N

3a2
+ N2

3a
− 1

3
Nπ2a2b2 − 1

2
N

(
c2

1 + c2
2

) − gN2

a2

× csch2

(
ξ1 − ξ2

a

)[
a − (ξ1 − ξ2)coth

(
ξ1 − ξ2

a

)]

− 1

6
Nπ2a2 ∂b

∂t
− Nc1

∂ξ1

∂t
− Nc2

∂ξ2

∂t
− 2N

∂φ

∂t
. (13)

The next step in our analysis involves applying the mod-
ified Euler-Lagrange equation [Eq. (10), using Eq. (13) in
addition to Eqs. (8)]. Most of these equations are lengthy;
hence, we relegate the writing of the explicit system of equa-
tions of motion to the Appendix. We used the variational
equations of motion in the Appendix to plot the trajectories
of the two components.

In Figs. 5 and 6, the trajectory of the two components cal-
culated from the variational calculations (dashed lines) were
plotted and compared to the results of the numerical simu-
lation (solid lines). The two components underwent internal
oscillation, where we set g = 0.05. We obtain asymmetric
dynamics, where unidirectional segregation is achieved using
a delta-function potential, Eq. (4). Depending on whether the
BB soliton first interacts with the gaining or damping term
caused by the imaginary part of the PT -symmetric poten-
tial, the two components break up or continue to oscillate.
The two approaches are found to be in good agreement. In
both figures, the two components’ locations are ξ1 = −20 and
ξ2 = −24 with v0 = 0.33. The potential parameters in Eq. (4)
are V0 = −0.1, W0 = −0.08.

Furthermore, we proceeded by expanding the comparison
between the numerical simulation and variational calculations
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FIG. 7. Transport coefficients obtained from the numerical so-
lution of the coupled NLSEs, Eq. (1), using Eq. (4) with β = 1.
(a) [(b)] represents the first (second) component u(x, t ) [v(x, t )]. For
the velocity range, both components transmitted over the potential.

for a broad range of velocities. In Fig. 7, we numerically cal-
culated the transport coefficients for β = 1 and found the two
components transmitted over the potential. When we invert
the potential around x = 0 by setting β = −1, a small velocity
window is achieved, in which the unidirectional segregation of
the two components is observed (see Fig. 8).

In Figs. 9 and 10, the transport coefficients were calcu-
lated analytically. Figure 9 shows that the same dynamics are
obtained when setting β = 1 (i.e., complete transmission of
the two components over the potential). As shown in Fig. 10,
we also obtain unidirectional segregation for a larger velocity
window. A discrepancy between the numerical simulation
and variational calculations is always expected, especially
when using a sharp edge function, such as the delta function.
The delta-function potential, Eq. (4), captures the main PT -
symmetric features of the original potential, i.e., Eq. (3).

B. Simplified dynamics

The main aim of the variational calculation was to capture
the physics of the unidirectional segregation of the BB soliton.
To this end, we simplify the lengthy variational equations of
motion in the Appendix by focusing on the center-of-mass ξ1,2

and the velocity c1,2 of the two components. Consequently, we
obtain the following coupled equations,

∂2

∂t2
ξ1 + �[ξ1]

∂

∂t
ξ1 + f1[ξ1, ξ2, c1] = 0,

∂2

∂t2
ξ2 + �[ξ2]

∂

∂t
ξ2 + f2[ξ1, ξ2, c2] = 0, (14)

FIG. 8. Transport coefficients obtained from the numerical so-
lution of the coupled NLSEs, Eq. (1), using Eq. (4) with β = −1.
(a) [(b)] represents the first (second) component u(x, t ) [v(x, t )].
Depending on the incident velocity, we have a total reflection of both
components, unidirectional segregation, or total transmission.

where

�[ξ1,2]

= εβ
W0

a

[
sech2

(
L − ξ1,2

a

)
− sech2

(
L + ξ1,2

a

)]

− εβ
2W0

a2
(L − ξ1,2)sech2

(
L − ξ1,2

a

)
tanh

(
L − ξ1,2

a

)

+ εβ
2W0

a2
(L + ξ1,2)sech2

(
L + ξ1,2

a

)
tanh

(
L + ξ1,2

a

)
,

(15)

and

f1[ξ1, ξ2, c1]

= −3gN

a2
coth

(
ξ1 − ξ2

a

)
csch2

(
ξ1 − ξ2

a

)

+ gN

a3
(ξ1 − ξ2)

[
2 + cosh

(
2
ξ1 − ξ2

a

)]
csch4

(
ξ1 − ξ2

a

)

+ εβW0

a

{
[c1 + 2b(ξ1 − L)]sech2

(
L − ξ1

a

)

−[c1 + 2b(ξ1 + L)]sech2

(
L + ξ1

a

)}

+ εV0

a2
sech2

(
ξ1

a

)
tanh

(
ξ1

a

)
, (16)
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FIG. 9. Transport coefficients obtained from the variational cal-
culations using Eq. (4) with β = 1. (a) [(b)] represents the first
(second) component u(x, t ) [v(x, t )]. For the velocity range, both
components transmitted over the potential.

in addition to

f2[ξ1, ξ2, c2]

= 3gN

a2
coth

(
ξ1 − ξ2

a

)
csch2

(
ξ1 − ξ2

a

)

− gN

a3
(ξ1 − ξ2)

[
2 + cosh

(
2
ξ1 − ξ2

a

)]
csch4

(
ξ1 − ξ2

a

)

+ εβW0

a

{
[c2 + 2b(ξ2 − L)]sech2

(
L − ξ2

a

)

−[c2 + 2b(ξ2 + L)]sech2

(
L + ξ2

a

)}

+ εV0

a2
sech2

(
ξ2

a

)
tanh

(
ξ2

a

)
. (17)

The center-of-mass equations in Eqs. (14) represent two
classical particles subject to a velocity-dependent force
�[ξ1,2], in addition to an effective force − f1,2[ξ1, ξ2, c1,2].
When the effective force is positive, the soliton velocity in-
creases and is transmitted over the potential [16]. However,
when the effective force is negative, the soliton velocity
decreases and is consequently reflected by the barrier. The
effective force depends on the location and velocity of the
two components. Therefore, we can study the influence of
one component on the transmission or reflection of the other
component. Furthermore, by following the same approach in
this study, where we fixed the launching point of the BB
soliton to the left of the PT -symmetric potential, we can plot

FIG. 10. Transport coefficients obtained from the variational cal-
culations using Eq. (4) with β = −1. (a) [(b)] represents the first
(second) component u(x, t ) [v(x, t )]. Depending on the incident ve-
locity, we have a total reflection of both components, unidirectional
segregation, or total transmission.

the effective force in this region as a function of the soliton
position.

In Fig. 11, we fixed one of the solitons at the center, x = 0,
and plotted the effective force versus ξ1 for different values
of coupling strength. For the uncoupled case (i.e., g = 0), the
effective force is negative, which causes the soliton to slow
down and reflect. By setting g = 0.05, the case in Fig. 5, we
observe that the soliton is also reflected because the effective
force is negative. Nevertheless, as we increase the coupling
strength, the effective force changes sign from negative to
positive, which means that the soliton in this case experi-
ences an increase in velocity. Consequently, the soliton was
transmitted. The splitting of a strong-coupling BB soliton is

FIG. 11. Effective force − f1[ξ1] for different coupling strengths
g. Parameters are as follows: V0 = −0.1, W0 = −0.08, a = 1, ξ2 = 0,
N = 2, c1 = 0, and L = 0.5.
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difficult owing to the attractive interaction between the two
components. Nonetheless, here we found that this behavior
can be explained by considering the signs of the effective
forces. Consequently, as shown in Fig. 11, we find that it is
possible to split the two components as long as the coupling
strength does not exceed g ≈ 0.12.

V. CONCLUSIONS

In this paper, the unidirectional splitting of a moving
BB soliton through PT -symmetric potentials was numeri-
cally demonstrated. Using an odd function in the imaginary
part of the PT -symmetric potential causes asymmetry in the
ordering of pumping and damping. A BB soliton coming
from one direction may experience a velocity increase or
decrease depending on whether it encounters the pumping
or damping region. We found that using reflectionless-type
PT -symmetric potentials results in a sharp transition in the
transport coefficients, allowing control of the transmission or
reflection of each BB soliton component separately, thereby

achieving unidirectional segregation. In addition, considering
a PT -symmetric potential with a delta function in the real
and imaginary parts allows us to treat the potential as a small
perturbation. Therefore, we can use a modified perturbed
dynamical variational Lagrangian approximation to obtain
the equations of motion of the system. The results from the
variational approach were in good agreement with the numer-
ical calculations. A simplified variational equation of motion
shows that the two soliton components behave as classical
particles subject to velocity-dependent and effective forces.
By examining the effective force, we determined the upper
limit of the coupling strength constant g, which enabled the
splitting of the two components in the BB soliton. Future
work may extend our study to examine the unidirectional
segregation of BB solitons using nonlinear management.
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APPENDIX: VARIATIONAL EQUATIONS OF MOTION

By using the Lagrangian equation, Eq. (13), the modified Euler-Lagrange equations yield the following variational equations
of motion. We use this system of equations to plot the trajectory of the two components:

2N

3a3
− N2

3a2
− 2

3
Nπ2ab2 − 1

3
Nπ2a

∂b

∂t
+ gN2

a2
csch

(
ξ1 − ξ2

a

)
− 4gN2

a3
(ξ1 − ξ2)coth

(
ξ1 − ξ2

a

)
csch2

(
ξ1 − ξ2

a

)

− εNV0

2a3

{
a

[
sech2

(
ξ1

a

)
+ sech2

(
ξ2

a

)]
− 2

[
ξ1sech2

(
ξ1

a

)
tanh

(
ξ1

a

)
+ ξ2sech2

(
ξ2

a

)
tanh

(
ξ2

a

)]}
+ gN2

a4

× (ξ1 − ξ2)2csch4

(
ξ1 − ξ2

a

)[
2 + cosh

(
2
ξ1 − ξ2

a

)]
= 0,

3gN2

a2
coth

(
ξ1 − ξ2

a

)
csch2

(
ξ1 − ξ2

a

)
+ ε

{
−NV0

a2
sech2

(
ξ1

a

)
tanh

(
ξ1

a

)
+ NW0β

a

[
sech2

(
L − ξ1

a

)

×[−c1 + 2b(L − ξ1)] + sech2

(
L + ξ1

a

)
[c1 + 2b(L + ξ1)]

]}
− 2gN2

a3
coth2

(
ξ1 − ξ2

a

)
csch2

(
ξ1 − ξ2

a

)
(ξ1 − ξ2)

− gN2

a3
csch4

(
ξ1 − ξ2

a

)
(ξ1 − ξ2) + N

∂c1

∂t
= 0, (A1)

− 3gN2

a2
coth

(
ξ1 − ξ2

a

)
csch2

(
ξ1 − ξ2

a

)
+ ε

{
−NV0

a2
sech2

(
ξ2

a

)
tanh

(
ξ2

a

)
+ NW0β

a

[
sech2

(
L − ξ2

a

)

×[−c2 + 2b(L − ξ2)] + sech2

(
L + ξ2

a

)
[c2 + 2b(L + ξ2)]

]}
+ 2gN2

a3
coth2

(
ξ1 − ξ2

a

)
csch2

(
ξ1 − ξ2

a

)
(ξ1 − ξ2)

+ gN2

a3
csch4

(
ξ1 − ξ2

a

)
(ξ1 − ξ2) + N

∂c2

∂t
= 0, (A2)

∂ξ1

∂t
+ c1 − εW0β

a

[
(L − ξ1)sech2

(
L − ξ1

a

)
+ (L + ξ1)sech2

(
L + ξ1

a

)]
= 0, (A3)

∂ξ2

∂t
+ c2 − εW0β

a

[
(L − ξ2)sech2

(
L − ξ2

a

)
+ (L + ξ2)sech2

(
L + ξ2

a

)]
= 0, (A4)

− 2

3
Nπ2a2b + εNW0β

a

[
−sech2

(
L − ξ1

a

)
(L − ξ1)2 +sech2

(
L + ξ1

a

)
(L + ξ1)2 − sech2

(
L − ξ2

a

)
(L − ξ2)2

+sech2

(
L + ξ2

a

)
(L + ξ2)2

]
+ 1

3
Nπ2a

∂a

∂t
= 0. (A5)
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